THE BELL SYSTEM
TECHNICAL JOURNAL

DEVOTED TO THE SCIENTIFIC AND ENGINEERING
ASPECTS OF ELECTRICAL COMMUNICATION

Volume 53 October 1974 Number 8

Copyright © 1974, American Telephone and Telegraph Company. Printed in U.S.A.

LAMP:

System Description

By H. Y. CHANG, G. W. SMITH, Jr., and R. B. WALFORD
(Manuscript received February 28, 1974)

A general description of the Logic Analyzer for Maintenance Planning
(LAMP) system s presented. LAMP 1is a digital-logic simulation and
analysis system used for logic-design verification, for generation and
evaluation of fault-detection and diagnostic tests, and for generation of the
trouble-location manual (or fault dictionary) data. It is implemented on the
IBM 360/370 TSS and OS machines (for both interactive and batch
operations), and has been in active use at Bell Laboratories in the develop-
ment of electronic switching systems, data set facilities, transmission
equipment, and advanced integrated circuit technologies.

I. INTRODUCTION

The explosive evolution of digital devices, computers, and systems
since the invention of the transistor has necessitated a parallel industry-
wide development of tools for the design and test of logic circuits.
Whereas the oscilloscope was the mainstay of the digital circuit de-
signer in the early days of discrete-transistor logic circuits, it soon
proved to be inadequate for design verification and fault-behavior
testing of large systems employing integrated, digital logic. In response
to this need for better logic-circuit-development tools, a host of digital-
simulator algorithms and simulator systems has been produced.'~*

1431

The need for reliable and dependable electronic switching systems
(ESS) poses critical design problems. Computer-aided techniques can
be used effectively for:

() Analysis and enhancement of system diagnosability.
(77) Logic-design verification.
(777) Generation of fault-detection tests.

(7v) Analysis of faulty-circuit behavior.

(v) Verification and evaluation of diagnostic-test designs.
(vi) Production of trouble-location manuals (TLMs).

The LAMP system has been designed to attack these problems in a
systematic manner.

This paper provides a brief description of the LAMP system organi-
zation and features, and is intended to serve as background for the four
following papers. These provide details of the logic simulators, the
automatic-test-generation system, and the techniques for organizing
system design for diagnosability.*—® They include a specific example
of how LAMP was employed in the development of a large processor
for an electronic switching system.?

Il. EVOLUTION OF THE LAMP SYSTEM

The decision to build a machine-aids system with digital-simulation

capability was motivated by the successful use by.Bell Laboratories
_designers of the sequential analyzer.® The use of this simulator showed
the great advantages of using simulation for logic testing and fault
diagnosis. By 1966, Bell Laboratories was incorporating simulation
techniques into the design cycle of electronic-switching-system equip-
ment. However, there were several difficulties in the day-to-day use of
this simulator. It had a restrictive logic model, long turnaround time
due to remote computer location, and no capability for handling large
circuits (for example, circuits having as many as 10,000 gates). Because
no simulator then available could meet the growing demand for logic-
simulation service, a decision was made to develop an advanced logic-
simulator system which would grow and adapt to Bell Laboratories
current and future needs.

It is instructive that the motivation to develop a design-aids system
came from the potential users of that system. Likewise, the initial
design objectives and the evolution of the system were influenced to a
large extent by the intended users. This has resulted in a very sophisti-
cated, user-oriented system which continues to grow and evolve to
meet the changing requirements of the designer.

1432 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1974

The initial system was made available to users in late 1969 on IBM
System/360 TSS at Bell Laboratories, Naperville, Illinois. It had only
a modest set of features. However, the user reactions were generally
favorable. Since then, substantial improvements in system performance
and capabilities have been incorporated. The TSS version of LAMP
was converted to run on IBM System/360 OS in mid-1970 and was
made available to Bell Laboratories users at Holmdel, New Jersey,
and Columbus, Ohio. Automatic-test-generation capability was in-
corporated in early 1972; and the facilities to analyze system structural
diagnosability were implemented in late 1972. The LAMP system is
in active use in the development of many ESS projects as well as other
non-ESS work such as the development of data-set facilities, trans-
mission equipment, and advanced integrated-circuit technologies. The
current user group includes twenty organizations from nine Bell
Laboratories locations (Murray Hill, Whippany, Holmdel, Allentown,
Columbus, Merrimack Valley, Indianapolis, Denver, and Naperville).

