Copyright © 1974 American Telephone and Telegraph Company
Tae Beru SyareM TECHNICAL JOURNAL
Vol. 53, No. 8, October 1974
Prinled in U.S.A.

LAMP:

Automatic Test Generation for
Asynchronous Digital Circuits

By S. G. CHAPPELL
(Manuscript received February 28, 1974)

An automatic test generation system has been developed to detect faults in
combinational and sequential circuits. The circuit model treats logic cir-
cutls as interconnections of unil- and zero-time-delay gates. A series of
time-dependent Boolean equations are derived from the logic network
(starting from the network tnputs) in terms of sequences of signals (input
vectors) on the circuil tnput leads. These equations account for the effect
of specific circutt faulls. Many tests, each consisting of a sequence of
input signals (input vectors), are needed to detect all single faulls in a
cireutt. Tests are generated from the time-dependent equations using two
different strategies: (t) a maximum-cover approach to detect a large
number of faults quickly by generating tests for the faults on the ctrcuzt-
input leads. The fault-detection level achieved by the maximum-cover tests
is then evaluated using faull simulation; (it) tests for individual faults
not detected by the marimum-cover approach. ATG has been tmplemented
on the IBM 360, Model 67, and IBM 370, Model 168, computers.

I. INTRODUCTION

The automatic test generation system (ATG) was designed to
provide fault-detection tests for single stuck-at faults in combinational
and sequential circuits. Since this problem has essentially been solved
for combinational circuits,’~?® this paper concentrates on aspects of
automatic test generation for sequential circuits.

The ATG algorithms presented attempt to account for actual
circuit behavior as closely as possible. Hencey it is necessary to create

1477

a computer model of the actual gates in the logic circuit. The circuit
description used by ATG will utilize a unit/zero time-delay model,
where a gate can assume one of three values: logical 0, logical 1, and
don’t-know X. This model has been widely used for logic-circuit
simulation.®5 Because the test-generation algorithms described use the
same model as many simulators, there are parallels between the
simulation and test-generation techniques. These result from the effort
to inerease the accuracy of test generation to achieve the accuracy of
current simulation techniques.

The major drawback of previous algorithms®—* for test generation
for sequential circuits is the lack of a satisfactory model for the
sequential circuit. Previous algorithms use either the Huffman model
or an iterative combinational circuit model for sequential circuits.
While these models are mathematically convenient, they are hardly
accurate representations of real logic circuits. The system to be
presented here has the following features:

(2) Requires no identification of feedback lines.

(#7) Allows gates to have time delays associated with their response
to input stimuli.

(77) Resolves races on flip-flops and detects circuit oscillations.

(fv) Assumes that an unknown circuit state corresponds to each
gate having the unknown value X. [The X corresponds to
value 3 in Ref. (5).]

(v) Generates a test for a single stuck-at or open-gate input fault,
if it exists. The test is guaranteed to detect the fault (subject
to the circuit-model assumptions).

(vi) Handles gate-level models of sequential circuits containing up
to approximately 1000 gates.

For economy, the system allows test generation using two strategies.
The first strategy (maximum cover) generates a set of tests designed
to detect a large number of single faults without ever explicitly con-
sidering a specific fault. The second strategy generates tests for speci-
fied single faults. To allow rapid evaluation of the set of tests derived
by the first strategy, a fault simulator is needed to simulate all single
stuck-at faults. This simulator identifies the undetected set of faults
that must be considered by the strategy-2 test generator. To keep the
computation time reasonable, a user-specified parameter sets the
maximum sequence length that will be considered by the system. The
use and operation of the system is shown in the flow diagram in Fig. 1.

1478 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1974

GENERATE TESTS

DETERMINE

GENERATE TESTS

FOR WHICH FAULTS FOR REMAINING
=" “ALL FAULTS" WERE DETECTED FAULTS == END
(STRATEGY 1) (SIMULATE) (STRATEGY 2)

Fig. 1—Overall strategy.

Il. MATHEMATICAL BASIS

This section builds the framework for the remainder of the paper.
The behavior of some gate ¢ will be described by two equations G° and’
(", where G (G") describes the input conditions that set gate G = 0,
(G = 1). The gates can assume one of three logical values: logical 0,

logical

1, or the don’t-know value X. Equations G° and @', however,

are strictly Boolean equations in that the constituent variables of G°
and " can assume only values of 0 or 1. Similarly, G° and G* are
Boolean variables.

2.1 Definitions

The
(¢)

()

(477)

(i)

following definitions are used in this discussion.

Input vector: A string of n logical values (0, 1, and X, where
X is a don’t-know value) that applied to the n corresponding
input leads of a circuit. The effect of these values is allowed to
propagate through the circuit before the next input vector
is applied to the circuit.

Test: A series of input vectors applied in a specific order to
the circuit inputs. A test is also sometimes called a sequence.
The first vector in each test assumes the circuit is in a com-
pletely unknown state. The nth vector (N > 1) assumes the
state produced by the preceding N — 1 input vectors. Many
tests may be required to detect all of the detectable faults in a
logic circuit. Notice that it is not necessary to allow the circuit
to stabilize between input vectors.

Sequence length : The number of input vectors in a test.
Input variables: Associated with each circuit input lead a are
two binary input variables a° and a'. The variables a° and a!
can each take on Boolean values 0 and 1 (or “false” and
“true’’). Together, a® and a! define the logical value (0, 1, or X)
of input lead a as shown in Table 1. Hence, if a® = 1 (disallow-
ing @ = a! = 1), then the logical value of lead a is 0. If
a' = 1, then the logical value of lead a is 1. If neither a® = 1

LAMP: AUTOMATIC TEST GENERATION 1479

Table | — Definition of a® and a*

a! a® Lead a
Value Value Logical Value

0 0 X

0 1 0

1 0 1

1 1 Impossible

(v)

(ve)

(vit)

nor @' = 1, then the value of input lead @ is unknown or X.
It is clearly impossible for input lead e to simultaneously have
a logical value of 1 and 0. Therefore, a® = a' = 1 is an im-
possible situation. The variables a° and a! will often be used
as an ordered pair (a!, a®). For example, (1, 0) represents the
gate value of logical 1.

Sequence of input variables: Let a% (a%), i=1, 2, ---,
represent the fact that @ = 0 (¢ = 1) during the 7th input
vector of a sequence. If no subscript is used (e.g., a° is written),
then it is assumed that a represents the first input vector.
Notation: As is traditional, ‘4"’ represents logical or, and
“.” represents logical AND. The symbol “~’ will be used to
represent NOT or complement.

Unknown state: If the eircuit is in an unknown state, it is
assumed that each gate in the circuit is assigned the unknown
output value X.

