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Telephone structures must remain in operation during the shock and
vibration caused by blasts, earthquakes, or other dynamic forces. Tradi-
tionally, various numerical methods, including the finite element approach,
have been used to analyze such problems. These methods, although effective,
generally require excessive and costly computations. I'n contrast, the Fourier
transform method used in conjunction with a fast Fourier transform
algorithm s much more economical. In addition, shock and vibration
problems tnvolving frequency-dependent parameters can be effectively
treated by the Fourier method. However, to make the Fourier method more
effective and widely applicable, various tractable input-transfer-output
relations are needed. This paper derives a set of simple equality and in-
equality relations that allow various response parameters to be con-
veniently estimated based on partial knowledge of the input and the
structures. In particular, two lower bounds and eight upper bounds of the
maximum response of linear structures are presented. Simple structures
subjected to tmpulse loads resembling blasts and a random transient load
resembling earthquakes are studied. Praclical applications of the method
to telephone structures are demonsirated by the analysis of a battery stand
and a community dial office system in an earthquake area.

I. INTRODUCTION

The Fourier transform method has long been used to characterize
linear systems and to identify the frequency content of waveforms.
Sneddon' demonstrates classical applications of the Fourier transform
method to engineering and physics problems. Amba-Rao? gives recent
applications of this method to elasticity, White® illustrates system
response calculations, Le Bail* demonstrates boundary-value problems
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in physics, and Liu and Fagel® ¢ analyze earthquake soil-structure inter-
actions. In the last three applications cited, the fast Fourier transform
(FFT) algorithms were used in conjunction with the Fourier method
to obtain numerical solutions. The development of FFT algorithms in
the past few years has rapidly expanded the application of the Fourier
method to include digital analysis of linear-system dynamies.

This work was motivated by the idea that some simple and effective
techniques based on the Fourier transform method and response-
bound relations of linear systems can be developed for the shock and
vibration analysis of telephone structures.

This paper discusses the Fourier transform method applied to the
vibration problems of linear structures and presents some simple
relationships that make it possible to quickly evaluate and estimate
various response parameters. In a typical engineering vibration prob-
lem, the primary concerns are the time and frequency aspects of the
input and output (response) and the transfer characteristics of the
system or structure involved. The parameters or functions of interest
are generally the waveforms of input and output, their Fourier trans-
forms, the peak values, the frequency characteristics of these wave-
forms, and the effects of linear filtering by structures. Of further con-
cern are the time and frequency distributions of energy or power of
these waveforms and, particularly, the analytical and empirical rela-
tions among all the parameters and functions mentioned above. In
view of the advance of computational techniques, some well-known
and lesser-known input-transfer-output relations useful to shock and
vibration analysis should be systematically presented. The purpose of
this paper is to make these relations available, to discuss their implica-
tions, and to demonstrate their applications.

Il. BACKGROUND AND THEORETICAL BASIS

Applied to the engineering vibration problem, the basic concept of
the Fourier method of analysis is very simple. We assume that the
structure under consideration is linear, causal, and stable, and its
property is completely defined by the associated transfer function
pairs h(t) «» H(iw), where H (iw) is the frequency response function,
h(t) is the impulse response function, ¢ is the time variable, w is the
frequency variable, 7 is the complex unit, and the symbol < indicates
a Fourier transform (FT) pair. When the structure is excited by an
arbitrary (deterministic or random) input funection, z(t) <> X (iw), the
response is given as y(f) < ¥ (iw). If X (i) and H (iw) are known, the
response can be obtained by using the simple relationship, y(f)
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= z(t)*h(t), where = indicates convolution, or by using Y (iw)
= X (iw)H ({w) and taking the inverse FT of Y (iw). Other response
quantities of interest can also be obtained from the basic FT pairs
z(f) <> X (iw), h(t) +> H (i), and y(t) < ¥ (iw) once their relations and
the pertinent response parameter are found. This approach is efficient
because no numerical integrations are required (as in many traditional
methods of analysis), and it yields all needed solutions in both the
time and frequency domains with simple discrete FT or FFT computer
routines now generally available. However, the Fourier method of
analysis is particularly attractive and powerful because of the availa-
bility of some analytical input-transfer-output relations as described
in this paper. These relations, in the form of simple equality or in-
equality, can solve many practical problems. Some important pre-
liminary background material, particularly the definition and proper-
ties of an arbitrary shock function, f(¢), will be briefly given before
the main results.