. SYSTEM ORGANIZATION

LAMP is a system of programs designed to be used for logic-design
verification, evaluation of fault-detection tests and diagnostic pro-
grams, and generation of the trouble-location manual (or fault dic-
tionary) data. It is implemented on the IBM 360/370 TSS and OS
machines (for both interactive and batch operations). The current
version can handle circuits containing up to 65,000 gates. The system
is composed of four basic parts:

(i) A circuit-description-language compiler.

(#7) A command-language interpreter.

(#i7) A collection of design tools composed of an automatic-test-
generation (ATG) system ;! a controllability, observability, and
maintenance engineering techniques (COMET?) system; and
a family of simulators.®

(iv) An output system.

A block diagram showing the functional relationship of the various
parts of the LAMP system is presented in Fig. 1. A logic circuit can be
described to the LAMP system through a user-oriented language
called LSL-LOCAL. The circuit description is then translated by the
language compiler into simulation tables. The command-language
interpreter directs all the actions of simulation, test generation, and
diagnosability analysis in accordance with user-specified commands
and information stored in the simulation table.

LAMP: SYSTEM DESCRIPTION 1433

3 O @E?
o — .

COMMAND LANGUAGE
INTERPRETER

‘ {

LOGIC SIMULATORS

LSL — LOCAL
COMPILER

I

SIMULATOR
TABLES

_—n—

* TRUE VALUE
« FAULT

* TIMING

« PARALLEL

« SHORTED FAULT
* FUNCTIONAL

AUTOMATIC TEST
GENERATION (ATG)

COMET i ouTPUT
TABLES DATA
COMET OUTPUT
ANALYSIS PROGRAMS
; 1
LISTING LISTING LISTING
N—

Fig. 1—Block diagram of LAMP system.

For a given logic-circuit description, the ATG system can auto-
matically produce the test-vector information. To verify logic design
and to study faulty-circuit behavior, a family of simulators can be used.
The inputs applied to the simulators can be manually generated and/or
generated by the ATG programs. The simulators are capable of simulat-
ing circuit behavior in either fault-free or faulty mode, with facilities
to handle race and oscillation conditions and to perform detailed timing
analysis.

If the purpose at hand is to determine the diagnosability of the
design, the COMET system can be used to assist the users to organize
systems design for diagnosability by systematically determining the
optimum placement of control-access and monitor points. Simulation
and analysis results are then collected under the control of an output
system. Numerous output options can be specified that allow users
to obtain information concerning logic verification, timing analysis,

1434 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1974

and other data-processing information at the time of simulation or
afterwards.

In the following sections, the salient features of the various major
funetional blocks in the LAMP system will be described.

3.1 Circuit description input language

A logic circuit is described to the LAMP system through a user-
oriented language called LSL-LOCAL. This language permits the
entry of all information concerning the particular circuit either at the
gate level or at the functional level. At the gate level, circuits are de-
seribed in terms of logic elements such as NANDS, NORS, ANDS, ORS,
and Nots, whereas the functional level the circuits are expressed as
memories, registers, clocks, ete. LSL-LOCAL was designed as an easily
extendible language, to be used by circuit designers and diagnosticians
who may not be trained as programmers.

Once the circuit deseription is entered, the LSL-LOCAL language
processor compiles the deseription into data tables to be used by the
simulator(s), the ATG system, and the COMET analysis programs.
The language processor has a substantial number of checks built into
it to detect and intercept most errors before they can get into the sys-
tem. These checks include syntax checks (for missing parameters,
illegal characters, etc.) and circuit connectivity and consistency checks
such as fan-in/fan-out limits. These features enable the users to check
the coding of a circuit efficiently in terms of cost and time.

The original version of the language processor was developed in late
1969. Since then, three major revisions have been implemented to
enhance its capability and performance. Many of the improvements
were incorporated to support a wider range of applications, and the
language has become a standard logic design input language in Bell
Laboratories.

