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Specific atlempls have been made at Bell Laboratories lo shorten develop-
ment intervals, to improve the quality of system design, and to improve
unit, manufacturing, and system testing by widespread application of the
LAMP system during development of the 1A Processor and No. 4 Elec-
tronic Switching System. LAMP has played a major role in two areas of
the design process—design vertfication and fault simulation. Although ten
magor digital subsystems of No. 4 ESS and the 1A Processor are now being
stmulated on the LA M P system, this paper describes the experience gained
during development of two of the 1A Processor subsystems, central control
and program/call store.

I. INTRODUCTION

Computerized development aids have become an integral part of the
development of large, complex, electronic systems. One such aid, the
LAMP system, is finding widespread application in the development
of the 1A Processor,! a stored program processor, and in No. 4 ESS,?
a new switching system that employs a solid-state, time-division,
digital-switching network.

The need for computerized aids in the development of advanced
switching systems is vital for several reasons. Vast amounts of engi-
neering and manufacturing information must be generated. Compli-
cated design decisions coming from engineers of diverse disciplines
must be coordinated, and with the increasing complexity of systems
and electronic technology comes the need for more thorough and con-
sistent testing at all stages of design and manufacture. As the com-
puter increases in power, it plays a greater role in reducing manual
design effort, enhancing design quality, improving the accuracy of
information transfer, and making more complex designs economically
feasible.
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For these reasons, the LAMP system has been used on TSS 360/67
to simulate ten major subsystems in No. 4 ESS and the 1A Processor.
The experience gained during the development of two of these sub-
systems, central control (the heart of the 1A Processor, which provides
program execution and overall executive control) and program/call
store (a magnetic core memory unit that provides storage for ESS
programs and temporary call-related data) is detailed here.

To facilitate maintenance of design information and provision of
adequate testing for the project, computerized data bases have been
implemented for all design information. The combination of common
data bases for hardware and software design information, the LAMP
simulator, and the conversational features of an interactive host com-
puter have proven quite effective in the hardware and test design for
the project.

There are two major ways in which the LAMP system has been used
in the development process: design verification and fault simulation.
These will be discussed separately and in detail in Sections IT and III,
respectively, of this paper. Briefly, design verification consists of
demonstrating that the unit being simulated performs the functions it
was designed to perform, with no faults present. Fault simulation, on
the other hand, consists of inserting faults into the simulated unit and
testing the ability of maintenance programs to detect and isolate
those faults.

Three categories of test programs are used in the simulation of the
previously mentioned units. They are:

(¢) Circuit pack level tests, which are used in design verification,
fault simulation, and pack testing.

(iz) Diagnostic tests, which are the primary tool for both design
verification and fault simulation at the complete unit level.
The diagnostic tests are written in a high-level language, con-
current with the design of the hardware. They are intended for
factory and installation tests as well as for on-line fault detec-
tion and repair in an operating system. Total fault detection is
the ideal primary goal, with good resolution the secondary goal.

(727) ‘“‘Special” test programs, which are used only for design verifica-
tion and are intended to test the functional capability of the
simulated unit (e.g., its ability to execute the program), and
to test complex interactions between different portions of the
unit.

Initially, LAMP was used to simulate each digital circuit pack of the
1A Processor (i) to verify the design, (i) to verify that sufficient
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access was available on the pack to detect all classical faults (output
stuek high or low, open input), and (7#7) to verify that the tests were
capable of detecting these faults. This eircuit pack level of simulation
continued throughout the development process as changes were made
to circuit packs and new packs were issued.

A second, temporary phase for some units was the simulation of a
functional part of a unit before the complete design was available. This
allowed design verification through simulation to begin while other
functions were being designed. At this level, many special test programs
described previously were used.

Finally, as the complete design became available, complete unit
simulation was begun. At this level, the diagnostic tests were used, and
the majority of design verification and fault simulation was done.

Il. DESIGN VERIFICATION
2.1 Circuit pack design verification

This section describes the use of LAMP simulation in the design
verification of 1A Processor circuit packs. This is differentiated from
design verification at the complete unit level and from fault simulation
of circuit packs, which will be discussed in later sections.

2.1.1 Objectives

Substantial time and expense are required to produce an artmaster
for a 1A Processor circuit pack (100 to 400 logic gates) and then to
produce the first hardware version of the pack. It becomes important,
therefore, to verify the aceuracy of the design before this process
begins. The purpose is to test the ability of the design to perform the
intended functions as completely as possible. In addition to new designs
for circuit packs, changes inevitably must be made during the course
of the project. Again, it is important that the design of these changes
be verified before the time-consuming process of modifying the hard-
ware begins. For this reason, design verification of circuit packs,
through simulation, is done not only early in the development process
but throughout its course.