2.1 Shock function and related quantities

A time function f(t), t € [a, b] for finite @ > b = 0 is referred to as
a shock function. Without losing generality, it is assumed that f(¢)
begins at ¢ = 0 and has finite duration T, i.e., a = 0 and b = T. The
shock function f(¢) could be the input z(t), the output y(t), or the
impulse response function of the system A(¢), and it could be either
deterministic or random. Associated with a shock function f(t), the
following quantities of interest are defined:

Fourter Transform:

T
F(iw) = L 7() exp (—iwt)dt. (1a)
Running FT or Spectrum:
Ft, iw) = fn " 7(r) exp (—iwr)dr. (1b)
Energy:
‘ 1 [= .
E) = fo e = oo [ 1P, i) Yo, (1c)
Total Energy:
T w0
E = fo F20dt = 51; f_m | F (i) | *deo. (1d)
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Instantaneous Power Spectrum:

ot i) = 5 |F(t, i) (1e)
Power:
Py = = L[ 00, ). (11)
Frequency Moment: i
My = o [~ lul?|Fi)lde n=0,1,2,---. (g
Time Moment: .
My = [['Tltlﬂlf(t)ldt n=0,1,2 . (1h)
Frequency Variation:
Spn = % f_: |F (i) [dw, n=0,1,2, ---. (1)
Time Variation:
Sm = f:lf‘"’(t)ldt, n=0,1,2 - (1)
Correlation Function:
Ri(n) = 10w = [ 105~ nat. (1k)

Note that some of these quantities, e.g., My, and my,», may not exist.
Some simple bounds on f(f), F(w), and their derivatives, which will be
used to derive response relations, can be readily obtained from the
above equations.

2.2 Some bounds of shock function and related quantities
2.2.1 Derivative bounds

The following inequalities relating the derivatives of a shock function
or of its F'T with various signal parameters can be established.

[f™ @) = M. n=0,1,2 ---. (2a)
0] gm[%}]’ n=012 -  (2b)
|F™ (30)| < ma n=0/12 ---. (2¢e)
|F (i) | < Tn(ﬁfl)i‘ n=012---. (2
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These relations can be proved as follows. The nth derivatives f(™ (&)
= dnf(t)/di» and Fn(iw) = d"F(iw)/de™ (n =0, 1, 2, ---), can be
written as

J0) = o [ ()P () exp (iut)d (3a)

and
T
F () = fo (—it)"f(t) exp (—iwt)dt. (3b)

Equations (2a) follows from (3a) and (lg), and (2¢) follows from (3b)
and (1h). Note that (2a) and (2¢) are analogous bounds in terms of
frequency and time moments, respectively. Equations (2b) and (2d)
follow from (3a) and (3b), respectively, and Schwartz inequality. In
(2b), Q is a constant and is defined as F(iw) 22 0 for |w| = Q; i.e., in
the practical sense, the shock function f(¢) is assumed to be essentially
band-limited. Although a shock function cannot be strictly band-
limited, in practice most functions (except ideal impulses) possess a
frequency value beyond which the Fourier spectra are negligibly small.
Furthermore, because the sample rate can never be infinitely large,
digitization of the time function always imposes a practical band-limit.
Although the details are beyond the scope of this paper, various
methods and criteria are available for the construction of equivalent
band-limited signals. Equations (2b) and (2d) are also analogous
bounds in terms of energy.

2.2.2 Amplitude bounds

ol = (B2, torans (48)
|Fiw)| £ (E,T)}, for all w, (4b)
jol s, forally, =012, (4o
|F(iw)| < JS:,-["", forallw, n=0,1,2, «-. (4d)

When n = 0, (4a) and (4b) are special cases of (2b) and (2d), respec-
tively. From the relation (—it)"f(t) «> F" (iw), the following relation
holds:

01 < 1@ o [ 1F®(iw) | do. (5)

Relation (4c¢) is obtained from (1i) and (5). Note that in (4¢) no
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band-limitedness requirement is needed. Similarly, the relation
S (t) < (iw)"F (i), eq. (1j), and

PGo)| < |G| [~ 7] ®

lead to (4d). When (4¢) [or (4d)] is used, better bounds are provided
for small ¢ (or w) when n is small, and for large ¢ (or w) when n is large.