2.2 Properties of the equations

Some of the properties of input variables a® and a' are described in
this section. Consider a circuit consisting of a two-input AND gate ¢
with inputs a and b. Input leads a and b have associated with them
(a}, a*) and (b', b°), respectively. The problem is to compute (¢!, c°).
The usual truth table for AND is shown below.

a

AND 0 1 X

0 0 0 0

b 1 0 1 X
X 0 X X

Translating this to the ordered-pair notation, we have:

1480 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1974

(a!, a”)

AND 0,1 (1, 0) (0, 0)
0,1 (0, 1) (0, 1) 0, 1)
(v, b°) (1,0) (0, 1) (1,0 (0, 0)
(0,.0) 0, 1) (0,0) (0,0

Examining these ordered pairs, one finds that ¢® = 1 if and only if
(iff) @® = 1 or b® = 1. Similarly, ¢! = 1 iff both @' = 1 and b = 1.
Hence, the following relations hold for a two-input AND gate ¢ with
inputs a and b:

e = g+ B°
cl = al,bl
or
(e, " = (a'-bY, a® + bv). (1)

It is important to note that ¢® is not necessarily the complement
of ¢. For example, if (a, a’) = (0, 0) and (b', b") = (1, 0), then
(¢!, ¢® = (0-1,0 + 0) = (0, 0)

A similar set of relations can be derived for a two-input or gate f
with inputs d and e.

(Y, 1) = (d' + ¢, d*¢). (2)

The interpretation of this is that f = 1 if either d = 1 or e = 1 or
both. Similarly, f = 0 if both d = 0 and ¢ = 0.

Another relation can be derived for the ~wot gate (or inverter) &
with input g as follows. Note that the complement of X is still X.

(b, B%) = (g% g"). (3)

For later use, the relations governing the NAND gate are also presented
here. The nanD gate is simply an AND gate followed by a NoT gate.
Hence, we have, for a two-input NAND gate w with input y and z:

(w', w') = (y° + 2% y*-2). (4)

The above definitions have been presented for two-input gates.

However, since the functions AND and or are associative, the equations

for an N-input gate can easily be derived. For example, for a three-
input NAND gate w with inputs p, y, and z, we have:

(', w’) = (p° + ¥° + & p*-y'-2Y). (5)
Notice that since a® and a' are binary variables, they obey all the laws

of Boolean algebra. However, the interactions of a® and a' are not so
obvious and are of interest here.

LAMP: AUTOMATIC TEST GENERATION 1481

It is significant that in the algorithms presented for computing the
output equations for a gate [egs. (1) through (5)], we have never
produced a G9, G', or G expression, where (is any gate in the circuit.
This has occurred for two reasons. First, because gate G/ can assume
three values @ is not particularly useful. For example, if G’ = 1, then
G = 0 4+ X. Second, as a practical matter, the computation of G or
@, given G° or (, is quite time consuming if both input and output
are to be in sum-of-products form.

2.3 Some identities and nonidentities

After the operations AND, or, and Not have been defined, further
properties can be investigated. By simple examination of the definitions
for aANp, or, and ~ort, the following identities are obvious. Let a
represent any gate in the circuit. For ease of understanding, the
corresponding theorem of Boolean algebra is written on the same
line as the identities but enclosed in brackets.

(@ (0,1)-(a, a” = (0,1) [0-a =0]
(@) (1,0)-(a", a") = (a', a*) [1-a = al.
(#17) (a', a")-(a}, a®) = (a', a®) [a-a=al
(@) (1,0) + (a4, a®) = (1,0) [1+a=1]
() (0,1) + (a}, a®) = (a}, a”) [0+ a=al
(U'LJ (at, a'u) + (aflr aﬂ) = (al, a®) [{1. +a= a':l'
(vi1) (@', a®) - (b, b%) = (B, b%)- (a', @’) [Commutative].
Proof: (a!, a®-(b!, b%) = (a'-b', a® + b°)
= (b'-a\, b° + a°) = (b, b%)-(a, @*) QED.
Similarly,
(viti) (a, a%) + (b1, b°) = (b, &%) + (a', @®) [Commutative].
(iz) [(a', a®)-(bY, b)]- (¢!, ¢) = (at, a”) [(D", B)-(c",)]
[Associative].
PTOOf: [(a’ly aO)) (blf bﬂ):l ' (611 CO)
2 ([at-0]-¢, [t + 9] + o)
= (a-[b-cd, a + [0 + &)
= (a4, @) [(0", b°)- (!,)] QED.
Similarly,
() [(a, @) + (b, 0] + (¢, ¢)
= (a', a®) + [(b", b*) + (¢,)] [Associative].
(zi) (@, a")- (b}, b°) + (@, a°) = (a!, a?) [ab+ a = al

1482 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1974

Proof: (a', a®- (b, %) + (a, a°)
—_ ((Il'bl, aO + b[)) + (al, aﬂ)
— (al,bl + ﬂl, [ao + bﬂ].aﬂ)
= (a, @® + a%) = (a!, a®) QED.
(z2) a’-a! = a'-a® = 0.
This is obviously true if a is a circuit input lead. Because the
computation of the equations proceeds from gate inputs to
gate outputs, this result can be shown inductively. For any
valid circuit state (gates have logical values 0, 1, or X), the
theorem is true. It is also true for input leads, as mentioned
earlier. Then, by examination of eqs. (1) through (5) above,
we see that the relationship is preserved when the new gate
output equations are computed. Hence, by induction, it
follows that the relationship holds for every gate in the circuit.

(za17) [(a!, @®)- (0", 1)] = (a° a') + (8%, ") [(a-b) = a+ b].
Proof: [(a!, a®- (b, b9)] = (a'-b%, a® + B°)
= (a" 4 b, a'-bY) = (a% a') + (b b') QED.
(ziv) [(a!) a®) + (b,)] = (a°, a')- (b, B)[(a + b) = a-b].
Proof: [(a!, a®) + (b, b%)] = (a' 4+ b, a°-b")
= (a®-b% a! + b)) = (a° a')- (B°, b') QED.
Again, it is clear that identities (x7¢7) and (x7v) can easily be
extended to several variables (e.g., (a-b-c) = a+ b +).
These are simply DeMorgan’s theorems.

The identities above simply follow the Boolean algebra. The follow-
ing set of nonidentities results primarily from the three values used to
model the gate behavior.

() a® + a' # 1.
Proof by example: (a!, a®) = (0, 0).
Clearly, 0-0 = 1.
This is not unexpected since the only relation between a° and
a' is that a®-a® = 0.
(i) (a, a®)- (b, %) + (a', a%)- (b°, b') = (a!, a®) [a-b+ a-b = al.
(77) a-¢c +a-b-c = b-¢c + a-c.
() a-b+ac+b-cab+a-c
Nonidentities (#7), (4%), and (iv) are easily proved by examining
the truth tables, where the variables are allowed to assume three
values: logical 0, logical 1, and the don’t-know value X.