2.1.2 Circuit pack simulation

The mechanics of eircuit pack design verification by simulation con-
sist of building a LAMP model of the pack, devising a set of tests,
running the tests and interpreting the results, and updating the model
so that proposed corrections of design errors may be tested immedi-
ately. Building and updating the model are described under complete
unit simulation (Section 2.2.2).
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2.1.3 Circuit pack tests

Design verification at the circuit pack level uses tests written by the
pack designer or another person familiar with the design and informa-
tion generated automatically via the automatic test generation (ATG)
program.® The handwritten tests consist of sets of inputs (vectors) to
be applied to the circuit pack. During simulation of the vectors, the
outputs of the pack are continuously monitored and, thus, may be
compared to a set of expected results. An effort is made to make a com-
plete “active’ test of every output, i.e., to ensure that each output is
active when the inputs are selected to make it active. However, “in-
active” tests of each output (insuring that the output is not active
when it should not be) are necessarily limited to those the test designer
feels to be high-probability cases. An exhaustive set of inactive tests
can be prohibitively large for even a relatively simple function.

The ATG program is intended primarily for the generation of factory
tests for the circuit packs, but it proves useful for design verification as
well. This program approaches test generation from the same stand-
point as the LAMP simulator, as is discussed in detail in a companion
paper.® One result of this approach to test generation is that the pro-
gram effectively determines the Boolean function for each output as it
actually exists on the pack. By printing these functions in a form so
that they can be compared to the functions intended by the pack
designer, ATG is an effective tool for design verification of combina-
tional and many sequential packs. By recreating the function from the
gate level information, ATG effectively makes both ‘“active” and
“inactive’ tests of the function design.

2.1.4 Experience

The simulation of the 1A Processor circuit packs for design verifica-
tion was not a one-time occurrence, but continued throughout the
design process. During this simulation procedure, some errors were
found on a majority of circuit pack codes. Without circuit pack simula-
tion, these errors would not have been found until complete unit simula-
tion, or perhaps not until testing of the first hardware model of the
unit. In most cases, even if the errors were detected at the complete
unit level of simulation, the expensive task of generating the artmaster
for the pack would already have been completed.

The tests developed for circuit pack design verification served as a
substantial portion of the factory tests for these packs. The process of
achieving complete fault detection capability uncovers redundancies,

1538 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1974



thereby enhancing design verification. Section ITT describes the fault
simulation of circuit packs.

2.2 Complete unit design verification

Inherent in major unit simulation is the need to first verify the
accuracy of the simulated unit (or simulation model). This is done by
running the diagnostic tests on the simulated unit with no faults, then
comparing the simulation results with the expected results for each
test. This verification procedure proves useful in three ways: it verifies
the functional design of the unit, it verifies the accuracy of the design
data base, and it verifies the design and expected results of the diag-
nostic tests.

2.2.1 Objectives

In the design of large digital units, a time lag exists between the com-
pletion of the initial design and the arrival of the first manufactured
units. Before the advent of high-speed integrated circuits, the unit was
breadboarded, in many cases, to allow continuing design feedback
while waiting for the manufactured unit to arrive. However, with the
increasing complexity and the higher integration levels of digital sys-
tems, it may no longer be feasible to breadboard a digital unit for
design verification purposes. LAMP simulation now provides an al-
ternative to breadboarding for units as large as 40,000 gates. LAMP
was selected over other alternatives for speed, flexibility, economy, and
capability.

The use of simulation has significantly decreased the design interval.
Once the initial design is completed, it is easier to make a LAMP
model of the unit than to manufacture it. Thus, design verification can
begin well before the factory model arrives. As is discussed later, fea-
tures in LAMP make testing the simulation model comparable to test-
ing the hardware unit itself.

Simulation reduces the number of changes that must be made after
the unit is manufactured. Because integrated circuits are being used,
changes no longer involve just adding or deleting wires from a wire-
wrapped backplane. Now changes may require difficult modifications
to printed wire or thin-film circuits or to multilayer backplanes. As the
changes become more complex, they also take more time. Critical
changes may halt all other debugging until the new change can be
designed and implemented. The change facilities in LAMP permit
fixes involving a small number of gates and wires (under 50 changes)
to be implemented almost immediately. Larger changes can be pre-
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pared in less than a day, when required. This means that, with simula-
tion, debugging can continue without significant delay when changes
are encountered. By simulating early, many changes can be found
and incorporated into the design before the first unit is manufactured.