As an example of the LSL-LOCAL circuit description, an exclusive-
OR circuit as shown in Fig. 2a can be encoded as:

CKTNAME: XOR;
INPUTS: A, B;
OUTPUTS: X,
NOT: A’ A;

B’, B;
NAND: AB/ (A, B);
BA’, (B, A);

AXB, (AB,BAY), (X);
(gate name) (input list) (output)

LAMP: SYSTEM DESCRIPTION 1435

The description generally consists of three parts: () the CKTNAME
statement, which introduces the circuit description and declares the
name of the circuit; (77) connection declarations, which specify the
names and the types of all the input/output signals of the circuit; and
(77) interconnection blocks, which specify elements and networks used
in the circuit and how these are interconnected. The hierarchical struc-
ture of the language allows the specification of circuits in a modular
fashion. Thus, the exclusive-or circuit can be used as an element in
describing a single-bit adder [see Fig. 2(b)]:

CKTNAME: ADDERI;
INPUTS: A, B, K;
OUTPUTS: C,K_;
XOR: A X B, (A, B), (X);
D, (X, K), (C);
NOT: A’ A;
B, B;
NAND: ANRB, (A, B);

AORB, (A’, B);
AORBNK, (AORB, K);
K_, (ANB, AORBNK);

These single-bit circuits can then be used to describe an n-bit adder or
other more complex logic element(s). There is no explicit limit on the
number of levels of nesting in describing circuits using LSL-LOCAL.
A user can very conveniently construct the data base of a large circuit
or system by combining the various data bases from its component
circuit modules.

3.2 Command system

The control of LAMP system action for test generation, simulation,
and COMET analysis is accomplished by means of a command-
language structure. A large selection of interactive commands is avail-
able which enables the users to compile and edit a circuit description,
specify simulation-test vectors, make simulation runs, observe circuit
behavior, gather circuit statistics, determine optimal placement of
maintenance-access and observation points to enhance diagnosability,
and specify types of simulation and analysis output. At present, there
are approximately 80 commands in the system, many of which were
implemented at the request of users. The commands are highly user-
oriented so that one can easily learn the use of the system after a rela-
tively minor amount of instruction.

1436 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1974

" B' }L} A5

AB'
AB'
BA'
A A SYMBOL
[>° L
B g | BA

CIRCUIT (a)
A AxB
X
D
2 @_L‘{ c
P ®

ANB

K- SYMBOL

CIRCUIT (b)

Fig. 2—(a) Exclusive-or circuit. (b) One-bit adder cireuit.

The system structure is implemented with four levels of hierarchy.
On the base level is the executive routine which reads commands en-
tered by the system user and interprets them as to type. It then calls
the appropriate routine to handle the command. On the next level are
the command handlers whose functions are to process the command
line and call the appropriate functional processors and service routines.
On the third level are the functional processors; they are designed
to perform specific functions such as simulation, circuit-description
and test-vector compilation, circuit modification, processing control,
and interactive control. On the fourth level are the various service
routines that perform such tasks as gate-name retrieval, print control,
vector translation, preliminary processing of data lines, file accessing,
and printing.

LAMP: SYSTEM DESCRIPTION 1437

To illustrate the richness of the command language, a few of the
most commonly used commands for logic simulation are described.
Referring to Fig. 3, to enter circuit descriptions into LAMP, the LSL-
LOCAL encoding of the circuit will be first compiled (using SOURCE)
and the resultant simulator tables loaded (using LOAD). A circuit can
also be formed by combining several circuits into one using LINK.
Should it become necessary to modify the circuit logic without recom-
piling the entire circuit, then CKTCHANGE can be used to connect/
disconnect gates, add gates, and rename, change, or remove gates.

The input test vectors for simulation can be described in either tri-
nary (0, 1, and “don’t know”’), octal, or hexadecimal form (using
INVEC), or in terms of vector names defined by PATTERN. In cer-
tain applications, the STATE command is used to set the circuit-state
variables to initialize a circuit before a simulation run. Internal gates
of the circuit can be treated as additional circuit outputs or test points
by issuing the MONITOR command. Conversely, normal circuit-
output leads can be MASKED out for a particular run.

The what, when, and how much of the simulation statistics that are
to be processed after a run are defined through RESULTS. A simula-
tion is initiated by the RUN command and can be temporarily halted
by a STOP command. At a STOP, the user may interrogate the state
of the simulation and obtain simulation statistics accumulated up to
that point (by using the DISPLAY command), or he may overwrite
the next input veetor in the INVEC data set by issuing an ALTER
command. The simulation can be resumed by issuing a GO command.
If the user wishes to change the course of simulation during a STOP,
he can use the JUMP feature to skip unwanted test vectors.