LAMP: AUTOMATIC TEST GENERATION 1483

It is interesting to note that if we required the circuit input leads
to have only values 0 and 1, the system presented here would reduce
to Boolean algebra with a® = @' and a' = a°. This is a reasonable
restriction, since we could always require that any X values generated
for the input leads be arbitrarily set to logical 0 or 1. However, it
would then be necessary to treat input leads differently from other
gates in the circuit, since it is clearly not possible to force every gate
in the cireuit to a known value (logical 0 or 1). Hence, the generality
of allowing circuit input leads to assume the value X is retained in
this paper and all gates are treated identically.

. EQUATION DERIVATION FOR LOGIC NETWORKS

The operation of the ATG has two well-defined steps. The first
step is to derive a set of relations (equations) that represent the
behavior of the logic circuit. The second step is to derive a set of tests
for the circuit based on the equations derived in the first step. In this
section the equation-derivation process is described.

The equation derivation process essentially reduces the behavior of
a logic circuit to a series of equations. Hence, this reduction process is
quite critical. These equations must reflect the true circuit behavior as
closely as is possible (or economical). This means that the time delay
of gates must be accounted for during the equation-generation process.
The equation-generation process will first be presented using a fault-
free, unit/zero, time-delay model for each gate. The model will then
be extended to account for single stuck-at-one and stuck-at-zero faults.

The method is essentially a dynamic equation-generation process
that determines exactly those input sequences that will force each
gate to a logical 0 or 1 at each instant of time. The equation-derivation
process begins with the circuit inputs and continues through the circuit
until the equations are stable; that is, until the output equation on
each gate is consistent with the input equation on that gate. The
equations are derived in terms of circuit input variables only; no
feedback lines need be identified. The input variables may change
several times before the circuit finally reaches a stable state.

Since the objective is to generate tests to detect faults in a circuit,
the result of this process will be a series of logical values 0, 1, and X
(don’t know) to be applied to the input leads of the circuit. The output
of the circuit will then be observed to determine which classical faults
have been detected. That is, the output of the real (perhaps faulty)
circuit will be compared to the expected result to determine if the
real circuit is performing correctly.

1484 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1974

3.1 Fault-free-equation derlvation

In this section, the problem of generating equations that represent
the behavior of the fault-free circuit is discussed. Because certain
simplifications are possible, the equation-derivation process for com-
binational circuits is discussed first. This is followed by the equation-
derivation process for sequential circuits.

3.1.1 Equation derivation for combinational circuits

The derivation of the fault-free equations will be considered here.
Consider the NAND gate (shown in Fig. 2. If we assume both inputs
to the gate are circuit inputs or other gate outputs, then we have:

Gﬂ a— Al.Bl
G = A+ B

Equation G° denotes exactly those input conditions to gate G that
force (or set) gate @ to logical 0. Implicit in this equation is the unit-
delay assumption. If inputs A = 1 and B = 1 are applied at time ¢,
then the output of G is forced to logical 0 at time ¢ 4 1. A similar
situation exists for G. Either A = 0 or B = 0 (or both) applied at
time ¢ to the inputs of @ forces its output to be logical 1 at time ¢ + 1.
This is similar to egs. (1) through (5) in the previous section, except
that the element of time has been added. For most gates, the output
of the gate responds to the input stimuli one unit of time later. The
gates with one unit of delay are “‘real” gates, e.g., those containing an
active semiconductor device.

In some logic families it is possible to directly connect two (or more)
gate output leads together. This connection (called a Tic here, for
tied collector) performs a logic function. If the ground level is logical 0,
then the Tic function is Anp. If the ground level is logical 1, then the
Tic funetion is or. The TIcs may be considered zero-delay gates except
for the wire-propagation delay, which is not considered here.

If computation begins at the circuit inputs, which are assumed to be
applied at time ¢, the output of each gate driven by a primary input is
reevaluated and the new equation is assigned to the gate output at
time ¢ + 1. Every gate whose input equation changed at time ¢ 4 1
is reevaluated and its new output is assigned at time ¢ + 2. This
process continues until the computation reaches the circuit output

(A0, AY) —— G G0 = Al . B!
(80, B1) G! = AO + BO

Fig. 2—Equations based on input equations.

LAMP: AUTOMATIC TEST GENERATION 1485

gates. At any time ¢ + 4 after the processing begins, the equations
denote those input conditions that force each gate to logical 0 and 1
at 7 gate delays after application of the vector. In particular, when the
circuit has settled to a stable state, the input values that set each gate
to logical 0 or 1 are specified. Notice that no assumptions have been
made that would preclude the application of this argument to sequen-
tial circuits.

The similarity between this procedure and the actual propagation
of electrical signals through the circuit should be evident. In both
cases, the input stimuli are applied to the circuit inputs and are allowed
to propagate through the circuit.

3.1.2 Equation derivation for sequential circuits

Three points are significant in the discussion of equation derivation
for combinational circuits: (z) the process assumes all gates have
either unit or zero delay, (si) the process starts from the circuit inputs
and proceeds through the circuit much as a signal would propagate
through the circuit, and (##7) the equations define, for each time ¢ + 1,
exactly those input conditions that cause each gate in the circuit to
be forced to logical 0 and 1 at that time from the specified initial
state. Again, there are no assumptions that limit this technique to
combinational circuits.

The primary addition, which must be made to allow the same
algorithm to be applied to sequential circuits, is some provision for
deciding when to stop the computation. For combinational circuitry,
the computation stops when the circuit outputs are reached. However,
this is not satisfactory for sequential circuits. The equation derivation
yields G° and G! for each gate G for each time ¢ + 4. If both G° and
G" at time ¢ + 1 are equal to G° and G* at time ¢ + 7 + 1, the gate is
in a stable state. Otherwise, each gate driven by gate G must be
reevaluated since G changed values (output equations). A detailed
flow chart of the equation computation process will be presented later.

Let a.7 represent the value of circuit input lead a during the ith
vector of the test (or sequence). Similarly, a% (a%) means make input
lead a logical 0 (logical 1) during the 7th input vector of the sequence.
The first vector in each sequence is number one. If the sequence
number is missing, then it is assumed to represent the first vector of
the sequence. An example of the application of this algorithm is
shown in Fig. 3 where the equations for a flip-flop are calculated. Time
runs down the page. The flip-flop is assumed to start from the unknown
state since FO = Ft = G = " = 0. The inputs are assumed to be

1486 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1974

{a®, a)
—_— F
0 4] t
a0 t+1
al . b0 a0 t+2
al « b0 a0 + a0 . p? = 50 t+3
GO G! TIME
G
| 0 4] t
(b0, b1) 0 b0 t+ 1
al . bl b0 t+2
a0 . bl b0 +al . b0 =b0 t+3

Fig. 3—Equations for nanD flip-flop from an unknown state.

applied at time ¢. At time ¢ + 1, only F' and G" changed values so at
time ¢ + 2 only G° and F° are calculated. At time ¢ + 3, none of the
new output equations changed, so the circuit is stable and computa-
tion stops.

