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Theory of the Single-Material Fiber

By D. MARCUSE
(Manuscript received March 6, 1974)

The term “single-material fiber” describes a dielectric optical waveguide
made of only one type of glass. The theory of this waveguide is simplified
by placing the structure between two perfectly conducting planes that have
very little influence on the properties of the low-order modes.

The field distribution and propagation constant of the lowest-order mode
are investigated and compared to an approximate theory.

I. INTRODUCTION

A dielectric optical waveguide made entirely of one type of material
is called a ‘“‘single-material fiber.”! Figure 1 shows such a structure
schematically. It may be regarded as a rectangular dielectric wave-
guide supported by two infinitely extended slabs made of the same
material. Such a structure has been shown to be capable of supporting
modes that are concentrated near the enlarged section of the wave-
guide and that do not lose power by energy seepage into the slabs.’?
Single-material fibers are usually made of pure fused silica. Since no
other material is needed to form a waveguide, the low-loss properties
of pure fused silica can be fully utilized.?

The single-material fiber has been described by means of an approxi-
mate theory by Marcatili.! The theory presented here serves the pur-
poses of proving that truly guided modes do indeed exist in single-
material fibers and of providing more precise solutions for comparison
with the approximate theory.

An analysis of the guided modes of the single-material fiber is pre-
sented in this paper. The mode field is expressed as a superposition of
the guided modes as well as the radiation modes of the two types of
slabs. The enlarged region, henceforth called the core, can be regarded
as a slab joined by narrower support slabs on either side. Since the
radiation modes of the slabs have a continuous spectrum of eigen-
values*® (propagation constants), their contribution to the total field
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| Fig. 1—Single-material fiber showing the rectangular core attached to its support
slab.

consists of an integral that must be approximated by a sum for pur-
poses of numerical analysis. In addition, the mathematical expression
describing the guided and radiation modes are different so that the
analysis becomes rather complex.

To simplify the analysis, it is convenient to consider the single-
material fiber enclosed between two perfectly conducting planes,
as shown in Fig. 2. Since the fields of the guided modes of the slabs,
and hence the field of the guided mode of the fiber, are very tightly
confined near the dielectric structure, the presence of the perfectly
conducting planes does not appreciably influence the shape of hori-
zontally polarized fields. However, the simplification of the analysis is
considerable, since the modes that correspond to the guided modes of
the open slab and the waveguide modes of the parallel plate system
(corresponding to the radiation modes of the open slab) are now de-
scribed by one analytical expression and belong to a system of discrete
eigenvalues. There is, therefore, no need to worry about a suitable
approximation to the integral over the radiation modes of the slabs.
Vertically polarized fields (polarized in the y-direction) are strongly
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Fig. 2—For our analysis, the single-material fiber is placed between two perfectly
conducting planes.
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influenced by the presence of the metal plates, since the normal field
components reach the metal plates with maximum intensity. For this
reason, we limit the study of the single-material fiber to horizontally
polarized modes. Vertically polarized modes could be treated if the
perfectly conducting planes were replaced by magnetic short circuits.
(An explanation of the negligible influence of the perfect conductors is
given in the appendix.)

After formulating the exact solution to our problem, we present
numerical approximations for the field distributions and the solution
of the eigenvalue equation. The theory is compared to an approximate
analysis.

Il. CALCULATION OF THE MODES OF THE SINGLE-MATERIAL FIBER

The electric and magnetic fields of the modes of the single-material
fiber are expressed as

E(i) = i Cl(ri)af) (1)

v=1
and
H® = i chgel, (2)
r=1
The script symbols indicate modes of the slabs. The superscript ¢
assumes the values 1 and 2. Value 1 indicates modes of the wider slab
that forms the core of the single-material fiber, while value 2 indicates
the modes of the narrower supporting slabs.
The modes in the core region are those of a metallic parallel plate
waveguide. These modes can be designated as TE modes with §” = 0
and TM modes with 3¢/ = 0. We have for the TE modes in region 1

8P =0 (3)
and
1y — A“ . 1 —i8z
e = = cos (ko) sin (ky,y)e 8. (4)
Wit
We use odd integers, » = 1, 3, - - -, to label these modes. In addition

to the sine and cosine functions appearing in (4) we could also use the
other three possible combinations. We restrict ourselves to the modes
shown here, thus limiting ourselves to the study of fiber modes of a
certain symmetry. All other modes can be obtained similarly.

The other field components can be obtained from & and 3" by
differentiation (see, for example, page 13 of Ref. 4 or page 51 of Ref. 5).
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The parameters appearing in (4) are related as

nkt = k2, + k2, + B, (5)
with
2
k=wmm=§- (6)

The refractive index of the single-material fiber is designated by n and
the refractive index of the medium outside the fiber is taken to be unity.
The angular frequency is w, and ¢ and po are the dielectric permittivity
and the magnetic permeability of vacuum.