To facilitate the use of the LAMP system in the production mode,
many commands have been developed for analyzing circuit topology,
gathering circuit statistics, and performing audits. Some examples are
the CKTCHECK command to check the consistency of simulation
tables and to provide statistical information such as counts of gate and
functional types, average fan-in and fan-out for each type, percentages
of types to total, ete., and the CKTSTAT command which prints a
brief summary of circuit statistics including number of gates, number
of ecircuit inputs, number of eircuit outputs, number of clocks, and
number of nonfaulted gates. For topological analysis, the LOOPS
command allows one to identify all loops within a circuit or contained
by a specified gate, the FEEDBACK command identifies the minimum
number of feedback loops within the circuit, the PATH command finds
the shortest path between a specified gate and any input, and the MSC

1438 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1974

“UONB[NUWIS UI Pasn spuswrwod jo sojdwexy—g g

ONILST ONIISIT
TYNING3L dAY1

ANILSI
ANDIV
ONV1S

T0HLNDD
INIHd

S1831
AN3HEND

SWYHO0Hd
indino

NOLLYINWIS
[LE]

135
vivo
LdMHI

()

vivd
CERLLT N
35019 HoLvaws
13§
vivo
o v samve

3403

NI §378¥.L
HOLYINWIS
AHVHOINIL

SAV14SI0 4sia
1531 IN3HHND | 3ALLYINWND
SUDLYINMIS
3avL
s11ns38 u.uwmh
J3ANI
ViV ¥30v01 vivo
NU3L 511053 35WHd
RELT %3010
2IAKN ma
awnr
09
11y] & I
14vis | | | 1niod
wan | | 1L et wnw | | w3012

!

CEREL DR
vaoT - s

NILSIY
I¥I07 - 15

JAILNIIXZ HILIHAHILNI ITVNONYT ONVINNDD

]

138
viva W HaLva E

QLVOBAIN
3Jenos
a0 - 151

SYSTEM DESCRIPTION 1439

LAMP

command identifies all maximally strongly connected sets of gates
within the circuit. All these commands have been proven to be ex-
tremely useful, especially in the course of simulating large circuits
(e.g., those containing 50,000 gates) under fault conditions.”

While the LAMP commands generally assume interactive use of the
system (on 360/TSS), they also permit the use of the system in the
noninteractive mode (such as 360/TS3S batch or 360/370 OS). In these
cases, some advance planning must be done to enable the runs to be
completed successfully.

3.3 Major tools

There are three major tools in the LAMP system: an automatic-test-
generation (ATG) system, a family of simulators, and a system for
diagnosability analysis (COMET). Detailed descriptions of these tools
are covered in the companion papers.*=¢ The purpose of this section
is to describe the salient features of these systems and to briefly de-
scribe the interactions among them and the rest of the LAMP system.

3.3.1 Automatic-test-generation (ATG) system

ATG is a system of programs that can automatically produce the
test-vector information for a given logic-circuit description. The faults
considered are the classical input open, output stuck-at-one, and output
stuck-at-zero for each gate in the circuit. There are two major differences
between ATG and those test generators that have been discussed in
the literature.®!® First, ATG is capable of handling both combina-
tional and sequential circuits without the need to identify feedback
lines. Second, the system treats logic circuits as an interconnection
of unit- and zero-time-delay gates, and thus improves the accuracy of
the circuit modeling.

ATG interacts with other parts of the LAMP system via the com-
mand-language interpreter (see Fig. 1). A set of about 20 commands is
available to the user to set the initial conditions (e.g., loading the cir-
cuit desecription, specifying sequence length of the test), select test-
generation strategies, specify output procedure, and direct the general
course of action. The fault-detection level achieved by the tests gen-
erated by ATG can be evaluated by using the fault simulators avail-
able in the LAMP system. If the evaluation results indicate that the
detection level is not adequate, ATG can be called again to generate
more tests, by using different test strategies and/or changing the
sequence length of the tests. This test-generation and evaluation loop

1440 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1974

can be repeated several times until a specified level of detectability is
achieved.

3.3.2 Controllability, Observability, and Maintenance Engineering Techniques
(COMET)

Past experience has indicated that the effectiveness of diagnostic
testing depends not merely on the techniques used in deriving tests and
test results, but also on the inherent structural diagnosability of the
unit.* The ATG system is a tool for aiding the derivation of test vec-
tors for given circuits. The COMET system, on the other hand, em-
ploys a technique that enables one to determine for a given circuit the
optimal placement of control-access and monitor points for diagnostic
testing.

