Copyright © 1974 American Telephone and Telegraph Company
Tre BerL SysTeM TEcHNICAL JOURNAL
Vol. 53, No. 8, October 1974
Printed in U.S.A.

LAMP:

Logic-Circuit Simulators

By S. G. CHAPPELL, C. H. ELMENDORF, and L. D. SCHMIDT
(Manuscript received February 20, 1974)

The algorithms used for logic-circuit simulation in the Logic Analyzer
for Maintenance Planning (LAMP) system are described. Several simu-
lators are available to allow a cost-effective tradeoff between simulation
cost and the level of detail needed for a particular application. The true-
value simulator provides efficient simulation of fault-free logic circuits.
Two fault simulators simulate the classical stuck-at faulls as well as
shorted-gate-output faults. Hyperactive faults, those faults which cause an
inordinate amount of simulation aclivity, are discussed along with their
impact on stmulation time. A four-value simulation logic vs described
which stmplifies circuil initializalion procedures.

I. INTRODUCTION

The use of digital simulation of logic circuits has been widely
accepted in the computer and telephone industries to verify logic-
circuit designs, to analyze the behavior of logic circuits in the presence
of faults (such as gate outputs permanently stuck at logical 0 or
logical 1, open gate inputs and shorted gate outputs), and to aid the
generation of fault-detection tests for logie eircuits.

Most simulators described in the literature can be divided into three
categories. The first category includes the true-value simulators that
simulate the circuit in the absence of any faults or, by altering the
circuit deseription, simulate the circuit in the presence of one perma-
nent fault.!'2 The second category includes the parallel simulators that
concurrently simulate the fault-free circuit and the effect on the circuit
of a small set of single permanent faults.2~* The third category in-
cludes the deductive simulators that concurrently simulate the fault-

1451

free circuit and the effect on the circuit of all single permanent faults.®
The Logic Analyzer for Maintenance Planning (LAMP) system con-
tains simulators from each category.

The LAMP system has been extensively used over the last four
years to simulate the No. 1A and No. 4 Electronic Switching Systems
to verify the logic design, to aid the generation of diagnostic tests, and
to analyze the behavior of the circuits in the presence of faults. Circuits
containing 52,000 gates and 23,000 single faults have been simulated
using the IBM 370 Model 168 as the host machine.

The simulators in the LAMP system provide a complete range of
capabilities for the design of logic circuits. Circuits and subsets of
circuits can be simulated at the gate level (NAND, AND, OR NOR,
NoT), at the functional level (register, memory, ete.) or at the hybrid
level (a combination of gates and functions). At the gate level, gates
can be modeled in sufficient detail to acecount for variations of such
parameters as temperature and wiring capacitance. Several different
classes of faults can be considered including gate outputs stuck at
logical 0 or logical 1, gate inputs open, and shorted gate outputs.
Tacilities have been provided to help the user debug his logic design
and his diagonstic tests.®

This paper presents a deseription of the LAMP simulators. In the
first section, the family of simulators are described including an
example of their use in the design of a logic circuit. This is followed by
a description of the common attributes of the LAMP simulators. In
the second section, the basic LAMP simulator for fault-free circuits
is described and is the basis for describing the other LAMP simulators.
In the next sections, descriptions of the deductive fault simulators
and functional simulators are presented. In the seventh section, the
detection and elimination of a class of “hyperactive” faults is de-
scribed. Finally, data on the performance of the various simulators
are presented.

Il. THE SIMULATOR FAMILY

This section describes the use of the various LAMP simulators
during the design of a logic circuit. This is followed by a deseription
of the common attributes of LAMP simulators.

As the level of logic-circuit integration increases, it becomes more
difficult to build “breadboard” models. This often means that more
emphasis must be placed on the results of logic-circuit simulation.
Therefore, it is desirable to use an extremely accurate simulation model
of the logic circuit. Unfortunately, as the accuracy (level of detail)

1452 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1974

of the model increases, so does the cost of simulation. Since LAMP
was designed for large circuits (up to 65,000 gates), cost is an im-
portant parameter. One way to partially circumvent this problem is
to utilize several different simulators, each of which provides a detailed
model especially tailored to optimize the simulation of a physical
circuit.

2.1 Use of simulation during circuit design

Consider the design of a small processor. Given the overall specifica-
tions for the processor, the designer can create a functional level model
of the cireuit where the building blocks include registers, memories,
decoders and an arithmetic unit. Using the functional simulator, the
design can be simulated at the functional level to verify the operation
and timing of the processor. The processor can now be divided into
functional units for detailed logic design of each unit. The functional
units may be further divided into circuit packs containing a few
hundred gates each.

The detailed logic design of the circuit pack is performed and is
verified using the LAMP true-value simulator. The true-value simulator
simulates only the fault-free circuit by modeling the logic gates as
logic elements followed by pure time delays. This is a fast, economical
simulator.

If the timing of the signals on the circuit pack is critical, the designer
may wish to perform a more detailed timing analysis of his circuit
using the LAMP timing simulator. The timing simulator” allows each
gate to be assigned minimum and maximum time delays for the rising
and falling signal transitions. The gate output is treated as unknown
during the time between the minimum and maximum transition
delays. This provides a more detailed analysis of circuit behavior in
the presence of variations in gate time delays resulting from such
factors as temperature change, gate loading, and capacitance. In
addition, gate input pulses of shorter duration than the minimum
transition delay are ignored and, therefore, do not affect the gate
output value.

Once the designer has verified that his logic-circuit design meets
the operational specifications, he must generate manufacturing test
vectors (circuit input stimuli) to verify the integrity of the newly
manufactured circuit pack. Whether the designer creates the test
vectors by hand or uses the automatic-test-generation system,® he may
use the LAMP fault simulator to evaluate the quality of the resulting
set of input test vectors. The fault simulator simulates the effect on a

LAMP: LOGIC-CIRCUIT SIMULATORS 1453

logic circuit of the presence of all single classical (gate input open,
gate output stuck-at-zero, and gate output stuck-at-one) faults. This
is a deduective simulator® that associates with each gate output a
fault list containing those faults that will complement the correct
(true) logic value (logical 0 or 1) of that gate. The fault lists may
contain any number of faults, which theoretically allows the simul-
taneous simulation of all classical faults. Because of the effort required
to process the fault information, the fault simulator is considerably
more expensive to use than the true-value simulator. Through the
use of the fault simulator, tests can be designed, or the circuit can be
modified, to attain the desired level of fault detection.