Diagnostic tests are required for the first and all subsequent units in
manufacturing. One objective of simulation is to verify the diagnostic
test design before testing the first unit being manufactured. The unit
test interval can be reduced significantly if it is known in advance that
the tests are correct and that the problem is a malfunction in the unit
being tested.

The remainder of this section discusses how simulation is used for
logic design and diagnostic test verification, and how it fulfills the
objectives of decreased design interval and reduction in change ac-
tivity after manufacture.

2.2.2 Model building and updating

Figure 1 is a diagram of the simulation process. As the hardware
design moves toward completion, the information is encoded into a
design data base. This data base is used to generate all information for
the LAMP model, the circuit pack and interconnection drawings, the
artmasters for the circuit packs, and wiring information for the back-
plane. When the data base is complete, the simulation model is con-
structed from the information in the data base. This is done in two
stages. First, an LSL-LOCAL* desecription of the unit is generated
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BASE
FINAL FINAL
FEEDBACK FEEDBACK
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Fig. 1—Design verification.
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from the data base. This LSL-LOCAL description is then compiled
into a data set of simulation tables for the model.

The verification of the data base begins as the simulation model is
being constructed. Error diagnostics in the programs that create the
simulation model find some inconsistencies in the data base. Once the
model has been constructed, more errors can be found by running the
diagnostic tests.

To make this process practical and easy, methods to change the
model must be available. Figure 2 illustrates the change process. To
have the change officially issued into the central data base and then
to create a new model is a lengthy task, a result primarily of queuing
delays in the various sequential steps. The data base has to be updated
and a new model must be generated. To shorten the model updating
time and to verify changes before they are officially issued, two other
methods are used to modify the LAMP model. First, a text editor can
be used to update the LSL-LOCAL description of the circuit, which is
then compiled into a new set of LAMP tables. Second, the LAMP
CKTCHANGE* command can be used to modify the existing tables
directly. For small units, text editing and recompilation is as fast as
using CKTCHANGE. Therefore, this procedure is used for small units,
while for large units, because of its speed advantage, CKTCHANGE
is used. Any change required is first put into the model by
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WRITE WPRD (XR), DATA (((52525252))
READ W@RD (XR), EXPECT ({}(52525252}))
WRITE WPRD (YR), DATA (9(77777777))
READ W@RD (YR), EXPECT (§(77777777})
RUN CYCLE (2)
READ WPRD (XR), EXPECT (0)

Fig. 3—Sample diagnostic test.

CKTCHANGE or by editing the LSL-LOCAL description. The change
is then verified by further simulation. If corrections are found necessary
after simulation, the change is updated and retried. Only when the
change is correct will it be added to the official file. This results in
fewer changes being made to the official design data base, thus lessen-
ing the chance for error.

2.2.3 Simulation procedure

Once a model has been built, tests are needed to verify the correct-
ness of the model. The diagnostic tests are chosen as the main logic
verification tests since the test design schedule closely parallels the
logic design and, thus, most tests are ready at the time the simulation
model is generated. The tests are written in a high-level language from
which they are easily compiled into the input language for the simu-
lator. Each test includes an explicit expected result so, while simulating,
it is easy to ascertain if the test being simulated is passing or failing.
Figure 3 is an example of a simple test. The X and Y registers are
initialized and then read to verify the initialization. The run statement
executes the test and is followed by a read to determine if the proper
action occurred during the test.

Given the LAMP model for the circuit, a set of tests to simulate, and
the ability to make quick changes, design verification may begin. The
standard procedure is to simulate a complete functional block of tests
called a phase. During the simulation, a list of test failures is auto-
matically produced by LAMP. These failures could be hard errors or
logic 3 (output in unknown state) propagated to the output. The
data from the failing tests are analyzed by the logic designer to deter-
mine the source of the errors. Frequently, the solution to a problem is
obvious from the test results. In other instances, a follow-up run is
required to determine the exact eause of the error.