The COMET analysis is initiated by entering the connectivity of the
functional blocks of a unit via LSL-LOCAL (see Fig. 1). The control
and observation relations among the various functional nodes are
automatically created from the connectivity (or simulator) tables.
Through the use of the command-language interpreter, the user can
then direct COMET to analyze, to examine, and to modify the topolog-
ical structure of the unit. The modification of the structure for addi-
tional control and/or observation is performed automatically, or it
can be explicitly directed by the user. Once the design has been
COMETized, it enjoys the following advantages:

(i) Trouble-location-manual data can be generated and updated
without the use of fault simulation.
(#7) Multiple faults and all nonclassical faults are locatable if they
are detectable.
(#27) Diagnostic information can be easily updated in accordance
with hardware change(s). ‘
(i) An orderly approach to the implementation of an overall diag-
nostic design is provided.
(v) The fault-location procedure is substantially simplified.

3.3.3 Logic simulators

In the heart of the LAMP system are the logic simulators. These are
the programs that actually perform the simulation of the circuit under
test. A total of six simulators is available, each of which is designed to

_ *Depending on the level of integration and the purpose at hand, a unit can be
interpreted as a processor, a functional module, a circuit pack, or an LSI chip.

LAMP: SYSTEM DESCRIPTION 1441

suit a particular condition.” Under the control of the command-lan-
guage interpreter, one or more of the simulators can be called to
simulate a particular cireuit. The six simulators available in the LAMP
gystem are:

(¥)

(77)

(443)

(i)

(v)

(v2)

True-value simulator—This simulator simulates only the true-
value (or nonfaulted) conditions of the circuit. Simulation is
done at the gate level.

Fault simulator—This simulator can simulate the action of
classical stuck-at-type faults (input open, output stuck-at-zero,
and stuck-at-one) in addition to the true value. This enables one
to study the behavior of faulty circuits, to evaluate the fault-
detection capability of maintenance-check circuits and tests,
and to generate diagnostic data for trouble-location-manual
production.

Timing simulator—This simulator allows the specification of
individual rise and fall times of all gates in the circuit but does
not simulate the effect of the stuck-at faults. It is designed pri-
marily for detailed timing analysis to verify that the circuit
will work under worst-case conditions.

Parallel simulator—The features of this simulator are similar
to the ones available in the fault simulator. The major differ-
ence is that the parallel simulator employs a technique whereby
the true value and a small set of faults are simulated con-
currently.

Shorted-fault simulator—This simulator allows for simulation
of nonclassical faults such as crossover shorts and shorts be-
tween adjacent paths. It is useful in aiding the design of manu-
facturing tests for circuit pack check-out.

Functional simulator—This simulator allows one to simulate
the circuit behavior at a higher level (e.g., registers, memories,
etc.) than at the gate level. Functional simulation is most useful
in verifying initial logic design where detailed knowledge of
gate-level logic is not available or the function(s) cannot be
conveniently modeled by gate-level techniques.

The cost effectiveness of the LAMP system depends on the user’s
choosing the correct simulator or simulators for use in his application.
Consequently, it was found necessary to combine the results of more

* This was found desirable and cost effective especially in a production environment
where system performance and accuracy are often weighted against each other in the
search for an optimum mix.

1442 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1974

than one simulator if the model of one simulator is not sufficient for a
particular application. This is accomplished by the output system.

3.4 Output system

In LAMP, a versatile output system is available that enables users
to collect simulation and analysis results in one of several different
formats (or in user-generated formats). Outputs may be specified at
any time during or after the run. The results of several simulation runs
may be combined together at some point after the simulation has taken
place to produce the desired output. Simulation runs that are so com-
bined may be from different simulators. All these options can be
specified by the command language.