If the number of faults to be simulated is less than a few thousand,
it may be more economical to use the LAMP parallel simulator instead
of the fault simulator. The parallel simulator uses parallel fault-simula-~
tion techniques®* to simulate up to 2048 single classical faults in one
pass. A variable-width-fault word is utilized so that simulation time
and storage are minimized. The relative merits of the parallel and
deductive fault simulation techniques are presented in Ref. 9.

After the chip layout and printed-wire routing for the circuit pack
is complete, the designer may choose to examine the effectiveness of
his classical fault tests against possible shorted faults using the LAMP
shorted-fault simulator, which simulates the effect on a logic circuit of
the presence of single pairs of gate outputs shorted together. If two
gate outputs, A and B, are shorted together where gate A has the
value logical 1 and gate B has the value logical 0, it is assumed that
the logical 0 will dominate and the output of gate A will be forced to
logical 0. A user option is available which forces logical 1 to dominate
logical 0. Potential shorted faults that may be simulated include
shorted adjacent pins on chips, shorted adjacent paths on the printed
wiring board, and shorted crossover points on the printed wiring
board. These data are obtained from the manufacturing information for
each circuit. The shorted-fault simulator uses the deductive simulation
technique.

After the circuit packs are designed, the designer can link all the
circuit packs together to form the complete processor and perform
the same logic verification process on the larger circuit with a few
minor differences. The true-value and timing simulators are used both
to verify the logic design of the processor and to verify the diagnostic
program for the processor. The various fault simulators are used to
evaluate the effectiveness of the diagnostic throughout the design-
change cycle until the design is complete.

1454 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1974

2.2 Common simulator attributes

The common attributes of the LAMP true-value, fault, timing,
shorted-fault, parallel, and functional simulators are described below.

(%)

(#)

(227)

(1v)

(v)

(v1)

(viz)

The version of LAMP that is described is implemented on
the IBM 360 Model 67 and IBM 370 Model 168 under the
IBM interactive, virtual-memory operating system TSS. A
version of LAMP is also available under the IBM operating
system OS.

The first version of LAMP (1969) contained only the fault
simulator. New simulators have been implemented as needed,
and existing simulators have been improved to produce the
complete system for logic simulation now available in LAMP.
The simulators can be accessed from an interactive terminal
or used in the batch mode via card input or prestored data.
Interactive features include the ability to temporarily stop
the simulation when any specified gate changes value and the
ability to correct from the terminal errors in the circuit design
or input data.

Logic circuits are simulated at the gate level (NAND, AND,
NOR, OR, and NOT) except in the functional simulator, which
also accepts descriptions of higher-level blocks such as
memories and registers.

Four simulation values (0, 1, 2, and 3) are used to simulate
binary-logic circuits. The simulation values 0 and 1 represent
the logic values 0 and 1. Values 2 and 3 represent unknown
conditions in the logic circuit. This is explained in more
detail in Section 3.2.

Conditions that cause the output values of flip-flops to be
unpredictable are detected and the flip-flop outputs are forced
to the unknown state 3 by a process called race analysis.
Possible circuit oscillations are detected by a process called
oscillation analysis. Both procedures will be described in more
detail in Sections 3.3 and 3.4.

LAMP uses discrete event simulation where all activity occurs
at integral multiples of the basic increment of simulation time.
The basic increment definition is arbitrary and may represent
such units as nanoseconds, microseconds, or gate delays.
Lists, called timing lists, are maintained by each simulator
such that one timing list is associated with each increment of
simulation time. Each timing list contains a list of gate-

LAMP: LOGIC-CIRCUIT SIMULATORS 1455

(vidi)

(i)

output changes scheduled to occur at that increment of
simulation time. The timing list associated with the current
increment of simulation time is called the current timing list.
Selective trace is used so that a gate output is computed only
if any of the gate’s input signals changed value.

The circuit description is contained in a set of two-way,
linked-list tables, which include information about each gate
such as the driving and driven gates, logic function, time
delay, and faults to be simulated. A subroutine, associated
with each logic function, examines the gate-input values,
computes the new output values, determines whether the
output values have changed, and schedules the output change
(if any) into some future timing list.

lll. THE TRUE-VALUE SIMULATOR

The operation of the true-value simulator will be used as the basis
for the presentation of the fault simulators. A simplified flow chart of
the operation of the true-value simulator is shown in Fig. 1. This

START

m INITIAL STATE ANALYSIE;J
]

ﬂ2} GET NEXT INPUT CHANGE |"—
|

(3) PERFORM RACE AND

— OSCILLATION ANALYSIS
FROM CURRENT TIMING LIST

1
(4) UPDATE GATE VALUES
FROM CURRENT
TIMING LIST

{5) COMPUTE NEW GATE
VALUE IF ANY OF ITS
INPUTS CHANGED

{6) SCHEDULE NEW GATE
CHANGES IN FUTURE

TIMING LISTS

YES
{7) CONTINUE l,:::l;"UT
SIMULATION? CHANGES?

{8) INCREMENT SIMULATED NO

TIME TO NEXT TIMING |
LIST sTOP

Fig. 1—Simplified simulation flow.

1456 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1974

flow chart is also used in Section 3.5 to describe the overall simulator
operation.

3.1 The true-value calculation

The LAMP simulators use four logic values, 0, 1, 2, and 3, to simulate
the Boolean logic functions. The 0 and 1 are simply the logical 0 and
1 of Boolean algebra. Values 2 and 3 represent nonpropagating and
propagating ‘“‘don’t-know’’ conditions, respectively. The gate output
caleulation occurs in Step 5 of I'ig. 1.