LAMP provides two basic debugging facilities, an oscilloscope-like
timing trace and a stop-and-display feature. Some follow-up runs in-
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volve simulating the failing test and generating an oscilloscope-like
output trace covering a large number of points. Typically, 100 to 500
points may be traced. This type of trace is effective when the designers
know where the error is likely to be. The timing trace is also used ex-
tensively with special tests of critical timing functions and complex
sequencer interactions. This output has proved to be the most effec-
tive technique for uncovering circuit timing problems.

Another type of follow-up run involves simulating the phase in the
conversational mode and imbedding stops in the simulator. The stops
are activated when a preselected gate changes to a specified value.
When the stop is activated, the simulation is suspended, and the logic
designer can look at the state of any gate at that instant in time. This
allows the designer to trace the trouble back to its source. Imbedded
stops are used if the time of occurrence of the problem is known or if
the problem is isolated to a particular gating lead changing state for
an unknown reason. In the first case, a stop is planted at a particular
time. The simulation is run up to this point and then stopped. Using
the DISPLAY facility in LAMP, the designer then displays the states
of critical gates. The DISPLAY command presents the current value
of the gate along with its fan-in or fan-out gates, plus their logical level
(value). The values are those at the time the simulation stopped. If
these gates are in the wrong state, then the values of the inputs are
checked to trace back the problem. The tracing continues until the
source of the error is determined. In other cases, the value of a gating
or data lead is used to activate the stop. This is used when it appears
that the problem is caused by a function changing state at the wrong
time. Again, the display facility is used to track the problem back to
the source.

Once the trouble is isolated by oscilloscope-like tracing or imbedded
stops, either the circuit is changed, if there is an error in the logic
design or in the data base, or the diagnostic test is modified, if there is
an error in the tests. The simulation is then rerun to verify the correc-
tion. These two procedures are so effective that, for some problems, the
designers have preferred debugging the logic and tests via simulation
even after hardware models are available. Running tests on simulation
is slower than running the tests on the unit; however, debugging is
facilitated by the ability to suspend the simulation and to observe
large numbers of points internal to a circuit pack that are not observ-
able on the hardware model. This has significantly reduced the design
verification interval and, by finding the errors during simulation,
many costly changes have been eliminated.
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Fig. 4—Central control simulation.

2.2.4 Experience

The central control for the 1A Processor was the first and largest
unit whose logic was extensively verified using LAMP. The experience
gained in verifying the central control is presented here to illustrate the
effectiveness of LAMP for logic and diagnostic test verification. Figure
4 is a functional block diagram of the simulation models and interfaces.
The 1A Processor contains duplicate central controls. When diagnostic
testing is performed, the active central control tests the standby cen-
tral control through an interface port. In the simulation process, the
LAMP model for the complete standby central control was created. A
simplistic model of the active central control was created to take the
tests and apply them to the standby central control at the proper time.
The active central control model contains an oscillator that could be
started and stopped, allowing the cireuit to settle and a new test to be
applied at the appropriate time. In the active central control model, a
comparator circuit was built in to check the actual results of a test
with the expected results. Whenever the error flag gate became active,
a message was printed listing the failing test. For conversational
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simulations, this allowed termination of simulations if the number of
failures became too large.

In addition to the diagnostic tests, a series of special test programs
was simulated that was designed to test program execution fune-
tionally. Since these programs were not written in the high-level lan-
guage of the diagnostic tests, they were not simulated in the same way.
Instead, using LAMP features, a functional model consisting of a pro-
gram store and a call store was constructed and connected to the gate
model of the central control. The programs were compiled and loaded
into the memories using a special memory loader facility. Special
LAMP vectors were written to initialize the standby central control
model and then to release the oscillator. This allowed the clock to run
continuously and to simulate actual program fetching and execution.
Conversational LAMP control procedures were used to stop the simula-
tion when the program transferred to the error address or when it
reached the return address. These programs allowed operational test-
ing in addition to the diagnostic testing.

For the central control verification, approximately 20,000 diagnostic
tests and 4000 words of program were simulated. The simulation of all
the special tests and most of the diagnostics was completed before the
first unit arrived from the factory. Through simulation, approximately
85 percent of the logic and 80 percent of the diagnostic tests were veri-
fied. The areas remaining to be tested were primarily the circuitry and
tests that interconnect the central control with its system environ-
ment. At the present time, this type of testing is beyond the capability
of LAMP, mainly because of the large number of gates required to
model all the units connecting with the 1A central control.

Many diagnostic and logic changes were generated as a result of
simulation. LAMP is an indispensable part of the development process.
It has proven effective in reducing development intervals and in re-
ducing the number of circuit modifications.