2.2.3 Increment bounds
Let 6, = f(t + Af) — f(1) and 8r = F[i(w + Aw)] — F(iw), then

[8;] = MAt, (7a)

ol = [ 22 (1 —“’i‘s‘zgf‘)]* sou (), (7b)

l6p| < miAw, (7c)
and

op] < [2EfT (1 — Si‘,i,,fj“’)]’ < Thw (%)ib (7d)

Relations (7a) and (7¢) are special cases (when n = 1) of (2a) and
(2¢), respectively. Equations (7b) and (7d) follow from (la) and the
corresponding inverse FT relation, respectively, and from Schwartz
inequality. Note that the band-limitedness requirement is imposed to
derive (7b). Equations (7a) and (7c) are analogous increment bounds
in terms of moments; (7b) and (7d) are analogous bounds in terms of
energy. Kak’ proves (2d), (4b), and (7d), while Papoulis®*? proves (2b),
(4a), and (7b).

The equality conditions for the above relations can be easily identi-
fied. For example, the equality holds for (2d) when f(¢) = C(it)»
for even n and a constant C, for (4b) when f(f) = C exp (w.d),
when w, = nw/T, and n =0, 1, 2, ---, and for (7d) when f(¢)
= 2(1 — sin Aw)}, Analogous conditions apply to their analogous
counterrelations and can be established straightforwardly.

2.2.4 Energy bounds

Let fm = max |f({)|, occurring at ¢ = #;, and F, = max |F(iw)|,
oceurring at w = wp. Then

FaT = By = foT  for all w. (8)

The upper bound is obvious from the definition of E; given in (1d);
the lower bound follows from applying Schwartz inequality to the
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relation
T
Piw) = f F(t) exp (—iwt)dt,
o
which results in

T T
|F(im)|2§j; |f(c)\2dcf0 lexp (—iwt) |2dt < B,T forallw. (9)

Ill. RELATIONS FOR VARIOUS RESPONSE PARAMETERS

The basic properties of a general shock function and its FT provide
the basis for establishing important equality and inequality relations
for various response parameters of linear systems. Let z(t) <> X (iw),
h(t) < H (iw), and y(t) <> Y (1w) represent, respectively, the FT pair
of the input, the transfer function, and the response; x(f), h(¢), and
y(t) are shock functions; therefore, the basic definitions and prop-
erties are applicable. The functions z(¢), A(t), and »(¢) are assumed
to possess time duration 7., T., and T, and are band-limited
within wx, wgy, and wy. It is obvious that T, = T, 4+ 7,, and
Qv = min (Qx, Qx). Let z, = max |z(#)|, hn = max |[2({)|, ¥Ym
= max |y(#)|, Xm = max |X(iw)|, Hm = max |H(iw)|, and Y,
= max | Y (iw)|, and i, &, &, wx, wg, and wy be the corresponding
times and frequencies these maxima occur. Note that ¢, &, and ¢, or
wx, wg, and «y need not be equal. In addition to the well-known basic
input-transfer-output relationships () = z()*A(t) and ¥ (iw)
= X (iw)H (iw), the important relations that follow can be established.

3.1 Total energy bounds

The total energy of z (), h(t), or y(t) is bounded by the peak ampli-
tude of the associated time function from above and by the peak
amplitude of the corresponding FT from below.

anTz_l = E: = fl:?nTs (10&)
HALT' < By £ BTy (10b)
YT, < B, < 4T,. (10¢)

These results follow directly from the use of (8).

3.2 Kinetic, potential, and dissipated energies

For a simple oscillator with unit mass, a natural frequency w,,
and a viscous damping A, the following relationships exist for the
kinetic encrgy [T(t) = #*/2 « T(w)], the potential energy [V (¢)
= wly?/2 < V(w)], and the dissipated energy [D(f) = Awlyy < D(w)],

RESPONSE-BOUND METHOD 1409



of the system

T(w) = 4% [V (i) ¥ (i) ] (11a)
Vi) = ﬂ% % LY (i)Y (i0)] (11b)
D(w) = "“"’ 25 [Y (i)Y ()] (11c)

where 7(t) & Y (iw) = (iw)Y (iw). The proof of these equations is
obvious. Using the relationship ¥ (iw) = H (im)X (tw) with a simple
FT routine, (11a) through (1lc) allow various energy functions of
time to derive directly from X (fw) and H (tw).