Value 2 is used to allow efficient initialization of the circuit. Prior
to a simulation run, all gates are initially assigned a value of 2. Its
nonpropagating feature is demonstrated by the following table of a
two-input NAND gate:

A B | A'B
2 0 1
2 1 Q
2 2 Q
2 3 Q

where Q means no change in the previous true value.

The nonpropagation is necessary to prevent destroying information
specified by setting @ prior? the state of the circuit. I'or example, in
Tig. 2, if the state specification sets C = 0, nonpropagation is necessary
to prevent the true value of C from being overwritten by a don't
know. Value 2 allows C = 0 to initialize the flip-flop to ¢ = 0 and
D = 1. A more detailed explanation of the behavior of 2s will be
presented in the next section.

True-value 3 is a true “‘don’t know’” with full propagation features.
The truth table for a two-input ¥anND gate is shown below:

A B , AB
3 0 1
3 1 3
3 2 Q
3 3 3

where Q means no change in the present true value.
In Fig. 2, if all 2s were replaced by 3s, then the output of C' and D
would become 3 even though the user initialized C to logical 0.

LAMP: LOGIC-CIRCUIT SIMULATORS 1457

Fig. 2—n~anp flip-flop.

3.2 Initial-state analysis

The purposes of the initial-state analysis (Step 1 in Fig. 1) are:
(#) to extract as much information as possible from the user-specified
circuit state (if any), and (i7) to guarantee that the output of each
gate is consistent with its inputs. A flow chart of this procedure is
shown in Fig. 3.

True-value 2 is used only during the initial-state analysis which
occurs before the first input vector is applied to the circuit. The
initial-state analysis is a three-pass procedure that attempts to propa-
gate the effect of any user-specified state through the circuit. Pass 1
has two alternatives. If the user did not set any state, then pass 1
simply changes all of the gates whose output value is 2 to the “true”
unknown-value 3 and the simulation of the input vectors begins.

However, if the user has set some initial state, then the initial-state
analysis must propagate the effect of that state through the circuit.
During pass 1, the circuit contains the logic-value 2 for the “don’t-
know" condition. The nonpropagation feature of the 2s allows as
much information as possible to be extracted by the simulator using
only a forward simulation. No attempt is made to set the inputs of

START

ANY
STATE SET BY
USER?

SIMULATE THE
EFFECT OF THE
STATE

YES

CHANGE REMAINING
25 TO 35 AS
DESCRIBED IN TEXT

¥

SIMULATE THE
EFFECT OF THE

CHANGE ALL
25 TO 35

NEW STATE
GET FIRST INPUT T
VECTOR AND BEGIN
SIMULATION
END

Fig. 3—Initial-state pass.

1458 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1974

some NAND gate to logic-value 1 if the output of the gate is logical 0.
Thus, LAMP requires that initial states should always be set using
the “dominant” value of the particular logic type used. For example,
because gate C' of Fig. 2 was set to a logical 0, pass 1 would set D to
value 1.

Pass 2 goes through the circuit and changes selected remaining
gates whose output value is 2 to new output-value 3. This is necessary
because the 3s propagate where the 2s do not. Therefore, leaving the
2s in the circuit can cause incorrect simulation results. However, it is
only necessary to change to 3 those gates within maximally strongly
connected subgroups (MSCs)" having output-value 2. This occurs
because the circuit inputs are assumed to support any state which
the user sets. Therefore, the input gates as well as any combinational
circuitry driven by the inputs maintains true-value 2 until it is
eliminated by the first input vector or the next pass.

Pass 3 propagates the newly injected 3s as far as possible. This may
have the effect of destroying some incomplete state which the user
specified because the circuit is unable to support the incomplete state
for all possible complete states. If a complete self-supporting (stable)
state is specified, no state information will be eliminated.

Initializing the circuit to some known value can introduce simulation
inaccuracies during fault simulation. If the circuit is artificially
initialized, there is no record of those faults whose presence would
prevent the circuit from reaching the initial state specified. Therefore,
it is preferable to apply a synchronizing sequence to the circuit to
drive it from an unknown state (all gate output values set to 3) to
some known state. The facility to artificially initialize the circuit is
provided to help the user and to simplify his work."

3.3 True-value race analysis

Race analysis (Step 3 in Fig. 1) is performed on the basic NAND
and ~or flip-flop. Previous simulation techniques attempted to treat
the flip-flop as a “‘black box.” However, the ‘“black box” approach
leads to inaccurate simulations or to unwieldy simulation algorithms.
Therefore, the technique used in LAMP is to detect races as invalid
conditions on a set of gates. Since both wanp and Nor flip-flops
are handled in a similar manner, only the true-value race analysis for
the Nanp flip-flop will be discussed here. The basic xanp flip-flop is
shown in TFig. 2.

The true-value race state for a NanDp flip-flop is 4 =1, B = 1,
(' = 1, and D = 1 at the same time, {. From this state, it is impossible

LAMP: LOGIC-CIRCUIT SIMULATORS 1458

to predict (assuming identical gate behavior) whether ¢ = 1 and
D=0or C =0and D=1 when the flip-flop settles. So as not to
arbitrarily resolve races, true-value 3 is assigned to the output of both
gates in the flip-flop.

To accomplish this, when the flip-flop was in the 4 =1, B =1,
C =1, and D = 1 state at time ¢, the simulator calculates C = 0 and
D = 0 for the new intermediate output to be scheduled into a future
timing list. Since the state C = 0 and D = 0 is impossible unless the
previous state was A = 1, B =1, C = 1, and D = 1, both outputs at
logical 0 provide an efficient race-detection mechanism.'? Also, since
C =0 and D = 0 are unstable, both C and D will be scheduled to
change values at the present increment of simulation time. Therefore,
the outputs of a NanD flip-flop are set to true-value 3 and a race
declared when:

(2) The newly calculated, but not yet assigned, outputs of both
gates are simultaneously 0.
(7¢) Both gate outputs are scheduled to be changed at the present
g
time.