. FAULT SIMULATION
3.1 Purposes

Fault simulation is necessary to determine (and enhance) the detec-
tion level of the diagnostic tests and can be viewed as an extension of
the design verification process. The true behavior of a circuit is studied
during verification. The set of other possible behavioral responses can
be ascertained with fault simulation. This process is systematic; re-
sponses are derived on a fault-by-fault basis. This type of information
is essential to the 1A Processor subsystems because (7) it contributes
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to meeting stringent factory test requirements, and (77) the complete
characterization of subsystem behavior is necessary to satisfy long-
term in-service system maintenance requirements.

Fault simulation at the circuit pack level is not complicated and is
discussed in the next section. On the other hand, unit level simulation
is quite complex. Many factors are involved, including large gate
counts, precise timing, complex fault modeling considerations, and
limited computer resources. These are discussed in the remaining
sections.

3.2 Circuit pack simulation

The size of 1A Processor circuit packs (100 to 400 gates) makes fault
simulation on LAMP an easily managed process. Simulation models of
packs are extracted from the central design data base. These models
seldom require any additional modeling changes. Classical faults are
simulated for every gate in the circuit. Tests are designed to detect
every simulated fault, if possible. A mixture of manual test design
and automatic test generation via ATG is used.? The process is facili-
tated through the use of interactive LAMP on the IBM 360/67 or
370/168 computer.

Each test consists of one or more input vectors and an expected set
of outputs. The input vectors are simply strings of 1 and 0 combina-
tions that are applied to the inputs of the pack. The tests need not be
functionally arranged, but may be independent of each other. Testing
is not “clocked,” inputs are applied simultaneously, and outputs are
examined well after the circuit has settled down. Test minimization is
not stressed, since the cost of simulating each fault per test is small, and
redundant test sequences may improve detection of nonclassical and/or
multiple faults.

As described in Section 2.1, verification tests were generated using
a combination of manual and ATG techniques. These tests were then
run in the fault simulation mode, achieving an average of 75 percent
fault detection. Additional tests were generated with manual and ATG
techniques to achieve 100 percent fault detection.

The ATG program was used on about 50 percent of the packs to
increase fault detection to about 90 percent although, on some com-
binational packs (about 10 percent of total), ATG immediately pro-
duced 100 percent detection. Manual techniques were required to pro-
vide detection of the last 10 percent of the faults on most packs. During
this process, design redundancies and other bugs were uncovered.
Overall, fault simulation at the circuit pack level produced debugged
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factory tests and helped uncover design bugs, thus significantly reduc-
ing the intervals required for manufacture.

3.3 Unit modeling

The logic model used for unit level design verification forms the
basis for the fault simulation model. In some cases, it may be necessary
or desirable to make alterations. Simulated logic used only to support
verification studies may be removed to save simulation time. It may
be necessary to manually append additional models of specialized
circuitry not kept in the design data base. Typical devices are discrete
analog components such as operational amplifiers, current drivers, and
signal buffers. This circuitry communicates with the logic and affects
its state, but is nonlogic in nature. Often, many one-of-a-kind models
must be constructed through truth table and timing diagram studies.
In some cases, circuitry exists that is not modeled. The 1A Processor
call/program store core memory is an example. While functional simu-
lation can be used to model the memory for design verification at the
present time, LAMP cannot support fault list propagation into and
out of a functional model.

Once the fault model is completed, circuit initialization must be
considered prior to simulation. Ideally, simulation should begin with
the cireuit in an unknown state. This represents the most accurate
approximation to the physical circuit whose state prior to testing is
not necessarily predictable. The unknown state approach is normally
used for design verification simulation, but not for fault simulation.
This is because starting from a known state significantly reduces the
excessive simulation CPU time caused by the potential for large fault
list buildup during initialization. The resulting loss in accuracy is
small.

A known state is normally achieved by applying an initializing
sequence to the circuit using true value simulation. Fault simulation is
conducted starting with this true-value state and a set of “‘null” fault
lists.

3.4 Test selection

Test selection is an important consideration for large unit fault
simulation because it is costly to simulate an input vector, and each
test usually expands into a series of from two to ten such vectors.