3.3 Maximum response bounds

Various upper and lower bounds of the maximum temporal response
Ym = max |y(t)| can also be established. Let /; denote lower bounds
and u; denote upper bounds of y,(i = 1, 2, ---), then the following
relation holds:

Us = Ug
UL = {Us
le=h S Ynm ue r ’ (12)

= u,
Uy

A

where
!, = max [Ey(t)/t]*, Iy = Ym/Tm U = (EHQY/"T)*J
t

Qy
_g Y (iw) | /|27ty |,

us = Qv¥n/m, s = (QrEz/m)Hp, Uy = (QEn/m)iXm,

and

Uz = (E'-'Eh)i: Us = Sy.n/(tv)n! Us =

Usg = ﬂmeHm/Tr.

The symbol V in the expression of u, indicates the total variation.

The lower bounds shall be proved first. Considering the running F'T
of y(t) according to (1b) and applying Schwartz inequality, the follow-
ing can be written

Y i)t s [yl [ exp (—ior)|dr

S E,(t)¢
< [max |y(n)| . (13)
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Therefore, for all w and ¢,

; .
max |y(r)|= (E”(t)) = [Y(t, )| (14a)
0=r=t i t
and
3
ymgmu[w] > In (14b)
: t T,

which gives the lower bounds [/, and l.. Note that (E,/T,)* and
[E,(t,)/t,]* are two special cases of l1, and that I, occurs at large (or
small) ¢ if the energy function F,(¢) increases faster (or slower) than .
For a given structure, Y, is fixed; therefore, the bound l. decreases
with T,. Note also that, in (14a), the quantity max.. [| ¥ (¢, tw)|/t]
should be the exact expression for l.. However, the current expression
Y.n/T, is more convenient to use than the exact expression that requires
the computation of the running spectrum over the entire ¢ — w plane.
Clearly, better lower bounds for the maximum response can be estab-
lished on the knowledge of the total energy of the response than on the
knowledge of the peak Fourier spectrum of the response.

It is interesting to compare the lower bounds in (12) with the bound
Liu® establishes for a specific case. For a simple linear oscillator with
natural frequency w, and viscous damping A, it has been shown that
the maximum displacement response

1 .
Ym = | X (1) | ump = s, (15)

where p = (1 — A)}w,. In this situation, the corresponding H (iw)
= (—w? + 2iww, + «2)~! and H, = (2\w,p)~! occurring at w = wy
= (1 — 2A\*)}w,. Therefore, the bound . gives ym = |X (10)|w—wr/
(2pw,T), and in (15) I3 gives ym = | X (iw)|w=p/ (p). Clearly, if damping
is small, i.e., if wy & p, then I, < I3 when 2\w,T > 1, I > {3 when
22w, T < 1, and l; = I3 when 2\w,T = 1.

The upper bounds, %, through wus, will now be derived. The hound
u, follows from the use of (4a) and the assumption ¢, < T',; . is obtained
from applying Schwartz inequality to the relation y(t) = z(t)*h(f);
uz is obtained directly from (4c); u4 is a special case of us whenn = 1
(Giardina!! proves this differently); us and us follow from u; and the
relation

1 2y . Q Q
E, =4 f_n,, | ¥ (i) ["d < 22 V3 < 2 X3, (16)
and u; and u; follow from %, and the relation
D -
E, = %r f | X (iw)H (iw) de < HAE, or XiE.  (17)
—Qy
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Generally, better bounds can be obtained when more is known about
the input, the transfer characteristics, and the output. For example,
the poorest bound in (12) is obviously us because the band-limit 2y and
the peak values of spectra | X (fw) | and | H (iw) | are all that are known.
Closer bounds can be established if Qy and ¥, are known, or, equiva-
lently, E. and H,, or E; and X,.. Still closer bounds can be obtained if
the energy functions K, or E, and Ej are known. Knowledge of E,, in
most cases, depends on the knowledge of y(t) or Y (iw); the exact
value of ym can be readily obtained from this knowledge. Therefore,
bounds depending on E, explicitly, such as I; and u;, may not help in
practical applications. Note that bounds w,, us, and ue grow with 7', ;
therefore, they do not provide good results for large 7', i.e., when long
excitations or small damping sustain the response for some time. The
bound u. depends only on the knowledge of the input and the transfer
function ; therefore, it is convenient to use. Furthermore, it is inde-
pendent of the output information, thus, it cannot be considered one
of the better bounds, especially for very small or very large time ¢.
Bounds us, 47, and s also depend mainly on the input and the transfer
function, and the only output knowledge required is the band-limit
frequency Qy. Bounds u; and u, are generally better, yet they require
the prior knowledge of ¢, the time when the maximum response occurs.
This is usually difficult to know without the waveform or FT of the
response. Additional calculations are also needed for the following two
bounds: for us, the calculation of S, . and the areas under the spectra
of ¥ (iw) and its derivatives, and for u,, the absolute value of the total
variation of the complex quantity Y (i) for the entire frequency axis.
For u;, small n provides better bounds for small ¢, and large n for
large f. For w4, it provides better bounds for large ¢ than for small ¢.
In general, ui, u;, and u, are better upper bounds, yet they are less
convenient to use than others.