Among the various output options available, some of the most com-
monly used will be described here. To verify the validity of the logic
design, the VALUES option is often used, which lists the inputs and
outputs along with the (1, 0, and ‘“‘don’t know’’) values of outputs for
a given input test vector. In some cases where one is interested in
internal states of the circuit, one can use GATEIO option to display
the value of selected gates and their driving and driven gates. This
feature is especially useful during a simulation run when the run is
temporarily halted or has gone into oscillation ; another specific use of
this feature is to display circuit connectivity. Another format often
used to display the outputs of timing and the true-value simulators is
TLGRAPH. TLGRAPH is an oscilloscope-like trace of the signals on
the output gates, from the time the test is applied until the time the
circuit settles down. Whenever the value of an output gate changes,
the time interval is recorded as well as the output gate values. This
format has proven to be extremely valuable in studying worst-case
timing conditions.

A variety of output formats is also available for studying the com-
pleteness, accuracy, and resolution of diagnostic tests. The ATP format
lists all the faults that have not been detected for the test sequence
simulated. The RAW output format lists the output gate name, each
gate’s true value as well as the number of faults that causes each gate’s
true value to be complemented, and a listing of these faults. For a large
run where a user is interested in only a summary of the run, the
MATRIX output can be used to show the faults detected by each test;
the result is presented in the form of a matrix or a fault table. If the
user is interested in fault partitioning and diagnosability information,
he can choose the TREE output that lists the test results in the form
of a diagnostic tree by grouping all those faults causing the circuit to
behave in the same manner for a particular test sequence.

LAMP: SYSTEM DESCRIPTION 1443

Facilities are also provided to allow the user to write his own output
processing program. The raw output data set (RAWDS) contains all
the raw data on the output gates from a simulation, including informa-
tion such as the input vector on each test for which raw data are col-
lected, names of inputs and outputs, fault cross-referencing informa-
tion, fault and nonfault information, and certain ecircuit statistics.
The user can manipulate this information to create the desired output
format. The availability of this feature has substantially reduced the
burden that otherwise would be imposed on the LAMP system de-
velopers to meet the wide variety of user needs.

IV. THE ROLE OF LAMP IN THE DESIGN PROCESS

The process by which a logic design becomes a completed product
has become very complex with the advent of integrated-circuit tech-
nology. This process is made even more difficult in the telephone in-
dustry because of the stringent up-time requirement of the switching
machines.!! The ability to diagnose any equipment failure thus be-
comes an important consideration in the design and implementation
of these machines.

The design and implementation process for a new switching system
processor is made feasible by the constant use of computer-aided-
design tools. Figure 4 shows the overall implementation process from
the initial logic designs through to the completed processor. It also
illustrates how the various major features of the LAMP system can be
used in each design step.

The start of any major logic design project is the specification of the
system architecture along with the basic design decisions. The COMET
feature of LAMP helps this process by providing information about
the diagnosability of a proposed design. With this tool, the global
diagnosability of a system design can be established. Once this overall
design step has been completed, the logic can be partitioned into indi-
vidual circuit packs and detailed circuit designs can begin. In this
phase of the design, the designer uses the true-value simulator for
design verification, and frequently uses the timing simulator to make
sure that the logic-timing functions are correct.

The use of these simulators requires that the logic circuit be encoded
in the LSL-LOCAL language. The encoding of the circuit in the LSL-
LOCAL language at this point accomplishes two basic functions. The
first function is to catch any circuit discrepancies through the use of
audits in the language processor and the second is to provide a machine-
readable form of the circuit design. This latter function is basic to the
entire computer-aided-design function.

1444 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1974

| LOGIC-CIRCUIT I

I DESIGN
L __
COMET
NONFAULT SIMULATION:
LAMP | T IMING
TVAL
LSL—LOCAL FUNCTIONAL
/
___DATA BASE |- PHYSICAL DESIGN
LOGIC & PHYSICAL MACHINE AIDS
DESIGN DATA
CIRCUIT — PACK PROCESSOR DESIGN
DIAGNOSTIC TESTS VERIFICATION
DIAGNOSTIC — SUBSYSTEM
TEST DESIGN INTEGRATION
ATG ! NONFAULT
FAULT SIMULATION: SIMULATION: TVAL
LAMP [e auLT LAMP | EAULT SIMULATION:
SHORTED FAULT PARALLEL
FAULT
TROUBLE COMPLETE
LOCATING o © PROCESSOR—DESIGN
MANUAL (TLM} DESIaN VERIFICATION AND
PRODUCTION DIAGNOSABILITY
FAULT FAULT NONFAULT
SIMULATION: SIMULATION: SIMULATION: TVAL
LAMP | eauLT LAMP e AuLT LAMP | EAULT SIMULATION:
SHORTED FAULT SHORTED FAULT PARALLEL
FAULT
TROUBLE—LOCATION DIAGNOSTIC PROCESSOR
MANUAL PROGRAM DESIGN

Fig. 4—Diagram of LAMP system use in logic-circuit design.