If the NaAND gates are cross-coupled, as shown in Fig. 2, but are
not specified as a flip-flop, then race analysis will not be performed. In
this case, if the flip-flop is in a race state, the new output ¢ = 0 and
D = 0 will be assigned to the gates in the flip-flop. The next output
(assuming the inputs to the flip-flop do not change) will be C = 1 and
D =1 and the flip-flop will oscillate between C =1, D = 1, and
C = 0, D = 0 causing a simulator oscillation.

In addition, because of the behavior of value 3, the condition where
the newly calculated output values of the flip-flop are ¢ = 0 and
D=3o0orC =3and D = 0 will cause an oscillation. Therefore, this
condition is also detected and declared to be a race. Extensive topo-
logical circuit analysis could isolate the undeclared flip-flops, but such
analysis is not performed since the circuit designers seldom fail to
declare the race-pair gates.

3.4 True-value oscillation analysis

A true-value oscillation (Step 3 in Fig. 1) occurs when the circuit
state is unstable as a result of some input conditions. An oscillation is
declared if the simulator simulates an arbitrary number, N, of incre-
ments of simulation time and the circuit has not stabilized. The value
of N is defaulted to be the number of gates in the logic circuit but can
be adjusted by the user.

1460 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1974

If a true-value oscillation is detected, the old and new true values
for every gate B whose output is changing at the present increment of
simulated time are compared. If the old and new true values are
different for gate B, the new true value is replaced with value 3 since
the output of B is changing (i.e., unknown). Value 3 is the new gate
output that will be scheduled in some future timing list. When 3s are
inserted, the oscillation automatically stops, since a 3 represents both
a0anda l.

3.5 The true-value circuit model

The true-value circuit model defines the interactions among the
initial-state-analysis, gate-calculation, race-analysis, and oscillation-
analysis steps that were presented earlier. Thus, a description of the
true-value circuit model is an overall description of the simulator
operation.

A simplified flow chart of the basic simulator operation is shown in
Fig. 1. The operation includes the following:

Step 1—The circuit is analyzed to check the validity and consistency
of any user-supplied initial state, as described in Section 3.1.

Step 2—This step is repeated once for every circuit input vector to
be simulated. During this step, the next input vector is obtained
and the new input values are assigned to the circuit input leads. The
effect of this input vector on the circuit is now propagated through
the circuit. Every input gate whose value changed as a result of the
new input vector is put into the appropriate future timing list.
The future timing lists are examined, as the simulation time is
incremented, until the first nonempty timing list is found. This
timing list is called the current timing list. Let the present time be
t, and assume that the set of gates G, {Gi, 1 = 1, 2, ---, m}, in the
current timing list at , contains all the gates whose outputs are
changing at time #,. Steps 3 through 6 are performed once for each
timing list.

Step 3—Race analysis is performed for each declared flip-flop
formed by two gates, both of which are in G.

Step 4—The new outputs are assigned to every gate in G.

Step 5—After all the new outputs of G have been assigned, the
output of each gate H; j =1, 2, --+, n, which is driven by any
('; whose output has changed, is calculated according to gate model.

LAMP: LOGIC-CIRCUIT SIMULATORS 1461

Step 6—If the output of some H;, 1 = k = n, changed, then H;
is put into the timing list of gates whose output may change at
time ¢, + £, where ¢, is the transition time for H;. If the output of
H, did not change, no further action is taken on the gate. The
important feature of this eircuit model is that the gates H;, j = 1,
2, ---, m, have their inputs calculated based on all new values of
the gates in {G, 7 = 1, 2, ---, m}. That is, every change that is
going to occur at ¢y oceurs before the output of any gate driven by
any of the gates in ¢ is calculated.

Step 7—Simulation may be allowed to continue or it may be inter-
rupted to process a change on the input leads (Step 9) or to return
to the command language to process user commands.

Step 8—The simulation time is incremented. This makes the timing
list at time ¢y + 1 the current timing list and the loop continues.
Simulation is terminated if there are no more input changes.

IV. THE FAULT SIMULATOR

The fault simulator utilizes Armstrong’s® fault-list concept to allow
concurrent simulation of all open gate input, output stuck-at-one
(SA1), and output stuck-at-zero (SAQ) faults in one pass per input
vector. The input-open fault is assumed to force a nondominant value
on that input. For example, for nanD and AnND gates, the input
open is assumed to force that gate input to logical 1. A number from
0 to k — 1 is associated with each of the & faults in the circuit. Each
gate (7, except the inverter, is assigned N + 2 faults, where N is the
number of inputs to gate . The inverter has only the two output
SAl1 and SAO faults, since the input-open fault is indistinguishable
from the output SAOQ fault. These fault numbers are then carried in
fault lists associated with each gate. The hard faults, or corresponding
fault numbers, in the fault list on gate @ represent exactly those faults
in the cireuit that will cause the true value (logical 0 or 1) of gate @
to be complemented. Only gates having 1 and 0 true values can have
fault lists. Similarly, the star faulis in the fault list on gate G represent
faults in the circuit for which the value of @ is not predictable by the
simulation model.

4.1 Fault-simulator gate calculation

The fault-simulator gate calculation (step 5 in Fig. 1) involves the
manipulation of the fault lists on each gate using the fault-list algebra.

1462 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1974

In the description of the fault-list algebra, each fault list is treated as
a set. The three set operations used for fault-list calculation are union
(), intersection (M), and difference (0).

The union of two fault lists A and B is defined for some fault f to
form the output-fault list F:

Union Operation 4 |J B

B
F | A f *f
A Y A I *f
f f J f
*f *f i) *f

where

*f = star fault corresponding to fault f,
A = absence of f and *f from the set (fault list).

The tniersection of two fault lists, A and B, is defined for some fault
f to form the output-fault list F':

Intersection Operation 4 N B

B
F A S *f

A A A A A
J A i *f
*f A *f *f
The difference of two fault lists A and B is defined for some fault f
to form the output-fault list F':

Difference Operation 4 6 B

B
F 1 A N *f
A A A A A
f i) A *f

#)r *j‘)\ *f

LAMP: LOGIC-CIRCUIT SIMULATORS 1463

Fy _—L_
f) fsan
F2 2 G
: fsao

Fig. 4—Fault-list calculation.