Some interesting features about these response bounds are note-
worthy. Drenick!? derives the least favorable excitation for structures
based on u.. An uncertainty condition 7,2y = =, familiar in band-
limited and time-limited signal analysis can be arrived at from bounds
I» and us. The bound %, can be used to estimate the settling time {. for
the response y(f) to remain with a specified value . For example, if
Y,(?w) is smoother, and thus has less variation than Y,(iw), then
y1(t) takes longer than y, () to settle to the level e. This implies that,
for two comparable response Fourier spectra, the smoother one corre-
sponds to the response of a system with higher damping and the rugged
one corresponds to the response with less damping.
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3.4 Mean square response

If z(t) and hence y(f) are random, the mean square response

= E[|y(t)|*] (where E denotes expectation) is of interest. Let

= E[|z(t)|%], and S:(iw) and S, (iw) be the power spectral density
functions, and R.(r) and R,(r) be the autocorrelation functions of
x(t) and y(t), respectively, then the following relations regarding o,
can be found:

o = R,(0) = f * Ru(r)Rau(7)dr (18a)
. _ ELE,] _ E[|X(iw)|*]

7= il (18b)
o= 2—2 HZ,. (18c¢)

In (18a), R,(7) = Ry(t)*R:(t), Ri(7r) = [i*h(D)h(t — 7)dt = the sys-
tem autocorrelation function, as defined in (1k). Because the proofs of
these equations are straightforward, they are omitted. The mean
square response can be provided either by (18a) upon a simple time
integration of the product of the autocorrelation functions of input
and impulse response, or by (18b) upon the direct knowledge of the
mean output energy or the expected square input Fourier spectrum.
Equation (18¢) provides a simple upper bound based on mean square
value of input and the peak amplitude of the frequency response of
the system.

3.5 Relations regarding input and output time histories
The following useful equations relate the time histories of input and

output:
2(t)| X (1, iw)/t
‘y(i)] = exp (it) laY(t, 'iw)/&t}
_ [ axXe(t, dw)/at
= exp (—1wt) taYc(t, m)/az} (19)
2y(®) = 5 [ Re [H (i) I, ia)da (20)
y(t) = Ji"i:,@ (21)
20 = - T ’iy;%“) (22)
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where

mi = j TUh@d,  no = (ma/me),  ma = (md/me — ma/2),

ny = [mi/mo — (1 + mo)mims/2mo — ms/6my], ---, ete.,

and the superseript ¢ in (19) indicates the complex conjugate.

Equation (19) expresses the waveform of input or output in terms
of the corresponding running spectrum and can be used to recover it;
(20) gives the instantaneous value of the multiple of z(¢) and y(t) as
a simple frequency integral in terms of the transfer function and
instantaneous power spectrum density of the input; (21) [or (22)]
expresses the output (or the input) waveform in terms of the moments
of the impulse response function of the system and the derivatives of
the input (or the output). Liu®® derives (19) and (20). Papoulis' uses
Taylor’s expansion to derive (21) and (22). Note that (21) and (22)
are useful only if the two series converge rapidly; i.e., if the transfer
function H (¢w) only takes significant values and can be approximated
by a polynomial of low order within the region of |w| = Qy.