The decision concerning which tests to simulate is influenced by the
particular objective, the circuit model, and the available computer
resources. Fault simulation to evaluate early tests or to support the
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improvement of tests (test enhancement) is concerned with the detec-
tion of classical faults. This objective permits the exclusion of tests
designed to improve fault isolation or to detect lead shorts (such as a
walk of 1 through a field of 0’s). Test exclusion is also necessary to size
the tests according to the capabilities of the simulation model. This is
most evident in tests that deal with the system environment, such as
tests of “interunit’”’ communication buses or of nondigital circuitry
such as memory. A set of tests may also be simulated versus only a
fraction of the faults. This is discussed further in Section 3.6, under
“simulation strategy.”

How the tests are sequenced is also important. I'unetional ordering
(grouping tests according to the circuitry being tested) is essential to
make the tests useful as a repair vehicle. The test phase is considered
the basic funetional entity whose predesigned sequence must be main-
tained. In some cases, tests may be deleted from a phase during simula-
tion, but the order of remaining tests is preserved. During test evalua-
tion, phase ordering is not essential. How or when a fault is detected
is of little consequence at this stage. Functional phase ordering assumes
greater importance when data are collected to support trouble loca-
tion dictionaries. Also, tests excluded from earlier stages of simulation
are included here wherever possible.

3.5 Fault selection

The 1A Processor uses conventional TTL integrated circuits for
logic function implementation. Discrete eircuitry augments this logic
where required. The major subsystems use LAMP to simulate
“stuck-at” (input open, output stuck at 0 and at 1) logical faults on
TTL gates. Shorted fault simulation has, to date, not been used at the
unit level. The restriction to stuck-at fault simulation is an engineering
decision. In an actual circuit, the possible failure modes are much more
extensive, including not only lead shorts but also timing changes,
voltage changes, intermittents, ete. It is assumed that the majority
of these faults will behave as stuck-at faults for a portion of the tests.
Experience with previous electronic switching systems has shown this
assumption to have validity.

Since there are several hundred thousand possible stuck-at faults in
1A Processor subsystems, the fault selection process must be facilitated
by various options available in LAMP. Depending upon application,
faults are selected on an individual basis by gate name, by cireuit pack,
or to a certain extent by hardware function.
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When detection information is being sought, random sampling is
used. A sufficiently large random sample has been found to predict
detection levels accurately. According to requirements, samples are
selected on a uniform, localized, or stratified basis.

Several automatic fault administration options in LAMP have re-
duced 1A Processor simulation costs significantly. Early termination
is used extensively during test evaluation and enhancement. Under
this option, a fault is terminated (removed from simulation) after one
“hit,” or detection. Typically, this option saves from 50 to 75 percent
of simulation time. Fault collapsing removes n — 1 out of n logically
equivalent faults from the fault set being simulated. For example, if
five faults cause the same effect upon a logic circuit, LAMP simulates
one of the five. Typically, this option reduces the fault set by 25 to 50
percent. Undetectable fault elimination, which removes faults such as
those on unused gates, reduces fault sets up to 10 percent.

Even after every attempt to prune the fault set has been exhausted,
it is still necessary to form fault partitions for typical large unit simula-
tion runs. The degree of partitioning necessary depends upon the size
of the unit, the tests, the circuit topology, and the computer resources.
The primary factor influencing fault partitioning is the available com-
puter main memory. Using an IBM 360/67, typical fault sets are in the
3000- to 6000-fault range. Using an IBM 370/168, scts as large as
30,000 faults have been simulated.

On the other hand, test partitioning (the smallest partition being a
phase) is primarily influenced by simulation time limits. Some par-
titions may require 1 or 2 hours of processor time.

For protection, the LAMP CHKPOINT/ RESTART facility is used
to permit rollback in the event of a computer, simulator, or procedural
failure.*

3.6 Simulation strategy

An interactive simulation procedure is used in the 1A Processor for
test enhancement. A random sample of faults is selected and simulated
with the diagnostic tests. The results are analyzed to reveal undetected
faults for which additional tests are designed. A new sample is then
selected, consisting of the previous undetected faults plus an additional
random sample, and the process is repeated. The size of a fault sample
is generally larger than the minimum required to predict detection
levels. This increases the probability of revealing classes of undetected
faults. Ultimately, large classes are eliminated, and a point of diminish-

LAMP: SWITCHING-SYSTEM DEVELOPMENT 1549



PASS—1 - PASS—2—m=
Ty To T3 Ty Ti-a Ti
Fy
Fa -\‘
F3 RV T T T
EEEN NAENNN
! ! ATP'S .
. - SONS
S NNEENNE
Fi-2 R\ F’, = NEW FAULT PARTITIONS
Fiy o T = NEW TEST PARTITIONS
o
Fi NN )

F, = ith FAULT PARTITION
T, = ith TEST PARTITION

Fig. 5—Two-pass diagonal simulation.

ing returns is reached. At this stage, complete fault detection informa-
tion is secured by simulating all remaining faults with the complete set
of tests.