For an m input NAND gate @ in Fig. 4, let:

F; = Fault list on the gate driving the th input of G
(1<ism).
fi = Input open on the ith input of G.
fsar = Output of @ stuck at k (k = 1, 0).
F = Resulting fault list on gate G.
¢ means form the union over all the fault lists on input
U leads whose true value is logical k, k = 0, 1.
; means form the intersection over all the fault lists on
\ input leads whose true value is logical j, j = 0, 1.

To calculate the new output fault list F from the input lists F,
1 < 7 = m, consider the following cases. First, assume all m inputs are
logical 1. The output true value is 0 and

1
F={UF:0[f])}0 {fsac) U {fear}. (1)
This equation means that the output SA1 fault plus any fault on
any input, except the respective input-open faults and the output SA0
fault, can cause the correct gate output to change values.
Second, assume that all inputs are logical 0. Then the output value
is 1 and

0
F=A{N (F:U {f:DH} U {Fsa0} © {fsas}. (2)
This equation means that the output fault list contains the SAO fault
plus any fault present on every input lead. A fault is present on an
input lead if it occurs in the lead’s fault list or is the lead’s input open
fault. The output fault list does not contain the SA1 fault.
Third, assume that some inputs are logical 0 (those denoted by %)
and the remaining inputs are 1 (those denoted by j). The output
value is 1 and

F= ([N (F:U {7:NI6 LU F;8 { ;DT U [fsao} © {fsar}. (3)

The meaning of the equation follows directly from the meaning of
egs. (1) and (2).

1464 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1974

Fourth, if there is a value 2 or 3 on any input and a logical 0 on
some other input, then the output true valueis 1 and ' = {fsa,} only.

The fault-list computation equations can be derived by considering
two input gates. Consider a two-input gate G with inputs A and B.
If A = B =1, then eq. (1) can be shown to be true by exhaustive
analysis. Similarly, if A = B = 0, then eq. (2) is obviously true. Again
if A =1 and B =0, then eq. (3) is true. The NAND is simply AND
followed by a wor gate and the AND operation is associative and
commutative. Then eqs. (1) and (2) represent simple cascades of pairs
of two input gate operations. Similarly, eq. (3) means treat all the
logical O inputs as one AND gate G, then all the logical 1 inputs as
an AND gate (1, and then form the difference of @y and G;. In this
explanation, the internal faults were ignored. However, their handling
is apparent from eqgs. (1) through (3). Equations (1) through (3)
describe how the LAMP fault simulator is implemented.

An alternate and more detailed implementation can be achieved by
associating two fault lists with each gate whose true value is 3. The
fault lists contain those faults that will cause the faulty gate output
to be logical &k for k = 0, 1. This allows more detailed analysis of
faulty circuit behavior during initialization. However, this approach
will significantly increase the storage required for the fault lists and
the CPU time required to perform the simulation. For that reason,
egs. (1) through (3) were chosen as a realistic compromise between
detail and cost.

4.2 Fault-simulator race analysis

Race analysis under fault conditions (Step 3 in Fig. 1) is performed
on the basic NaND and ~Nor flip-flop (Fig. 2). An analogous situation
to the true-value race can occur because of faults; that is, because of
one or more of the faults in the fault list on gate C or D (Fig. 2). Each
hard fault fin a fault list on gate ¢ means that if f physically exists
in the circuit, then the true value of ¢ will be complemented. There-
fore, the behavior of faults is identical to the behavior of true values
in the faulty circuit. Then with some modification, the algorithm for
detecting true-value races can also be used to detect fault-induced
races. A fault f on the output gate(s) of a flip-flop (FF) is a race fault
(star fault) if it satisfies all of the following conditions:

(1) Fault f will cause both outputs (D and C) of FF to be 0.
(2) Both gates of FF are scheduled to change at the present incre-
ment of simulation time.

LAMP: LOGIC-CIRCUIT SIMULATORS 1465

(3) Fault fis not:
(a) The input open on D from C or the input open on C from D.
(b) The output of €' SA1 or SAQ.
(¢) The output of D SAl or SAO.

The first two conditions are the same as the conditions for a true-
value race. The third restriction is apparent since, if either of the cross-
coupled inputs were open, the gates would not form a flip-flop and
could not race. Similarly, either output SAl or SAO would make a
race impossible since there is no uncertainty about the outcome. As
with the true-value race, faults which force C = 0 and D = 3 or
C =3 and D = 0 will cause oscillations and are declared as race
faults.

Let Fg and Fp be the set of faults (or the fault list) on C' and D,
respectively. Let Fr represent the set of faults that cannot cause a
race on FF [those faults listed in condition (3) above]. Consider three
cases:

Case 1: ¢ =1 and D = 1; then the race faults Fy are given by:
FR= (FanD)eF[.

Case 2: C = 1 and D = 0; then the race faults Fr are given by:
FR = (Fce FD)eF;.

Case 3: C = 0 and D = 1; then the race faults Fp are given by:
Fr= (FpO Fg¢) 0 Fr.

The faults in the set Fy are the star faults. These star faults are then
merged into the fault list on gates C and D. That is,

F(;(—-(FgeFR)U*FR
FDP(FDBFE)U*FR,

where F¢ and Fp are the fault lists on gates C' and D, and Fg is the
fault list produced by race analysis. The left arrow («) means “is
replaced by.” The new Fc and Fp are assigned to gates C and D
at the same time the other new output values are assigned to their
gates.

4.3 Fault-simulator oscillation analysis

A fault oscillation (Step 3 in Fig. 1) is declared if the circuit does
not stabilize after N increments of simulation time and no true values
are changing. The number N may be set by the user as described
earlier.