A similar computation can be carried out if the circuit is in some
known initial state. This is illustrated in Fig. 4 where the circuit is
initially set at F = 0 (F' =1, ' =0) and G =1 (GQ° = 0, * = 1).

The above procedure finds the next state function for a combina-
tional or sequential circuit. That is, given a circuit state (possibly
unknown), we can find all possible next states resulting from the
application of one input vector.

) il Tive
1 0 1
al al t+1
al a0 t+ 2
al a0 + a0 . b1 = a0 t+3
<3 o TiME
0 1 t
0 1 t+ 1

a0 | bl al + b0 t+ 2

al . p! al + b0 t+ 3

Fig. 4—Equations from F = 0, G = 1 state.

LAMP: AUTOMATIC TEST GENERATION 1487

Clearly, the problem is to determine the state of the cireuit as the
result of each possible sequence of vectors. If this can be done, then
there is no need to select a particular next state since they are all
considered simultaneously. A method for doing this is described in
the next section.

3.1.3 Sequence derivation for sequential circuits

The algorithm for sequence derivation is based only on the input
behavior of the circuit. There is no need to consider any feedback
variables. Again, the derivation assumes either unit- or zero-delay gates.

This algorithm is based on the explanation presented in the previous
section. The derivation proceeds as follows for a sequence of length M.

(©) To the circuit inputs [a, b, ¢, ---] = I apply the variables

[a*1, b*1, ¢*1, ---] = I.1 (a* means apply a' or a’) and derive
the equations for the circuit (starting from any initial state).
(72) Let j = 1.

(#43) From the circuit “‘state,” as defined by the application of the
input vector of variables I.j = [a*j, b*j, ¢*j, - - -], apply the
input vector of variables I.j 4+ 1 and propagate these variables
through the cireuit, i.e., derive the ‘‘equations” for the circuit
in terms of I.j + 1 and I.% for all k < j. The effect of 1.j
need not stabilize before applying 1.7 + 1.

(i) If j< M, thenlet j = j+ 1 and go to step (4is). Otherwise,
exit.

This procedure models the behavior of a logic circuit. The input
stimuli (variables) are applied to the inputs of the circuit and allowed
to propagate through the circuit. The input vector 7.1 assumes the
circuit is in some initial state, which is probably unknown. Input
vector 1.2 produces equations from the initial state produced by I.1.
In general, the vector I.j starts from the state produced by all I.k
where & < j.

After application of I.j, the effect on the circuit of any sequence of
7 vectors is known. This is obvious since we have already shown that
the application of I.1 from any state produces the equations G° and
G* for every gate in the circuit as a result of 7.1. This extension makes
the initial state for 1.7, 7 = 2, a function of all j — 1 vectors.

An application of this algorithm is shown in Figs. 3 and 5 for the
NaND flip-flop. Here I.j = (a*j, b*j) and the sequence derivation is
carried out for sequences of length 2 or less. Figure 3 represents
sequences of length 1. Figure 5 represents sequences of length 2. The

1488 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1974

FO Fl TIME

F
): a1 . b0 a01 t+3

(a12, a02)

M a1 . b11 + al2 t+4
all . al'2. b0 +a'2. p01 . b2 RACE
a1 . al2. 601 + al2. b92 al1 . b1 . b12 +a02 t+5
e G' TIME
G
al1 . ph b01 t+3
(12, b02) ELIR. al1 . b1 + b02 t+4
a01 . b1 . b12 + a01 . a02. b12 RACE
a%1 . b'1 . b12 + a02 . b12 all . al2 . b01 + bO2 t+5

Fig. 5—Result of second vector of sequence.

computation for sequences of length 2 in Fig. 5 begins from the final
state of the computation for sequences of length 1 shown in Fig. 3.
To illustrate the interpretation of the equations, consider the final
state of G = a%2-5'2 4 @°1-b'1-b'2 shown in Fig. 5. This means that
the sequence of length 1, a = 0 and b = 1 (for a°2-b'2), or the sequence
of length 2, a =0 and b = 1 followed by «a = X and b =1 (for
a'l-b1-b'2), will set gate G to logical 0.

3.1.4 Equation race analysis

A race occurs on the simple two-NaND-gate flip-flop shown in Fig. 3
when the output state of the flip-flop is unpredictable from the input
conditions. Under these circumstances, the outputs of the flip-flop
must be set to the unknown value X. Let us examine F* = 3°1.4'2 and
G° = a’1-b'2 at time ¢t + 4 in Fig. 5. Since F°-G° # 0, then both
b"1-a'2 and al-b'2 could be simultaneously applied to the circuit
inputs producing the sequence a’l-b°1-a'2-0'2. This represents the
application to the flip-flop of the sequence a = 0 and b = 0 followed
by a =1 and b = 1. This produces the race state (unpredictable
output conditions) for the nanp flip-flop and must therefore be
eliminated. The race state for our exampleisa =b=F = G = 1 at
some time ¢. If a race oceurs, the values computed and saved for time
t 4+ 1 are F = @ = 0. In addition, when unknown states are allowed,
a race is also declared if ¥ = 0and G = X or F = X and ¢ = 0 at the
same instant of time.5 This implies that when F = 0, @ cannot be 0
or X. Thus, to eliminate races, it is necessary to demand that if F = 0
then ¢ = 1 and, similarly, if G = 0 then F = 1 at the same instant

LAMP: AUTOMATIC TEST GENERATION 1489

of time. This is accomplished in our example by forming the new
equation F'n at time ¢+ 4 as Fn(t + 4) = FO(t + 4)-G'(t + 4)
= g!1-¢'2-b°1 + @’2-5°1-5°2. Similarly, G*n(t + 4) = a°1:a%2-b'2
+ @91-b'2-b1. This process is called race analysis since it prevents the
equations from causing simple flip-flops (basically, two cross-coupled
NAND Or NOR gates) to race.

Race analysis must be performed at time ¢ if both F° and G* changed
at time {, where F and & are the two gates in a simple flip-flop. While
this result is shown here for the nanDp flip-flop, the proof can easily be
extended to nor flip-flops. The primary difference is that F! and G*
must be modified for Nor flip-flops while F° and @° must be modified
for nanp flip-flops.