Selection of several fault partitions (such as a random sample di-
vided into four parts) that must be simulated against many phases, a
phase at a time, requires the execution of many successive simulation
runs. The most obvious way to execute these runs is to simulate the
various combinations of fault and test partitions in succession. This
approach does not prove efficient, and significant cost reductions are
possible through an alternate strategy called ‘“two-pass diagonal
simulation.” Figure 5 is an illustration of this method. In the ideal
situation, ¢« mutually exclusive fault partitions and 7 test partitions are
selected. Each fault partition is chosen in the area of circuitry that a
corresponding test partition is designed to exercise. This correspon-
dence significantly increases the probability of fault detection per
second of processing time. Pass 1 simulation then consists of 7 runs,
not 4*. Early termination is used to remove detected faults prior to
pass 2. In pass 2, undetected faults are collected and repartitioned into
a smaller set of 7 runs, and all combinations of partitions are simulated.
The effectiveness of this method lies in the fact that, for a minimum of
resources, the great majority of faults are detected in pass 1. From a
practical point of view, mutually exclusive fault sets with clear test
associations are hard to produce. Instead, overlapping fault partitions
are usually selected. Pictorially, this means that, in Fig. 5, regions off
the major diagonal would be lightly shaded. This reduces slightly the
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efficiency of the method, but the savings are still significant. Results
have shown that tightly connected circuits benefit least from this tech-
nique because the concept of localized fault detection tends to break
down.

The method just described is used primarily for simulation where
detection information is being sought. In other applications such as
data collection for trouble location dictionaries, the procedure of Fig. 5
is not used since it produces incomplete fault behavior information.
In such cases, the simple strategy of simulating all fault and test parti-
tions may be utilized with corresponding CPU time increases.

3.7 Experience

A composite LAMP model of the 1A Processor call/program store
was constructed to support design evaluation and diagnostic develop-
ment. Figure 6 is a block diagram showing interrelations of distinct
portions of this model.

The model contains approximately 10,000 LAMP gates. This count
is about 40 percent higher than the real gate count because of attendant
logic controlling bus interaction and specially modeled ‘‘nonlogic”
circuitry. This model was verified in the manner described in Section
II. A preliminary diagnostic was designed consisting mainly of func-
tional exercise tests, which translated into about 3000 LAMP input

OUTPUT GATING CONTROL
| DATA OUTPUT
Ih’zm. . PS/CS ! BITS
VECTORS TIMED CONTROLLER TIMED (26 FOR CS)
INPUTS OUTPUTS (52 FOR PS)
\ CIRCUIT |
UNDER TEST
INPUT (B Bl | OUTPUT
BUS BUS
TIMING TRAPPING
MODEL MODEL
“A" — ACCESS
INTERFACE
CORE
B — ACCESS MODULE I
INTERFACE
CORE
re—=  MODULE I

Fig. 6—Program /call store lamp model.
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Table | — Program store simulation data

Statistic 15,000 Faults 580-Fault Sample
Number Detected * 10,400 400
Number Race Faults 2200 83
Number Oscillation Faults 80 3
Detection with Races Removed 819, 809,
Detection Estimate Following First 909% 909,
Test Enhancement Iteration
Estimate of Ultimate Detection Level 969, 969,

* Using initial set of tests.

vectors distributed over a number of phases. At the time, the inability
to model the core memories with LAMP gates necessitated omission of
several test phases.

A study was conducted using the model of Fig. 6 and these tests to
meet the following objectives:

(7) Determine the detection power of the tests.

(#7) Provide data to support test enhancement.
(i72) Evaluate proposed methods of data eollection for use with other
units (this was a pilot study for large unit fault simulation).

The model contained a set of 15,000 meaningful classical faults. As a
first experiment, this set was simulated using the two-pass diagonal
simulation method of the previous section. As a second experiment, a
random sample of 580 faults was selected and simulated against all
tests. In the first experiment, the number of faults in each partition
was chosen to optimize use of the host computer. For the random
sample, it was possible to simulate the 580 faults in one partition.
About eight partitions were selected for the 15,000-fault experiment,
each containing on the average 4000 faults. Significant overlapping of
fault partitions was necessary because the minimum faultable unit
was selected as a circuit pack (out of convenience) which often en-
compassed several functions.