In addition to the basic circuit information, it is possible to input
physical design information through the LSL-LOCAL language. When
the designer is satisfied with the design of the circuit on a circuit-pack
basis, the verified logic is then used as a base for the physical design
process. Here the various additional machine-aided tools are used to
perform partitioning, placement, and routing. The successful com-
pletion of physical design thus establishes a logical and physical design
data base from which other uses of LAMP in the design process may
take place. Some examples of these activities are: () derivation of
circuit-pack diagnostic tests for manufacturing check-out purposes;

LAMP: SYSTEM DESCRIPTION 1445

(77) design verification of the subsystems (which are formed by com-
bining circuit packs) and the complete processor (which is formed by
combining the subsystems) ; and (477) design and verification of diag-
nostic program (s) and generation of TLM data.

V. EXAMPLES OF LAMP SYSTEM USE

To provide some insight into the use of the LAMP system, a few
examples of simple procedures performed with the LAMP system are
presented. Because of the large number of ways the LAMP system is
utilized, it is impossible to cover more than a small area of the system
functions. The examples shown, however, are representative of typical
activity.

All user communication with the LAMP system is by use of a com-
mand language. Each command represents an action to be taken by
the system. In conversational use, the system prompts for the next
input by means of a > character. Some commands which require addi-
tional information prompt the user with an @ character.

Erample 1—Logic Verification Run
(TSS Log-on Procedure)

System: LAMP DESIGN AUTOMATION SYSTEM
ENTER COMMANDS
>
User: load expl. tables
System: CKTNAME: EXAMPLE.CIRCUIT VERSION 06/24/73
>
User: run tval expl.test.vector,expl.output.results,p
System: LAMP TVAL SIMULATOR—VERSION 2.5
>
User: display values,t
System: AT INPUT NO. =3
INPUTS: SA SB CA CB
SEN CEN
OUTPUTS: SOUT COUT
INPUTS: 100001
OUTPUTS: 11
>
User: end

In this example, the user desires to test the “good’” operation of his
logic design by exciting his circuit with a series of prestored input
vectors. The circuit description has been previously compiled from an

1446 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1974

LSL-LOCAL encoding into a data set called ‘‘expl.tables.” The pre-
stored input vectors are located in the data set ‘‘expl.test.vectors.”
Since he is not interested in fault analysis, the TVAL (true-value)
simulator is chosen. For nonfaulted operation, this simulator is the
most efficient of the six available. The results he needs for his analysis
can be obtained in two ways. The bulk of the output is produced via
the computer high-speed printer. The particular types of results the
user wants are specified by the contents of data set “expl.output.
results.” The “p”’ indicates that the results are to be printed as soon as
possible. Because the user wants a quick check of some of the results
before the other output is available, he instructs the system to display
the input and output gate names along with their associated output
values on the terminal after the simulation is completed. Satisfied with
the results, he ends the simulation.

Example 2—Creation of the Controlling Data Sets
(TSS Log-on Procedure)

System: LAMP DESIGN AUTOMATION SYSTEM
ENTER COMMANDS
>

User: source Isllocal expl.source,expl.tables
System: LOCAL LP START
LOCAL LANGUAGE PROCESSOR—VERSBION 3

LOCAL LP END
>

User: results expl.output.results
System: ENTER SIMULATION RESULTS SPECIFICATIONS

@
User: after input *every ; values
System: @
User: [default]
System: >

User: invec expl.test.vectors
System: ENTER INPUT VECTORS

@
User: 101031’
System: @
User: t‘100001’
System: @
User: [default]
System: >
User: end

LAMP: SYSTEM DESCRIPTION 1447

In this example, the user creates the data sets used to control the
simulation run shown in Example 1. The first action is to compile the
logic-circuit description written in LSL-LOCAL that has been stored in
data set “expl.source’ in a form that the compiler can use. The com-
piled information is stored in data set “‘expl.tables.” Next the data set
(“expl.output.results’”) that controls the output results is formed by
use of the RESULTS command. The information put into this data
set will instruct the simulator to print the values of the inputs and out-
puts after every input vector has excited the eircuit.