(i} If F does not change, then gate F cannot change to logical 0
at time ¢; therefore, there can be no race.

(%) If G* (see Fig. 5) does not change at time £, then F(f) was
formed by anping together G'(t — 1) and a'(¢ — 1). That is,
) = @@ —1)-a(t—1). But G'(t —1) = ') by as-
sumption. Race analysis would form

Fon(t) = Fo(1)-GA(t) = Fo(t)-GA(t — 1)
= al(t — 1)-G'(t — 1)-G\(t — 1)
= al(t — 1)-Gi(t — 1) = Fo(t).

Therefore, the new Fon resulting from race analysis is the same
as the original F°, Then, there can be no race.

Earlier it was shown that F°-F' = 0 for any gate F at any time.
It is easily seen that race analysis does not destroy this property
since, if Fo(¢)-F'(t) = 0 and Fon(t) = F'(¢)-G'(), then Fn(t)-F'()
= o) -GA(t) - F'(t) = 0.

3.1.5 Equation oscillations

It is possible that the equation computation process will never
terminate. That is, the old equations on some gate are always different
from the new equations on that gate. This situation is known as
equation oscillation. If the computation described in Section 3.1.3
proceeds through an arbitrary number (user declared) of timing lists,
then an oscillation is declared and the message ‘“‘equation oscillation”
is printed for the user.

An example of an oscillation is shown in Fig. 6. In general, the
objective is to stop the oscillation by selecting a stable set of equations.
This can usually be done by setting the new equation on an oscillating

1490 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1974

FO B G0 G HO H! TIME
] 1 1 0 0 1 t

al a0 1 0 0 1 t+ 1
al al a0 al 0 1 t+2
al a0 a0 al al a0 t+3
0 a0 + al a0 al al a0 t+4
0 a0 +al a0 + al 0 al a0 t+5
0 al +al &0 + a 0 0 a0 + a' t+6
al al a0 + a! 0 0 a0 + al t+7
al a0 a0 al 0 a0 +al t+8

Fig. 6—Equation oscillation.

gate, say F°({) equal to F°(¢)- F°(t — 1). This is intended to force the
equations on gate F to stabilize by generating equations that make
Fo(t) = F°(t — 1). This technique is not guaranteed to resolve all
oscillations.

3.1.6 Complete description of equation derivation

The complete algorithm for generating the equations for a sequential
circuit is shown in Fig. 7. Only two parts of the flow chart have not
been explained previously in this section. One of these parts is the
method of handling the zero-delay gates. The output of all the zero-
delay gates are calculated before the next list of unit-delay gates is
processed. These output equations are assigned to the zero-delay gates
immediately.

The remaining unexplained part is the initial-state pass. This pass
simply examines the circuit and propagates forward (before the input
variables are applied) the effect of any gates set to logical 0 or 1 and
any faults. For example, if gate (¢ drives gate H and gate G is set to
logical 0, this pass determines that the output of H should be logical 1.

This completes the deseription of the equation-generation process for
fault-free sequential circuits. Next, the algorithm for generating the
equations for a sequential ecircuit in the presence of a single fault is
described.

LAMP: AUTOMATIC TEST GENERATION 1491

i

ZERO—-DELAY-
EQUATION
COMPUTATION

INCREMENT CHANGE
MODEL INPUT
TIME VARIABLES

ANY
MORE CHANGES
SCHEDULED

COMPLETED
ALL SEQUENCES

UNIT-DELAY—
EQUATION
COMPUTATION

¥

RACE
ANALYSIS

OSCILLATION YES

AI\SI)E:'\?N OSCILLATION
EQUATIONS ANALYSIS

Fig. 7—Equation computation flow chart.

3.2 Equations containing faults

Equations for circuits containing faults may be derived in a way
similar to those used for fault-free circuits. This method allows tests
to be generated that can detect a specific fault. For efficiency, it is
possible to consider several single faults simultaneously. The single
faults considered here are the gate outputs stuck-at-one and stuck-at-
zero as well as gate inputs open (e.g., open diode or emitter). The input
open on a NAND or AND gate will be treated as stuck-at-one while the
input open on a NOR or or will be treated as stuck-at-zero.

Let the variables 2% and z' represent fault variables. Let x4 mean
the fault z.7 is present in the circuit. Similarly, 2% means the fault is
not present in the circuit. For the fault variables, the 7 does not
represent the ith vector in a sequence; rather, it represents the ¢th
fault being considered. (Faults are always denoted by z.i and the

1492 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1974

associated variables by z% or z'7.) Since the single faults are assumed
to be permanent, any fault z.7 will be present during the entire test
sequence. The two states for 2.7 allow the comparison of the faulty
and fault-free circuit behavior to derive a test to detect the presence
or absence of the fault in the circuit.

Consider the gate shown in Fig. 2. The fault-free equations are
shown. If, however, the input-open fault on gate G from A is being
examined, then the equations for gate G are shown in Fig. 8a. It is
possible to set gate G to logical 0 either by applying A! and B! in the
presence or absence of fault x.1 or by applying B! in the presence of
fault x.1. It is also possible to set G to logical 1 by applying B? in the
presence or absence of fault x.1 or by applying A° in the absence of
fault x.1. Similar analysis for the output stuck-at-zero fault 2.3 and
the output stuck-at-one fault z.4 can easily be performed in the
manner shown in Figs. 8b and 8c.

Now assume there is only one fault in the circuit and consider the
case where the fault propagates around a loop and returns to the
site of the failure. If the fault is the input open on gate G from A4,
then the equations shown in Fig. 8a can be rewritten as shown in
Fig. 9a where fault x.1 is explicitly considered and D, E, F, - - - repre-
sent sum-of-products equations. Computing ¢° and G! yields the
equations shown in Fig. 9a. Figure 9b considers the case where the
fault exists (2!1) and Fig. 9¢ considers the case where the fault does
not exist (21). Comparison of Figs. 9b and 9¢ with 9a shows that the
computations proposed in this section for combinational circuits are
also applicable to sequential circuits for the input-open case.

A similar analysis can be carried out for the gate output stuck-at-one
and the output stuck-at-zero faults. This demonstrates that the
equations shown in Fig. 8 for handling faults in combinational circuits
are also applicable to sequential circuits.

X.1
A =] GO = A1, B! + X1 . 8!
B — G! = AD . X071 + BO
(a) INPUT OPEN FAULT EQUATIONS
A—1 X3 G0 = Al. B!+ X3 A—1 X4 G0 = A1, Bl . x04
B e Gl = AD . X03 + B0 . X03 B = G = AD + BO + x4

(b) OUTPUT STUCK—AT—ZERO EQUATIONS {c) OUTPUT STUCK—AT—-ONE EQUATIONS

Fig. 8—Equations for handling faults in combinational circuits.