About 24 CPU hours of IBM 360/67 computer time were required
to complete the above experiments. This included the time required to
restart several runs because of procedural errors and system crashes.
Through some additional runs, it was possible to show that diagonal
simulation saved about 50 percent of the CPU time that would have
been required to simulate all tests versus all faults.

Table I contains some simulation results and estimates for the two
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experiments. It is important to emphasize the fact that the tests were
an initial cut used to support early factory testing of frames. The
resulting detection level of 81 percent was about as expected at this
stage of design. The most significant result was the relatively large
number of race faults encountered. The LOGIC simulator® was used
for the study to save computer time. This resulted in race faults (those
causing indeterminate gate or output states) and oscillation faults
(those leading to circuit oscillation) being removed during simulation
when encountered. Subsequent studies using the FAULT simulator®
showed that most race faults were in reality noncritical races that did
not cause indeterminate output states. Furthermore, the race faults
were actually detected at about the same level as normal faults. In
Table I, it was, therefore, reasonable to remove them from the sample
in computing the actual detection level.

Oscillation faults are a serious problem that demand careful study.
They potentially jeopardize system operation by causing interference
with other units on the system buses. Although such faults would prob-
ably be detected in the real system, they were not considered as such
in Table I.

The undetected faults in the random sample were carefully analyzed
and led to some interesting results. Fourteen major classes of unde-
teeted faults (with respect to the 15,000 fault sets) were categorized.
In most cases, these classes consist of similar faults on repetitive func-
tions, such as successive bits of a register, which require a few tests for
detection. In some wases, other faults were revealed that implied the
design of a class of new tests. Several one-of-a-kind faults, each requir-
ing unique tests, were also revealed by the analysis. About 2 percent of
the faults were undetectable for various reasons. Sixty percent of the
faults were associated with operational logic, and the rest with main-
tenance circuitry.

It is estimated in Table I that new tests designed because of the
results of the random sample analysis will reduce the undetected fault
set to about 10 percent. It is also estimated that, through the use of
LAMP in this iterative process, no more than three iterations will be
required to achieve an ultimate detection level of 96 percent of the
classical faults.

Resolution of the remaining 4 percent, which are truly undetectable,
pose a problem. Some represent true circuit redundancies (in the
simplest case, a single gate output feeding a gate twice). Others, more
subtle, reside in circuitry used to improve noise or electrical margins.
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These might be detected under worst-case conditions by existing tests.
A third class deals with system constraints (inputs constrained not to
assume certain state combinations).

It is impractical to consider complete removal of these faults through
design changes. In any event, LAMP has done its job by categorizing
these faults. Maintenance information can at least be provided to help
deal with the possibility of their existence throughout the life of the
system.

IV. CONCLUSION

When LAMP was first introduced, it received almost immediate
acceptance and support from ecircuit and diagnostic program design
groups, although many growing pains were involved with its use. On
countless occasions, the user community taxed both LAMP and its
host computer resources to their limits. In response to this, LAMP has
grown and matured, making significant improvements in capacity,
speed, and capability.

The use of LAMP to verify the paper design of 1A Processor sub-
systems significantly reduced laboratory debugging intervals and pro-
vided major cost reductions. Logic design errors were located and cor-
rected prior to the construction of initial hardware. In association with
this, the “first iteration” of diagnostic design, the debugging of func-
tional tests using LAMP simulation, was completed prior to the avail-
ability of system laboratories. These tests were then used to test the
frames in the factory environment.

The availability of interactive LAMP has been a significant aspect
of design verification. The option to freeze the state of a logic simula-
tion in order to examine internal nodes has proved so powerful that
circuit designers have sometimes preferred this facility to the actual
unit as a debugging tool.

The LAMP fault simulator has been essential to the development
of complete circuit pack test vectors for the 1A Processor. The exten-
sion of fault simulation to large subsystems is just beginning. Initial
fault simulation studies using the 1A Processor program/call store are
encouraging. Iterative test enhancement using LAMP will insure the
detection or classification (as to reason for not being detected) of every
stuck-at logical fault. This is of primary importance because of the
very stringent maintenance requirements of the 1A Processor.

In the future, the trend toward higher scales of logic integration will
increase the use of LAMP for design verification and factory test
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development. The use of LAMP as a breadboard will become a prac-
tical necessity.
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