The TM modes are labeled by even integers, v = 2, 4, - - -, and are
obtained from the field components

&) = B: gin (kzuz) cos (ky.y)e (7
weEp

and
D =0. (8)

TE and TM modes must satisfy the boundary conditions that 8% and
&%) vanish at ¥ = =d. These conditions are met if we use
™
kb’v = (2}‘-# - 1) é—d (9)
Equations (5) and (9) are the same for TE modes (odd values of »)
and TM modes (even values of »). The integers u, assume the values

p, =1 for v=1,2

wy =2 for v=3,4 (10)
= 3 for v = 9,6
ete.

The TE and TM modes are mutually orthogonal. Their amplitude co-
efficients can be related to the amount of power in the core region by
means of the equation

b d
P = %[ dz [ dy(s, X 0. (11)
—b —d
The asterisk indicates complex conjugation, and the subscript z labels
the z component of the vector. From (3), (4), and (11) we obtain
2wpy(ky, + k3,)2P i

B (0, + Kb + (8 — k) 2=t (1)

4, =
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From (7), (8), and (11) follows also
2‘-’-’50(}639 + k:v)zp 4

B, =

It is apparent from (5) and (9) that k%, can assume positive as well as
negative values.

We choose P equal to the unit of power. With this normalization,
|¢{”|? appearing in (1) and (2) measure directly the power carried by
each mode.

Next, we turn to the modes of the narrower support slabs. Since the
perfectly conducting planes do not touch the support slabs, their
modes are more complicated. Strictly speaking, we do not have TE or
TM modes with reference to the z direction. However, if we refer the
labels TE or TM to the direction of propagation of the modes in the
z-2z plane, we do indeed have transverse electric and transverse
magnetic modes. Used in this sense, we obtain the following z com-
ponents of the TE modes of the support slabs:

Creio=Usl=8 cos (g,,y)e "5 ly] =t

6D = ] — COS ayd o igey(lal—b)

" sin [Pv(d - t)]
X sin[p(lyl —d)Je® =yl =d (14)

and
[_ouwB O e—iver(21-b) g —ifz <
—— C,e sin (ay.y)e lyl =t
1oz wpo
2 =1 0B Yy sin oyt

g P wR p—ioz(la|—b)
tonwpe | Y| cos p(d — f) €
| X cos [p,(|y| — d)Je % t=|y| =d. (15)

For TE modes, we have &5 = 0.
Maxwell’s equations are satisfied if the parameters appearing in
these field expressions satisfy the following relations:

nk? = o2, + oo, + 7 (16)

and
k= o + ol + B (17)

We again use odd integers » to label the TE modes.

The field expressions satisfy the condition of vanishing tangential
electric fields at the perfectly conducting planes. To satisfy the bound-
ary conditions at the surface of the slab, the 2 dependence of the field
expressions must be identical inside as well as outside the slab. For
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this reason, the parameter o, is common to the fields for t = |y| and
t = |y| = d. Since the fields must also satisfy boundary conditions
along the planes x = =£b for all values of z, the parameter 8 must be
the same for all field expressions, where 3 is the propagation constant
for the mode of the single-material fiber that is yet to be determined.

The requirement of continuity of the field components 8%, 8%,
302 and 3082 at y = =+t leads to the eigenvalue equation

tan a,,t = :—' cot [p,(d — t)]. (18)
v

Equation (18) determines the allowed values of ¢, and p,, since ac-
cording to (16) and (17) we have

i = o3, — (n% — 1)k2 (19)

Although 2, is always positive, p2 can be positive as well as negative.
Modes with negative values of p? correspond to the guided modes of an
open slab. For negative values of p?, the cotangent function on the
right-hand side of (18) becomes a hyperbolic cotangent function that
approaches unity for large values of its argument. The eigenvalue equa-
tion (18) is thus identical [for large values of |p,|(d — £)] to the eigen-
value equation (8.3-16) on page 308 of Ref. 4 for even TE modes
of the slab waveguide.

Modes with positive values of p2 correspond to the radiation modes
of the open slab. However, instead of the continuous spectrum of
radiation modes,*® we now have a discrete spectrum of modes that
approach the modes of the metallic parallel plate waveguide in the
limit of vanishing slab thickness 2¢. The guided as well as the radiation
modes of the narrow support slabs are thus represented by the same
analytical expressions (14) and (15). The presence of the perfectly
conducting planes has the added advantage of causing the mode spec-
trum to be discrete.