LAMP: AUTOMATIC TEST GENERATION 1493

A0 =D+ E.x" +F.x0 %1 GO = Al . B! + x'1 . B!

A

Al =G +H.x"+1.x01 = =G.M+G-P-x°}+l-M-lx°1+
LP.x0 . .

B0 = J + Ko x!1+ L. x01 I l«Pex01T +M.x!1 +N.x!1

Bl =M+ N.x"+P.x01 G! = AD . x01 + BO

=D.x01 4+ F.x01+J+K.x+
L. x01

{a) EXPLICIT CONSIDERATION OF x.1

A0 =D+ E x.1 AO =D+F GO=G.M+G.P
Al =G+ H)GG“:M+N A‘=G+IjD)G_ tleM+ 1P
B0 =)+ K = Gl =J+K B0 =+ L Gl =D+ F+J+L
B! =M+ N Bl =M +P

(b) PHYSICAL INSERTION OF FAULT x.1 {c) FAULT—FREE CIRCUIT

Fig. 9—Equations for handling faults in sequential circuits.

3.3 The halting problem

One problem that must be discussed is how to determine when
sequences of sufficient length have been generated. That is, given the
equations that represent sequences of length N and the equations that
represent sequences of length N + 1, will more information be gained
by generating sequences of length N + 27 The question is answerable®
if the feedbacks have been identified ; however, the maximum sequence
length contains factors of the form 2 to the power m, where m is the
number of circuit inputs. For 500-gate, 40-input circuits, this is an
absurd number.

There does not appear to be any practical method of determining
when to halt the equation-generation process. In practice, the maxi-
mum sequence length to be considered is supplied by the user. The
usual procedure is to start with sequences of length 1 and increase the
sequence length until an acceptable level of undetected faults remains
using the test-generation schemes presented in the next section. As
might be expected, the run time increases significantly with increasing
sequence length such that, even if it were simple to determine when
to halt, it would probably not be economical. In practice, the halting
problem has presented no difficulties. It is, however, an interesting
theoretical problem.

In practice, the maximum sequence length required to detect all
faults in the circuit provides some measure of the ease with which
the circuit can be tested. The shorter the sequence length required,
the more easily the circuit can be tested. This fact could be used as a
circuit-design constraint by requiring that all circuits be testable with
sequences of N or less where N is small. In fact, a 1000-gate, 11-state

1494 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1974

sequencer was designed so that the flip-flops representing the state
could be written and read direetly from circuit inputs and outputs.
This produced an easily testable sequential circuit.

3.4 Clocked circuits

The algorithms that have been presented allow the circuit input
leads to be treated as variables [e.g., (a', a)] or as logical values
where logical 0 is (0, 1) and logical 1 is (1, 0). It is possible to allow
some circuit inputs to be represented by variables and others by
logical values. Clearly, it is possible to change the logical values
between logical 0 and 1. Then we have the ability to apply a sequence
of logical values to an input lead.

For example, suppose the circuit being considered has a clock lead
whose normal operating waveform is 1-0-1-0 and all other input
leads are static during this cycle. Then it is possible to apply variables
to all but the clock lead and to supply the waveform (1, 0) — (0, 1)
— (1, 0) — (0, 1) to the clock lead. In this way, ATG does less work
since we have considered a sequence of length 4 on the clock lead and
sequences of length 1 on all other leads. This is considerably more
economical than computing sequences of length 4 over all input leads.

In a similar way, user-specified initialization sequences can be
applied to the circuit to place it in some desired state before allowing
ATG to select the next input sequence. This is an effective way of
using ATG.

3.5 Self-initializing circuits

Certain classes of sequential circuits are self-initializing in that,
regardless of the initial state, the circuit always assumes a known
state when power is applied. A simple example of such a circuit is
shown in Fig. 10. Because the flip-flop always initializes to C = 0,
D=1or C=1,D =0, gate F will always be logical 0 forcing the
flip-flop to the C = 1, D = 0 state.

— e

Fig. 10—Self-initializing circuit.

LAMP: AUTOMATIC TEST GENERATION 1495

If this circuit is assumed to be in an unknown state (B = C = D
= E = F = X), then because X = X, the basic ATG algorithm does
not determine the required initial state. The operation of ATG requires
that gates be forced to some initial state by the application of input
veetors from some initial state. Hence, self-initializing circuits require
that the proper initial state be specified by the user. This has not
proved to be a problem in practice since most circuits contain ini-
tializing leads.

IV. TEST GENERATION FROM THE EQUATIONS

Two different schemes for generating tests are described in this
section. The first scheme described is the generation of tests to detect
single faults, where the equations are derived in terms of these faults.
However, in a 500-gate, 2000-fault circuit it is not economical to attack
all 2000 faults on a one-at-a-time basis. The second method for test
generation is aimed at detecting large numbers of faults as easily as
possible. It attacks the problem by essentially attempting to detect
the stuck-at-one and stuck-at-zero fault at each circuit input lead by
observing each circuit output lead. This is called the maximum-cover
strategy. This scheme typically detects around 90 percent of the
classical faults if the equations reasonably describe the circuit—that
is, if the sequence length used is long enough.

4.1 Generating a test to detect a fauit

To detect fault x.i, it is necessary to select a test (input sequence)
that will force some output of the circuit to have the value k for
k = 0, 1 in the presence of the fault .4 and to have the value k in
the absence of fault z.7 starting from the given initial state. Let one
output gate G of a circuit have the following equations (by simple
factoring) :

G=A+ B-zi+ C-a%

6
G' = D + E-2% + F-a%, ©

where A, B, - - -, F are also sum-of-products expressions. This means
that the terms in A (D) are the only terms that set G = 0 (G = 1)
regardless of the presence or absence of fault z.i. The tests to detect
fault z.7 at gate G are given by B-F + C-E. This is proven as follows.

Since the fault either exists or does not exist, z'4-2% = 0. First
consider the case in which & = 0. Since G"(G") represents exactly those
conditions that set G = 1 (G = 0), then G*(2% = 1) = D + F repre-
sents those conditions that set G = 1 in the absence of fault z.7. Simi-

1496 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1974

larly, G°(2% = 1) = A + B represents those conditions that set
G = 0 in the presence of the fault. Hence, every condition (input
vector) that makes the good output of ¢ = 0 and makes the faulty
output of ¢ =1 is given by (4 +B)-(D+ F) =A-D + B-D
+ A-F 4+ B-F. Examination of the terms of this equation reveals
A-D=B-D=A-F=0. Term A-D = 0 because, if it were not
zero, then there would be some term in A-D that could set
G = 1 and ¢ = 0 simultaneously. This is clearly impossible. Similarly,
B-D#0 (A-F # 0) implies that in the presence (absence) of the
fault, there is some term in B-D (A -F) that canset ¢ = 1 and ¢ = 0
simultaneously. Therefore, any term that can set ¢ = 0 in the presence
of the fault and / = 1 in the absence of the fault must be in B-F.