1466 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1974

If a fault oscillation is detected, the old and new fault lists for each
gate in the set {G;, 7 =1, 2, ---, m} whose inputs changed during
the previous increment of simulation time are compared. Let F.; = new
fault list and F,; = old fault list for some gate in {G;}. Then the set
of faults that are causing the fault-list changes, F,, is determined as

and

Fn’ = (Fm'eFai) U (Fal'ani)-
Since single faults are assumed, no fault can cause another fault to be
in a fault list. Therefore, the set of faults that alternately appears and
disappears in the fault lists must be causing the oscillation. The set
of faults causing the oscillation, F,, is flagged as star faults (or unioned
as star faults) in the new list F,;. That is,

Fn{(’—(FnieFli)U*Fai-

Once a true-value or fault oscillation has been detected, oscillation
analysis is performed until the circuit has been stabilized. By adding
star faults or adding the value 3, the circuit should eventually stabilize
and the oscillation will be resolved.

Figure 5 shows a circuit that illustrates both true-value and fault-list
oscillations. If K1 = 1, then the circuit will oscillate in true values.
However, if K1 = 0, the input-open fault from K1 on gate K3 will
cause the circuit to exhibit a fault-list oscillation.

Since the calculations involving the star faults are expensive, a
simulator is available (logic simulator) that immediately terminates
simulation of any star fault when it occurs. Thus, the logic simulator
does not simulate the effect of faults that cause “don’t-know’”’ condi-
tions. This approximate simulation yields faster simulation times.

V. OTHER LAMP SIMULATORS

Sections I through IV of this paper explain the fundamental ideas
behind logic-circuit simulation in LAMP. In this section, a brief
deseription of the shorted-fault simulator and the functional simulator

Ky

Fig. 5—0scillating circuit.

LAMP: LOGIC-CIRCUIT SIMULATORS 1467

is presented. The overall operation of the shorted-fault and functional
simulators is similar to the operation of the simulators presented
earlier. The fundamental difference lies in the method used to compute
the output of the gate or functional element. Therefore, only the basic
differences are discussed here.

5.1 The shorted-fault simulator

The shorted-fault simulator uses the deductive technique to simulate
the effect on a logie circuit of a single electrical short between two
gate outputs, where logical 0 is assumed to dominate logical 1. That is,
if two gates, A and B, are shorted together and (in the absence of the
short) A has the value 1 and B has the value 0, then in the presence of
the short, gate A will have its output forced to logical 0. An option
is available that causes logical 1 to dominate logical 0; however, since
both cases are similar, only the case dominated by logical O is de-
scribed here.

The shorted-fault simulator is a recent addition to the LAMP
system. Because run time was expected to be considerably longer than
for the fault simulator, the shorted-fault simulator was implemented
to detect and immediately terminate simulation of all star faults.

The operation of the shorted-fault gate calculation requires that two
fault lists, the constrained and free fault lists, be associated with each
gate. The free fault list for gate A4, called F4, is computed using egs.
(1) through (3). The constrained fault list on gate A, called Cj,
reflects the effects of the signals on any gates that can short to gate A.
For the computation of the constrained fault lists, consider two gates,
A and B, and a fault, s, whose occurrence causes the output of gate
A to be shorted to the output of gate B, as shown in Fig. 6. Consider
two cases:

() fA=B=1,
Cae—CaU {sN (Fal Fr)} (4)
Ce—CsU {sN (FaU Fs)}. (5)
(i) If A =1and B =0,
Ca+—Cal {506 (Fs0 Fa)} (6)
Cp—Cr0 {30 (Fp0 Fy)}. (™

The initial constrained fault list on each gate is exactly the free fault
list on that gate. The constrained fault list is then altered as described
in eqs. (4) through (7). These equations can be verified by examining

1468 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1974

|

P

—

Fig. 6—Two shorted faults.

all eight cases since the only difference between the old and new
constrained fault lists is fault s. This procedure must be repeated for
every shorted fault that can affect the output of gates A and B (such
as fault { in Fig. 6). However, since only one fault is assumed to exist
at any time, all the applications of eqs. (4) through (7) are independent.

The constrained fault list on gate G is the “true’ fault list for the
gate since it reflects the effects of potential shorts to gate . The
free fault list on gate G is used as the starting point to compute the
constrained fault list. If the free fault list were discarded after use,
it would be necessary to go to the inputs of G and recompute the free
fault list on G wherever it was necessary to derive a new constrained
fault list on @& (e.g., when a gate that could be shorted to G changes
values).

The timing considerations are also important. Since the inter-
connecting paths are assumed to have zero time delay compared to
the time delay of the gates, the effect of any shorted fault must
immediately be reflected at the outputs of the gates, which may be
shorted together. Therefore, the effect of possible shorts on each gate
in the current timing list must be considered when the new output
values are assigned to the gates (Step 4 in Fig. 1). The effect of the
shorted faults may cause gates other than those in the current timing
list to change value at the current time. This factor must be considered
in Step 6 of Fig. 1 when the gates whose output value changed are
scheduled into future timing lists.

LAMP: LOGIC-CIRCUIT SIMULATORS 1469

The shorted-fault simulator has helped improve the manufacturing
tests for circuit packs by aiding the design of sets of test inputs that
will detect all shorted faults.

5.2 The functional simulator

The functional simulator allows the simulation of higher-level fune-
tional elements, such as clocks, registers, and memories, in conjunction
with gate-level simulation. Thus, the functional simulator can be
used to evaluate the tentative design of a logic circuit where the
entire circuit is described as functional elements. Alternatively, funec-
tional memories, registers, and clocks can be added to a gate-level
simulation to provide more complete or more efficient simulation of
certain blocks by reducing storage requirements and execution time.

The control and data flow within the functional block are described
using an ‘““‘Algol-like” language.®® Control conditions are described
using “if-then-else” statements. Data transfer is accomplished
using ‘“‘Assignment’’ statements. Such operators as NOT, AND, OR,
ADpD, SUBTRAcT, and sHIFT are allowed. Timing information is con-
veyed by preceding a statement with an ‘“‘at time” clause. These
statements are compiled into an extended reverse Polish format! and
executed during simulation.