The parameter o2, can also be positive as well as negative. Positive
values of o2, correspond to real values of ¢,,, so that the mode fields
(14) and (15) represent traveling waves that carry power away from
the core region into the slab. Coupling the modes in the core region and
the slab regions thus results in a leaky wave. It is clear that we obtain
guided single-material fiber modes only for negative values of ¢%,. We
see from (16) that all ¢2, are negative if ¢2; of the lowest-order mode is
negative, because the values of ¢,, increase with increasing mode
number. It is thus immediately apparent that lossless guided modes of
the single-material fiber are indeed possible. Neither the guided modes
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of the slab (those tightly confined to the slab region) nor the ‘“un-
guided” modes, which correspond to the radiation modes of the open
slab, carry away power; all decay exponentially in z direction. This
argument is not changed when we let the metallic plates' move to
infinity so that we obtain a truly free single-material fiber. The single-
material fiber is thus seen able to support guided modes whose fields
are confined to the vicinity of the fiber core. The existence of these
guided modes is contingent on sufficiently large values of 8. Whether
such solution with large 8 values really exist depends on the solutions
that we must yet derive of the eigenvalue equation for 8. However,
even at this stage we can state that guided modes that do not suffer
radiation losses are possible at least in principle.

Using (11), (14), and (15) we can again relate the amplitude co-
efficient to the power unit P:

dupo| 4y |?P :
BE + )+ [coF /s [p(@ — DI} @ —10) - (20)
— (n? — 1)k?sin (20,,t)/20,.6%|

The TM modes of the support slabs are labeled by even integers »
and follow from their z components:

’Dyeﬁiwntlrl—b) cos (o-yyy)e—‘.al Iyl é t
@ _ ) _p o8t i (z-b)
=P e -01°
X sin [p,(|y| — d)Je® 1= |yl =d, (21)

L

’1:0‘ nik2 , . i
w:t@ﬂ' D ,eivar(l21=8) gip (o'y,y)e—‘ﬂz [y{ st
0 vy
2) — ¥ 2]-2
3D = d4g.nk sin ¢y,t )

witoBoy, " cos [Pv(d - t)] |y|
X cos[p,(y| —d)]e® t= [yl =d (22

N

For TM modes we have 32 = 0.
The parameters o.,, o,,, and p, are again related by (16), (17), and
(19). The eigenvalue equation for TM modes is

tan ot = l %“'—” cot [p,(d — ©)]. (23)

For large imaginary values of p,(d — {), (23) becomes the eigenvalue
equation (8.3-45), page 313 of Ref. 4, for odd TM modes of the free
slab.
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Finally, we have

dwpoBoy, | o2y | i
21,2 32 2 2 sin? "‘_._Wt —
D, = {"RE F )i+ e @ -] @ Y (24)
+ (n? — 1)k? sin 20yt
ZO'WPE

Now we have written down the field expressions for the mode fields
that must be substituted into the series expansions (1) and (2) for the
mode of the single-material fiber. It remains to match the field in the
core of the single-material fiber to the field in the regions of the support
slab. We need to require continuity of E,, E,, H,, and H, only along
the line z = b and 0 < y < d, since the boundary conditions in the
remaining three quadrants are satisfied for reasons of symmetry. Since
the numerical analysis can handle only a finite number of equations,
we require continuity of the tangential field components only at a
finite number of points. Adjusting the size of the series expansion to
the number of matching points, we obtain a finite, homogeneous equa-
tion system for the determination of the expansion coefficients c{’.
This equation system can only have a solution if the determinant
vanishes. The condition of vanishing system determinant provides
the eigenvalue equation for the propagation constant 8 of the single-
material fiber.

lll. SPECIAL CASES AND APPROXIMATE SOLUTIONS

In the limit { = 0, an exact solution of the guided-mode problem is
easily obtained. Since, in this case, the distributions of the fields in the
two regions have the same y dependence, the boundary conditions
along the plane z = +b can be satisfied without resorting to the
series expansions (1) and (2). Using the field expressions (3), (4), (7),
(8), (14), (15), (21), and (22) and requiring continuity of E,, E,, H,,
and H, at = = b leads to the eigenvalue equations

kz

tan kb = — = (25)
10
or
tan k.b = n? %f- (26)
For guided modes we have
toz = 17, (27)

with real positive 7.
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Equation (25) is the eigenvalue equation for odd TE modes of a
slab waveguide, while (26) is the eigenvalue equation for even TM
modes of the slab.* When the amplitude coefficients of the superposi-
tions of the TE and TM modes (3), (4), (7), and (8) (that are deter-
mined with the help of the boundary conditions) are substituted into
the field expressions, we obtain for the field in the fiber core belonging
to (25)

E, = — ﬁ'l;: F sin (k.x) cos (k,y)e itz lz] =b (28)
and
H, = £ cos (k.x) sin (k,y)e &= |z] = 0. (29)
Who

For this mode we have E, = (. Viewing this field from the boundary
of the slab, x = b, we see that the normal electric field component
vanishes. This is typical for TE modes of the slab waveguide so that it
is not surprising that the propagation constant of this mode is deter-
mined by an eigenvalue equation of the TE type.
The mode belonging to (26) has the following z components:
E. = X Gsin (k) cos k)™ |z] b (30)
n2k,k

and

H, = —G—— cos (k.z) sin (k,y)e |z| = 0. (31)
WHo

This mode has H. = 0. With respect to the surface z = b, it is indeed
a TM mode.