For the case in which £ = 1, the test must be a term of (D + E)
-A+C)=D-A+D-C+ E-A + E-C. By similar analysis, 4-D
= D-C = A-E = 0. Therefore, a term that sets ¢ = 1 in the presence
of the fault and ¢ = 0 in the absence of the fault must be in E-C.

Since the problem is to detect fault x.7 without regard to the output
value of G, any term in B-F + E-C is a valid test. Therefore, all
tests to detect fault 2.7 at gate ¢ can be expressed as

Detection Tests = B-F + E-C.

If B-F 4 E-C = 0, there is no test that will detect, fault x.7 at gate @.
It is then necessary to examine each remaining circuit output to
determine if x.7 is detectable. If 2.7 is not detectable at any circuit
output, then there exists no test to detect 2.7 for the sequence length
specified.

Clearly, this algorithm generates every test that will detect fault
x.2 at each output. Since it is probably necessary to detect the fault
only once, the first valid test found usually terminates the process.

4.2 The maximum-cover strategy

The maximum-cover strategy has been quite successful. In most
cases, it has detected from 85 to 100 percent of the faults in the circuit
that are detectable with the maximum sequence length specified. For
highly sequential circuits, a short-maximum-sequence length may
detect few faults because the circuit cannot be exercised completely
without using a long sequence of input vectors.

The maximum-cover strategy operates on the fault-free equations
derived for the circuit according to the maximum sequence length
specified. The basic idea is simply to attempt to detect each primary
circuit input fault at each circuit output. Factoring the output equa-

LAMP: AUTOMATIC TEST GENERATION 1497

tions as before yields:
Fo= A+ B-a'j+ C-a'j
F'= D+ E-a'j + F-a"j,

(8)

where A, B, C, D, E, and F are sum-of-product terms. This case
attempts to detect the input faults on a at the output F. A test is
formed in a manner similar to that used for detecting faults, except
that it is necessary here to specify the value to be assigned to input
lead a.j.

Maximum-Cover Test = (E-C + F-B)-(a*j + aj).

This process is repeated until an attempt has been made to test each
circuit input fault at each output lead. This scheme actually produces
every test that satisfies the above equation. The shortest test (fewest
input leads set to logical 0 or 1) is selected in each case.

The time spent performing this computation is usually much less
than that required to derive the equations. Also the time and results
of the maximum-cover operation must be weighed against the cost of
detecting additional faults on a one-at-a-time basis. Thus, while
maximum cover is an expensive heuristic (when compared to, say,
random-number test generation), it provides a set of tests that is
usually good enough so that one can economically attack the remaining
faults on a one-at-a-time basis. As a general rule, about 5 to 10 faults
can be detected using the one-at-a-time strategies for the same cost
as one pass of the maximum-cover strategy which inherently tries to
detect all faults.

V. EXPERIMENTAL RESULTS

The final measure of an automatic test generation system is how
well it does its job on real circuits. The ATG system has been pro-
grammed and is being used at several locations in Bell Laboratories.
The algorithms presented here are generally not useful for hand com-
putation. The version of ATG used by Bell Laboratories on the IBM
360, Model 67, collects certain data each time it runs successfully.
The data collected include the execution CPU time, number of test
vectors generated, number of faults detected, number of gates in the
circuit, and number of flip-flops in the circuit.

This implementation of ATG requires about 100,000 bytes for
program storage. Other storage, used during execution, depends on the
characteristics of the ecircuit being run. As the equations get longer,

1498 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1974

the storage requirements increase. Generally speaking, ATG requires
from one to five megabytes of virtual storage. This implementation
allows only unit- and zero-gate delays, handles single stuck-at-one and
stuck-at-zero faults, and generates fault-detection tests for single faults
as well as the maximum-cover test-generation strategy.

The data that have been collected indicate that ATG has been
primarily used to generate tests via the maximum-cover strategy. In a
few uses of ATG, the user attempted to detect only specified faults;
these data are not included in this paper.

The data collected represent only successful ATG runs. If the
same circuit was run several times, then only the run that produced
the fewest undetected faults (e.g., used the longest sequence length)
is included. This is consistent with the recommended operational
procedure, which starts with a short sequence length and increases it
until an acceptable level of fault detection is reached. Faults in unused
gates are included both in the undetected faults and in the total
number of faults in the circuit.

The results of 300 ATG runs on 120 circuits using the maximum-
cover strategy are summarized in Figs. 11 through 15. The average
circuit contained about 270 gates including about 10 flip-flops in the
sequential ecircuits. Thirty-two ecircuits were combinational. ATG
produced an average of 94 vectors in an average of 43 seconds of
IBM 360, Model 67, CPU time resulting in an average detection level
of 88 percent of the total number of faults in the circuit. However,
the median percentage of undetected faults was only 7 to 8 percent.
The longest sequence length used for these circuits was 5. Unfortu-
nately, there is almost no correlation between the five parameters
plotted in Figs. 11 through 15. The data correlate only in the extreme
cases. For example, the circuit with 32 flip-flops produced a large

20

o ||||”l|l|||1|1 1] 111 L1
0

100 200 300 400 500 600
NUMBER OF TEST VECTORS PER CIRCUIT

NUMBER OF CIRCUITS
=

Fig. 11—Distribution of number of test vectors per circuit.

LAMP: AUTOMATIC TEST GENERATION 1499

20
w
E
2
Q
o
o
& 10
[+
w
m
=
2
) ” N ' |
0 1 YT I Y R B B N N §
0 10 20 30 40 50 60
PERCENTAGE OF UNDETECTED FAULTS PER CIRCUIT
Fig. 12—Distribution of percentage of undetected faults per circuit.
20
w
E
2
(&)
[+
o
S 10
[+ =
w
@
=
=2
) 1NN H“ m
0 lullulll 1NN Ll b 1
0 100 200 300 400 . 500 600

NUMBER OF GATES PER CIRCUIT

Fig. 13—Distribution of number of gates per circuit.

30L

20—

NUMBER OF CIRCUITS

]|| Il 1 | I

WU .“l |.||| I|[|.
10 20 30 40 50 60

NUMBER OF FLIP-FLOPS PER CIRCUIT

Fig. 14—Distribution of number of flip-flops per circuit.