IV. SHOCK AND VIBRATION ANALYSIS OF SIMPLE STRUCTURAL SYSTEMS

The relations presented above can be applied in the shock and vibra-
tion analysis of structures. Since many structures can be treated as
systems with a single mode of oscillation and many others can be
solved by superposition of various modal responses in the generalized
coordinates, the application can be well illustrated by the analysis of
simple structures. We therefore consider a set of single-degree-of-
freedom systems with natural frequency in the range of 0.05 to 10 Hz
(most commercial and industrial structures have natural frequency in
this range), and having a damping ratio of A = 2 percent and 10
percent, respectively. These structures are subjected to a random
transient load resembling a strong-motion earthquake accelerogram
(Fig. 1) and four different types of idealized impulses resembling air or
ground shocks (Fig. 2). The various bounds of the relative displacement
and acceleration responses of the structures are calculated according
to (12) and compared with the actual maximum response ym.. The
results in Fig. 3 indicate that, for earthquake type of excitations, the
lower bound I; and the upper bound u; (with n = 0) are the better
bounds; us and w: also appear as reasonably good upper bounds
although, for the acceleration response, they show wider fluctuations
than u;. Bounds I; and us fluctuate with Y, and vary with the natural
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Fig. 1—A random transient waveform.

frequency of the structure, w,; therefore, both have the same degree of
closeness to the real response. Bounds us, us, and l» provide rough
estimates of the response; this is expected because little information is
needed about the input, the output, or the structure. Bounds us and
us are constant for the acceleration response (see Iigs. 3a and 3b)
because, for a fixed input, E. and X, are both constant, and the
simple structures considered, H» = (2A)7}(1 — A?)~}, ie., the maxi-
mum spectrum of the transfer function associated with the relative
acceleration response is a constant for a given damping, and is inde-
pendent of w,. Bounds ws and us, for the displacement response,
decrease with w, (see Figs. 3¢ and 3d) because the associated
H, = (2xp)~'. Bounds u» and us, for the acceleration response, grow
with E}, which increases with w,. For the displacement response, u,
appears also to be a reasonably good bound.
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Fig. 2—Impulse loads.

The results for various types of impulse loads are generally similar
and can be represented by Fig. 4. For impulsive types of excitations,
we can make the following general observations: (z) [; seems to be a
very good bound for most cases (1 =2 ym when w — 0 or when w is
small), (z7) the best upper bound is u; (n = 0), which is very close to
Ym, particularly for the displacement response, (#7%) s and us, because
they are constant for the acceleration response and decrease with w,
for displacement response, do not appear to be good upper bounds,
(2v) for the acceleration response, u» and u; increase with w, ; the rate of
increase is reduced in high-damping cases, (v) for the displacement
response, u; — %z and w7 — %3, when « — 0, and (v7) next to us, u:
and u4 seem adequate as upper bounds.

V. APPLICATIONS TO TELEPHONE STRUCTURES IN AN

EARTHQUAKE AREA

The above analysis can be applied to shock and vibration problems
of telephone structures. Examples are the dynamic response analysis
and aseismic design of various telephone building and equipment
systems located in an earthquake area. Some of such applications will
be described below.

5.1 Aseismic design of battery stands

It has been recognized!® that, in large areas of the country susceptible
to earthquakes, battery stands on floors of multistory telephone build-
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ings require special physical design consideration to protect the
safety of operating personnel and the reliability of telephone plant.
Figure 5 shows a typical soft-site stand modified for service in earth-
quake areas. It consists of bracing to support the stand laterally from
an overhead ironwork structure and to support the cells on the shelves.
Clearance is provided around the entire cell to allow it to rattle around
freely in response to ground motion. The failure of the battery stand
generally occurs from excessive acceleration, which could lead to
sliding and rattling of cells and their banging against one another and
against the side racks, and from excessive displacement of the stand
that could result in overstress of the column members of the stand.
Therefore, the displacement and acceleration responses of the stand
are of erucial concern to its aseismic adequacy. These response parame-
ters can be estimated very conveniently by the response-bound rela-
tions derived in Section III. We assume that all that is known about
the physical property of the battery stand is that it has a damping
ratio about 2 percent and a natural frequency in the range of 3 to 5
Hz.1 It is reasonable to assume that the floor motion corresponding to
a large earthquake resembles the waveform shown in Fig. 1. The peak
acceleration amplitude would be in the range of 0.75 g because of the
soil and building amplification of the ground motion. From the analysis
in Section IV, the response bounds of the battery stands shown in
Fig. 6 can be readily established. From the acceleration lower bound
l, in Fig. 6 that provides an underestimate of the actual responses, it is
immediately clear that the natural frequency of the battery stand in
the range of 1.5 to 3 would not be desirable. Because the high accelera-
tion level in this range would cause lateral forces exceeding the friction
force between the base of the cells and the supporting shelves, the
battery would then slide and rattle violently in response to ground
motion. The displacement bounds u; and I, indicate a continuously
decreasing trend with the natural frequency of the stand. The upper
bound us;, which provides a conservative estimate, indicates that, if
the battery stand is designed to have a natural frequency higher than
5 Hz, the actual maximum displacement response would be less than
the acceptable limit, e.g., about 3 inches. We can therefore conclude
from such a simple analysis that, from consideration of both the
acceleration and displacement responses, it is desirable to increase the
frequency of the battery stand up to about 5 Hz or above. The increase
of the frequency or, equivalently, the stiffness of the stand can be
generally achieved by adding bracings to the wall, columns, or to
superstructures such as the auxiliary frames.
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Fig. 5—Soft-site battery stand modified for service in earthquake area.
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5.2 Earthquake adequacy of community dial offices