The functional simulator has significantly increased the capabilities
of the LAMP simulators because of the ease of describing a functional
unit. It has been used to aid in the logic verification of the No. 1A ESS
Central Control."

Vi. RUN-TIME DATA

The logic and true-value simulators are the most frequently used
LAMP simulators. Hence, more data are available on their run-time
characteristics. All data shown were collected using an IBM 360,
Model 67.

Table I describes ten typical circuits from a computer system. Since
there is no convenient way to measure circuit complexity, two ad hoc
measures are used. The number of flip-flops in a circuit provides
insight into the circuit complexity on a localized basis while the
number (or percentage) of gates in the MSCs'" provides a more global
measure of complexity. These circuits were simulated producing the
data shown in Table II and Fig. 7.

Table II shows the simulator CPU time required to simulate the
circuits described in Table I using the true-value, logic, and parallel
simulators. The data in Fig. 7 show that the average simulator time

1470 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1974

Table | — Size and complexity of sample circuits
Percentage
Cireuit No. of No. of No. of Gates | of Gates in
Gates* Flip-Flops in MSCs MSCs to
Total Gates
A. Serial-to-Parallel 349 90 224 0.64
Converter
B. Error Corrector 340 68 178 0.52
C. Parallel-to-Serial 387 78 184 0.47
Converter
D. Decoder and Order 311 15 82 0.26
Sequencer
E. Dial-Pulse Sequencer 336 22 112 0.33
F. Decoder and Match 383 8 44 0.12
Circuit
G. Arithmetic Unit 6602 234 4378 0.66
H. Core Store Unit II 9359 320 35617 0.37
I. Core Store Unit 1 2476 167 1182 0.48
J. Processor 46,012 2149 i T

*T2L nanps are used throughout. There are an average of two inputs per gate
for the circuits listed.
Data not available.

5000

4000

3000

IN MICROSECONDS
]

AVERAGE CPU TIME PER GATE CALCULATION,

0 | | L | | |
0 20 40 60 80 100 120 140

AVERAGE NUMBER OF FAULTS IN LIST, Layg

Fig. 7—Simulator time required to calculate gate output.

LAMP: LOGIC-CIRCUIT SIMULATORS 1471

\J

Table || — Simulation time for three simulators
Simulation CPU Time
No. of No. of (Seconds)
Circuit Faults Vectors
Simulated | Simulated . True
Logic Value Parallel

A. Serial-to-Parallel 572 427 433 11 180

Converter
B. Error Corrector 894 412 641 9 102
C. Parallel-to-Serial 559 348 253 9 145

Converter
D. Decoder and Order 886 893 352 17 135

Sequencer
E. Dial-Pulse Sequencer 395 254 32 5 39
F. Decoder and Match 1065 161 43 3 52

Circuit
G. Arithmetic Unit 2147 377 510 39 927
H. Core Store Unit II 2582 200 8361 330 *
I. Core Store Unit I 2631 16 326 17 495
J. Processor 9469 134 8673 180 *

* Data not available.

ta required to compute the output true-value and fault list for one
gate (one gate calculation) is a linear function of the length of the
average fault list Lave on that gate. The length of a fault list is the
number of faults in the list. The time ¢3 includes all bookkeeping and
overhead involved in the simulation.

Figure 8 shows more data on circuit J in Table I (the No. 1A ESS
processor’®). The two lines represent the CPU time (IBM Model 67)
per input vector for execution and read-write tests for the processor
as a function of the number of faults being simulated. During the
execution tests, the processor is executing instructions. During the
read-write tests, the registers of the processor are being written and
read by a second computer. The processor contains about 100,000
potential classical faults. These data were collected by simulating a
subset of the faults against a subset of the diagnostic tests for the
processor. Main memory size (4 megabytes) limits the number of
faults that can reasonably be simulated, since it is desirable not to
utilize the paging features of the Model 67 virtual memory because
of the real-time penalty incurred due to the slow drum and disc
accesses. These curves show that simulation time increases linearly
with the number of faults simulated for a given set of vectors. However,
the curves also show that simulation times are highly dependent on
the circuit function being exercised by the input vectors.

1472 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1974

CPU TIME PER VECTOR IN SECONDS

0 | 1 1 1 il 1 | | 1 1 | 1
[} 2 4 6 8 10 12 14 16 18 20 22 24 26

NUMBER OF FAULTS SIMULATED IN THOUSANDS

Fig. 8—Simulation times for typical processor diagnostics.

VIl. HYPERACTIVE FAULTS

A new phenomenon called hyperactive faults has been found.
Hyperactive faults are those faults that cause an inordinate amount
of simulation activity. Removal of the hyperactive faults has reduced
simulation time by as much as a factor of 8.

The fault simulator typically is more expensive to use than the
logic simulator. However, it was discovered that on a 40-vector
simulation of a 30,727-gate circuit with 950 faults and 152 star faults
(faults which cause a race at some point during the simulation), the
logic simulator took 750 seconds of IBM 360, Model 67, CPU time
while the fault simulator required 2290 seconds. In an effort to deter-
mine the cause of this large discrepancy, the activity count was
computed for each fault being simulated. The activity count for a fault
is incremented if that fault is in the fault list on some gate at simulated
time ¢ + 1, but not in the fault list on that gate at simulated time ¢.
The activity count is a measure of the amount of circuit activity
caused by each fault.

Figure 9 shows a typical plot of the activity count distribution. For
the case mentioned above, there were 14 faults whose activity count
was more than 16 times the average activity count for all faults. These

LAMP: LOGIC-CIRCUIT SIMULATORS 1473

NUMBER OF FAULTS

44—

2

:“ ‘ I “l | | AVERAGE
Ul L1l '

0 100

1 1000 10,000 100,000
ACTIVITY

Fig. 9—Fault activity count distribution.

14 faults were removed and the circuit was resimulated with the fault
simulator in 695 seconds. Thus, the removal of 1.5 percent of the
faults caused approximately a 3-to-1 improvement in simulation
CPU time.