1500 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1974

50

8
TV

NUMBER OF CIRCUITS
=]
I

0 |””|LJJI o n

o 100 200 300 400
ATG CPU TIME PER CIRCUIT IN SECONDS

Fig. 15—Distribution of CPU time per circuit.

percentage of undetected faults. For most of the data, none of the
parameters correlates significantly.

ATG did not produce acceptable results on all circuits. In general,
ATG is limited by the length of the equations generated. As these
equations become long, the execution time increases and ATG may
not terminate successfully due to excessive run time and/or storage
requirements. The equations can become long as a result of long
sequence lengths (e.g., shift registers and counters) or as a result of
the function of the logic circuit (e.g., parity trees and adders). In
addition, circuits such as parity trees produce quite long equations
and ATG generates more vectors than the minimum required.

One circuit recently run on ATG using the maximum cover strategy
is worthy of special mention. The circuit is a 1000-gate, 11-state
sequencer plus input, output, and transition logic. The sequencer
state, represented by four D-flip-flops, can be read and written from
circuit outputs and inputs respectively. Extensive use is made of the
system clock to control transitions and gating. The clock waveforms
were supplied to ATG by the user. ATG, using the clock and sequences
of length one, generated 770 vectors in about 800 seconds, detecting
about 95 percent of the faults in the circuit. The success of ATG here
is partially due to the ‘“‘easily testable design’” which allows the
sequencer state to be directly read and written.

In practice, while ATG will not efficiently handle all circuits, it
appears to be an economical tool for automatic test generation for
“mildly’”’ sequential circuits containing around 500 gates. The design

LAMP: AUTOMATIC TEST GENERATION 1501

of circuits in an ‘‘easily testable’” manner greatly eases the work
required to automatically generate test vectors for the circuit.

VL. SUMMARY AND CONCLUSION
In summary, the method used to generate tests is as follows:

(7) Set the maximum sequence length & = 1.
(1) Generate equations for the logic circuit with sequence length k.
(i72) Generate tests using maximum-cover strategy.
(iv) Simulate the tests. If the percentage of undetected faults is
less than, say, 10 percent, proceed to step (v). Otherwise, set
k = k + 1 and return to step (77).
(v) Generate tests for remaining undetected faults (one fault at
a time) detectable with sequence length k.
(v3) If an acceptable percentage of undetected faults remains, stop.
Otherwise, set k¥ = k + 1 and return to step (v).

In practice, most users of ATG have been satisfied with the ATG
results without trying steps (v) or (vi).

The algorithms treat a logic network as an interconnection of gates
which are assigned some fixed time delay. The technique generates
two equations, F°(f) and F'(t), for each gate in the circuit. These
equations denote the input conditions required to set gate F to logical
0 and 1 respectively at time ¢. Because the technique starts from the
circuit inputs and proceeds forward through the circuit (like the
signal flow), it is not necessary to identify feedback leads. Therefore,
both combinational and sequential circuits can be handled by the
same algorithm.

The primary difference between combinational and sequential-
circuit test generation is that several input vectors may be required
in a sequential circuit to set the desired state, detect some fault, and
then propagate the fault to some output lead. The number of input
vectors required to perform some test on the circuit is called the
sequence length of the test. A sequence length of one is sufficient to
generate all tests for a combinational circuit since it has no memory.
The maximum sequence length to be considered is supplied by the user.

The test-generation algorithms first generate the equations for the
circuit, taking into consideration the gate delays and the maximum
sequence length specified. These equations also take into account the
effect of various single stuck-at-one, stuck-at-zero, or open-gate input
faults when tests are being generated for specific faults. Then, from
these equations, the algorithms will generate a test for any of the
above faults if such a test exists within the sequence length specified.

1502 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1974

Equations may also be generated that represent only the fault-free
circuit. It is then possible to generate tests from these equations which
exercise the circuit in such a way that many faults are detected.
This has been a popular feature because it produces good results
economically.

These algorithms have been implemented and are currently being
used to generate tests for circuits containing around 500 gates. Quite
good results have been produced using the maximum-cover technique.
A median of 7 to 8 percent undetected stuck-at faults was reached in
less than 1 minute of IBM 360, Model 67, CPU time on a sample of
some 120 circuits. Because of the success of the maximum-cover
techniques, very little use has been made of the ‘‘single-fault”
techniques.

In conclusion, ATG is a production system that has been found to be
a valuable tool for the generation of circuit pack tests.

VIl. ACKNOWLEDGMENTS

The author gratefully acknowledges the guidance of Professor S. S.
Yau of Northwestern University during the course of this work. The
work of G. F. Shuttleworth of Bell Laboratories on the nonvirtual
memory version of ATG is also acknowledged. In addition, the support
of W. Ulrich and R. W. Ketchledge during the course of this work
is appreciated.

REFERENCES

1. D. B. Armstrong, “On Finding a Nearly Minimal Set of Fault Detection Tests
for Combinational Logic Nets,”” IEEE Trans. on Computers, EC-15, No. 1
(February 1966), pp. 66-73.

2. F. F. Sellers, Jr., M. Y. Hsiao, and L. W. Bearnson, “Analyzing Errors With the

Boolean Difference,” IEEE Trans. on Computers, EC-17, No. 7 (July 1968),

Ep. 676-683.

. Roth, W. G. Bouricius, and P. R. Schneider, “Programmed Algorithms to
Compute Tests to Detect and Distinguish Between Failures in Logic Circuits,”’
IEEE Trans. on Computers, £C-16, No. 5 (October 1967), pp. 567-580.

4. S. A. Szygenda, D. W. Rouse, and E. W. Thompson, “A Model and Implementa-
tion of a Universal Time Delay Simulator for Large Digital Nets,”" Proc.
AFIPS Spring Joint Computer Conference, 1970, pp. 207-216.

5. 8. G. Chappell, C. H. Elmendorf, and L. D. Schmidt, “LAMP: Logic-Circuit
Simulators,”” B.S.T.J., this issue, pp. 1451-1476.

6. S. 8. Yau and Y. S. Tang, “Generation of Shortest Test Sequences for Individual
Faults of Sequential Circuits,” to be published.

7. G. R. Putzolu and J. P. Roth, “A Heuristic Algorithm for the Testing of
Asynchronous Circuits,”” IEEE Trans. on Computers, C-20, No. 6 (June 1971),
pp. 639-647.

8. M. Y. Hsiao and D. K. Chia, “Boolean Difference for Fault Detection in
Asynchronous Sequential Machines,” IEEE Trans. on Computers, C-20, No.
11 (November 1971), pp. 1356-1361.

9. E. F. Moore, “Gedanken Experiments on Sequential Machines,” Automata
Studies, Princeton : Princeton University Press, 1956, pp. 129-153.

LAMP: AUTOMATIC TEST GENERATION 1503