A community dial office (CDO) is a small telephone office housing
mostly step-by-step equipment servicing a local community. The CDO
buildings are generally one-story concrete block constructions, with a
few steel-frame constructions as exceptions.

Tests and analyses relating to typical CDO facilities'’'® have in-
dicated seismic weaknesses in the equipment connective system, par-
ticularly at the junction of the superstructure bracing system to the
building. Figure 7 shows a schematic cross-sectional representation of
a typical CDO equipment support structure. Equipment frame lineups
are generally tied together at the 9-foot level by cross-aisle cable racks
and angle braces (indicated as lineup braces). On the common distribu-
tion frame (CDF) side, the frames are attached to a wood batten on
the building wall by horizontally oriented cable racks and angle braces
(indicated as wall braces).

While there are several possible failure modes of CDO equipment,
the most likely and the most critical one is the failure of the lateral
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Fig. 7—Typical CDO support system.
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support system during severe ground shaking. The wood batten shown
in Fig. 7 is attached to the building wall by either lag screws into wood
studs, lag into lead expansion shields inserted into concrete blocks,
or toggle bolts into concrete blocks, depending on the building con-
struction. This batten could pull away from the wall and result in the
collapse of the equipment. To determine whether such a failure might
oceur, it is necessary to compare the axial force of the wall bracing
development during the earthquake with the allowable force. The wall
foree is given as F = EAd/l, where E is the modulus of elasticity, 4
and L are the cross-sectional area and length of the wall brace, respec-
tively, and § is the relative displacement between the two ends of the
wall brace. From testing or analysis we assume the transfer function
H;(w) for the relative displacement response & of a hypothetical CDO
system as given in Fig. 8. We wish to find the earthquake-resistant
capacity of this system, e.g., the highest ground acceleration this
system can safely withstand.

A typical wall brace is made of steel with E = 30 X 10¢ pounds per
square inch, A = 0.53 square inch, and L = 5.7 inches. By testing
we found that the maximum axial force the wall brace can take without
pulling out of lag screws or toggle bolts is 900 pounds, which corre-
sponds to a maximum lateral relative displacement of § = 0.003 inch
between the two ends of wall brace. Based on the transfer function,
H,;(w), and the results described in Section IV, we found that a con-
servative estimate (u;) of the maximum displacement corresponding
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Fig. 8—Transfer function of CDO system.
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to a 0.2 g earthquake loading is approximately 0.002 inch. Assuming
the system remains linearly independent of the input amplitude, we
can conclude that the hypothetical CDO system under consideration
is capable of resisting earthquake ground acceleration up to about
0.3 g, a motion equivalent in magnitude to the El Centro 1940 earth-
quake. Additional braces would be needed if higher acceleration level
is expected at the site.

VI. CONCLUSION

Various equality and inequality input-transfer-output relations are
derived to facilitate the application of the Fourier transform method
in the shock and vibration analysis of linear structural systems. In
particular, a set of lower and upper bounds of the maximum re-
sponse is obtained. Such bounds allow various maximum response pa-
rameters to be easily estimated with little computation effort. The
accuracy of the estimate depends on the degree of availability of in-
formation about the input, the transfer function, and the response of
the system. In general, {; and u; appear to be reasonably good lower
and upper estimates of the maximum response, respectively. Estimates
of response bounds of simple systems are examined when subjected to a
random transient excitation and impulse loadings. For systems whose
transform functions roll off quickly at high frequencies, or for inputs
that have fast-decaying Fourier spectra, the relations presented apply
reasonably well. Care should be taken with short-duration impulses
that have wide spectra. Telephone structures subjected to earthquake
excitations, e.g., a conventional battery stand and a CDO system, are
considered to demonstrate the practical applications.
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