Finally, the series of input vectors used to excite the circuit is cre-
ated by use of the INVEC command. In this case, a series of these input
vectors has been created. The input value ‘3" signifies a ‘“don’t care”
value.

Only a few of the available commands and options have been shown.
However, these should provide an idea of the ways in which the system
can be used. Additional examples will be presented in the other papers
of this series to illustrate specific points under discussion.

Vi. CONCLUSION

Present and future designs of digital systems require computer aids
during all phases of development, from initial architecture specifica-
tions to diagnostic-test design. The efficiency of these tools in per-
forming their intended functions is of great importance, from both
internal (efficiency of algorithms) and external (user convenience and
usefulness) considerations. Viewed in this light, the LAMP system has
been an outstanding success. The use of LAMP has been found to be
cost effective in that LAMP provides the designers a convenient facility
to assure design quality, to expedite error correction, and to reduce
design-rework cost. LAMP also offers the designer a versatile tool to
evaluate and verify the system diagnostics before hardware is com-
mitted. It has become an integral part of the design of new electronic
switching systems and has strongly influenced the methodology of their
design.

The other papers in the series will give more detailed descriptions of
the use and design of selected portions of the LAMP system.

Vil. ACKNOWLEDGMENTS

Many of our colleagues have contributed to the development of the
LAMP system. Contributions made by R. E. Strebendt, R. E. Michael,
and E. A, Rinaldy in the development of LSL-LOCAL, A. B. Marsh
in the design of the command system, R. A. Elliott and R. B. Schmidt

1448 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1974

in the implementation of output system, and J. R. Burnside, G. A.
Raack, R. R. Riser, and I'. J. Webb in the development of the OS
version of LAMP are gratefully acknowledged. The authors would
also like to thank J. A. Harr, W. Ulrich, and R. W. Ketchledge, and the
many users for their continuous support and encouragement through-
out the development of the system.

REFERENCES

1.

o
=

© »© N @

11.

S. Seshu and D. N. Freeman, “The Diagnosis of Asynchronous Sequential
Switching Systems,”” IRE Trans. on Elec. Computers, EC-11 (August 1962),
pp. 459-465.

. 8. A. Szygenda, “TGAS2—Anatomy of a General Purpose Test Generation

and Simulation System for Digital Logic,”” Proe. ACM-IEEE Design Auto-
mation Workshop (June 1972), pp. 116-127.

B. H. Scheff and S. P. Young, “Gate Level Logic Simulation,” in Design Auto-
mation of Digital Systems, Vol. 1, edited by M. A. Breuer, New Jersey:
Prentice-Hall, 1972, pp. 101-172.

. G. Chappell, “LAMP: Automatic Test Generation for Asynchronous Digital

Circuits,” B.8.T.J., this issue, pp. 1477-1503.

Y. Chang and G. W, Heimbigner, “LAMP: Controllability, Observability, and

Ma.intlegnsﬁ,nce Engineering Technique (COMET),” B.8.T.J,, this issue, pp.

1505-1534.

S. G. Chappell, C. H. Elmendori, and L. D. Schmidt, “LAMEF: Logic-Circuit

Simulators,” B.S.T.J., this issue, pp. 1451-1476.

T. T. Butler, T. G. Hallin, J. J. Kulzer, and K. W. Johnson, “LAMP: Application

to Switching-System Development,” B.8.T.J., this issue, pp. 1535-1555.

8. Seshu, “The Logic Organizer and Diagnosis Programs,”’ Report R-226, Co-
ordinated Science Laboratory, University of Illinois at Urbana (AD-05927).

D. K. Chia and M. Y. Hsiao, ‘“Boolean Difference for Fault Detection in
A}s}ynchronoug Sequential Machines,”” IEEE Trans. on Computers, C-20
(November 1971), pp. 1356-1361.

G. R. Putzolo and J. P. Roth, “A Heuristic Algorithm for the Testing of
Asynchronous Circuits,” IEEE Trans. on Computers, C-20 (June 1971), pp.
639-647.

R. W. Downing, J. 8. Nowak, and L. 8. Tuomenoksa, ‘‘No. 1 ESS Maintenance
Plan,” B.S.T.J., 43 (September 1964), pp. 1961-2020.

wm

LAMP: SYSTEM DESCRIPTION 1449