Simulator speedups as high as 8 to 1 have resulted from the elimi-
nation of faults whose activity counts were excessive. For example,
in a 29,696-gate circuit with 642 faults, the run time was 170 seconds
per vector. By removing only 14 hyperactive faults (whose activity
count was greater than 16 times the average), the run time dropped
to 21 seconds per vector for the same vectors.

Two more simulations are of interest. For a 30,727-gate circuit with
1400 vectors and 2318 faults, including 601 race faults, 341 hyperactive
faults were removed. On the same circuit with 3500 vectors and 5079
faults, including 1789 race faults, 101 hyperactive faults were removed.
Thus, the number of hyperactive faults detected is reasonable.

Hyperactive faults are typically associated with clock ecircuits,
sequencer circuits, and “stop circuitry.” The occurrence of a hyper-
active fault in the circuit often removes the effectiveness of critical
control leads and causes the circuit to “run wild.” While the hyper-
active faults cause erratic circuit behavior, they do not necessarily
cause fault-list oscillations.

The removal of hyperactive faults produces the most dramatic
effect in the fault simulator because hyperactive faults are usually a
subset of the star faults (race and oscillation faults) discarded by the
logic simulator. Thus, the logic simulator is not as sensitive to hyper-

1474 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1974

active faults. The removal of hyperactive faults from the fault simu-
lator produces a significant saving in computer resources.

Viil. SUMMARY

The emphasis in the LAMP simulators has been to provide a
reasonable level of simulation detail in a cost-effective manner. To
achieve this goal, several simulators have been produced, each of
which emphasizes some aspect of the cost-versus-detail tradeoff. The
true-value simulator provides economical simulation of large logic
circuits by using a true-value, integral-delay, gate-level circuit model.
The timing simulator is somewhat more expensive since it analyzes
minimum and maximum rise and fall delays for each gate as well as
performing spike rejection in a gate-level, logic-circuit model. The
logic simulator provides a two-value fault simulation using the deduc-
tive method, and a gate-level circuit model. The fault simulator is
identical to the logic simulator except that it provides a three-value
fault simulation. As a result, the fault simulator is more expensive
than the logic simulator. Clearly, both fault simulators are more
expensive than the true-value simulators.

The LAMP system has been used throughout Bell Laboratories to
aid logic-circuit design and analysis. LAMP, and in particular the
simulators described in this paper, have been very important in the
development of the ESS 1A Processor and the No. 4 ESS.!! Because
of the depth of the simulation capabilities available, LAMP has
provided efficient simulation capabilities over a wide range of circuit
sizes and device technologies.

IX. ACKNOWLEDGMENTS

We wish to acknowledge the valuable work of G. W. Smith, Jr.,
R. B. Walford, and R. E. Michael on early versions of the fault
simulator. We also wish to acknowledge the work of A. B. Marsh and
A. M. Schowe on the functional simulator and the work of E. W.
Thompson and D. E. Bzowy on the shorted-fault simulator. In
addition, the encouragement and support of W. Ulrich and R. W.
Ketchledge are gratefully acknowledged.

REFERENCES

1. J. 8. Jephson, R. P. McQuarrie, and R. E. Vogelsberg, ‘“A Three Value Computer
Design Verification System,” IBM Syst. J., & No. 3 (1969), pp. 178-188.

2. 8. A. Szygenda, D. M. Rouse, and E. W. Thompson, ‘“A Model and Implementa-
tion of a Universal Time Delay Simulator for Large Digital Nets,”” Proc.
Joint Comp. Conf., AFIPS, Spring 1970, pp. 207-216.

LAMP: LOGIC-CIRCUIT SIMULATORS 1475

10.
11.
12,

13.

. H. Y. Chang, G. W. Smith, and R. B. Walford, “LA

. 8. Seshu, “On an Improved Diagnosis Program,” IEEE Trans. Elec. Comp.,

EC-14, No. 1 (February 1965), pp. 76-79.

. F. H. Hardie and R. J. Suhocki, “Design and Use of Fault Simulation for Saturn

Computer Design,”’ IEEE Trans. Elec. Comp., EC-16, No. 4 (August 1967),
pp. 412-429.

. D. B. Armstrong, “A Deductive Method for Simulating Faults in Logic Circuits,”

IEEE Trans. on Comp., C-21, No. 5 (May 1972), ﬂ) 464471,
P: System Description,”
B.S.T.J., this issue, pp. 1431-1449.

. 8. G. Chappell and 8. S. Yau, “‘Simulation of Large Asynchronous Logic Circuits

Using an Ambiguous Gate Model,” Proc. Joint Comp. Conf., AFIPS, Fall
1971, pp. 651-661.

. 8. G. Chu.ppell, “LAMP: Automatic Test Generation for Asynchronous Digital

Circuits,” B.S.T.J., this issue, pp. 1477-1503,

. 8. G. Chappell, H. Y. Chang, C. H. Elmendorf, and L. D. Schmidt, “A Com-

parison of Parallel and Deductive Simulation Techniques,”” IEEE Trans.
Comput., C-23, No. 11 (Nobember 1974).

C. V. Ramamoorthy, *Analysis of Graphs by Connectivity Considerations,” J.
Assoc. Comp. Mach., 13, No. 2 (Agnl 1966), pp. 211-222.

T. G. Hallin, K. W. Johnson, and J. J. Kulzer, “LAMP: Application to
Switching-System Development,” B.S.T.J., this issue, pp. 1535-1555.

M. J. Flomenhoft, “A System of Computer Aids for Designing Logic-Circuit
Testf.é’s’ li'écic. of SHARE/ACM/IEEE 1970 Design Automation Workshop,
pp, lac—1sl.

‘““Revised Report on the Algorithm Language ALGOL 60, Comm. of ACM, 6,
No. 1 (January 1963), pp. 1-17.

14. D. Gries, Compiler Construction for Digital Computers, New York: John Wiley &

Sons, 1971,

1476 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1974