For simplicity, the fields outside the core are not stated. However,
a good approximation to these field expressions is obtained by using
(21) and (22) to extend the field (28) and (29) outside the core and
similarly by using (14) and (15) with the core fields (30) and (31).

For ¢ # 0, the mode field of the single-material fiber can only be
described by an infinite series of modes. However, we find a crude
approximation by using only the first two terms in this series expansion
and obtain an eigenvalue equation by requiring that a certain wave
impedance be matched at the interface z = b. We stated earlier that
only those modes of our structure with vanishing normal field compo-
nents at the metallic planes resemble modes of the true single-material
fiber. The mode field (28) and (29) with E, = 0 has a strong normal
component of the electric field. We thus limit ourselves to the hori-
zontally polarized field and use (30) and (31) as a crude approxima-
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tion. Note that the field (30) and (31) consists of a superposition of
one TE mode [egs. (3) and (4)] and one TM mode [egs. (7) and (8)].
The wave impedance,

Ea _ 7:“’#0’5::

o~ e

tan kb, (32)

obtained from (30) and (31) does not depend on the y coordinate.
Similarly, we use (14) and (15) to form

E, WOz
H - k- (33)
which is also independent of y. Since the tangential field components
must be continuous at the boundary =z = b between the two regions,
we require that (32) be equal to (33), obtaining the following approxi-
mate eigenvalue equation for the horizontally polarized modes (of only
a certain special symmetry) of the single-material fiber:

io, nk?

tan k:b = k—zm'

(34)

The parameter o, must be obtained as the solution of the eigenvalue
equation (18). In the limit ¢ = 0, (34) should reduce to (26). To see
that the correct limit is obtained, we use (19) to write

n2k? — gf = k* — p2 (35)
For t = 0, we obtain from (18)

p=(u—1) g5 (36)

For small values of the integer p and kd 3> 1, we have p < k so that
(26) and (34) become indeed approximately the same. We do not get
exact agreement, since we approximated the field outside the core by
(14) and (15) instead of using the exact field expressions. We see that
our eigenvalue equation (34) is a good approximation in the two limit-
ing cases, { — 0 and ¢ — d. Once ¢, has been determined from (18) we

find n = do. from
7= o — k2 — ki, (37)

and (34) with the help of (9). The propagation constant 8 can then be
obtained from (5) or (16).
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IV. DISCUSSION AND NUMERICAL EXAMPLES

Mareatili has shown by an approximate analysis' that the single-
material fiber can be made to support only a single guided mode, even
if its dimensions are large compared to the wavelength, if the ratio
(w/4)(bd/t?) approaches unity. However, for large values of kd and
large values of bd/#?, the single-material fiber supports a large number
of guided modes.

We are limiting our discussion to the lowest-order guided mode.
Since the properties of the single-material fiber can be obtained ade-
quately from the approximate solutions, it is our principal purpose to
show how well the approximate solution (34) and Marcatili’s approxi-
mate theory work, and to study the field distributions of the exact
solution that cannot be obtained from the approximate analysis. As
indicated earlier, we limit the discussion to the modes with horizontal
polarizations (£, = 0), since the vertically polarized modes (£, = 0)
are very strongly influenced by the presence of the perfectly conduct-
ing planes that were used only to simplify the analysis.* The analysis
is further restricted to modes whose E, component is a symmetric func-
tion in both z and y. The modes with other symmetries can be obtained
similarly by using slab waveguide modes of the appropriate symmetries.

All the numerical examples shown here were computed for the
following choice of parameters:

d/x = b/x = 5

n = 1.5. (38)

The boundary conditions at the plane x = b were satisfied by matching
the fields at 10 points evenly distributed between y/d = 0.05 and
y/d = 0.95. As a consequence, the field expansion uses 20 modes in
each region, 10 TE modes and 10 TM modes. Adequate accuracy was
obtained this way. However, an expansion using only 6 points to
match the fields did not appear sufficiently accurate.

The computer program was written to solve, first, the eigenvalue
equations (18) and (23) by an iterative search procedure. Next, the
computer was instructed to use a large trial value for 8 and compute
the normalized field amplitudes (12), (13), (20), and (24) as well as the
matrix elements of the equations system resulting from the boundary
conditions at the N matching points. Next, the system determinant
was examined and 8 was decreased until the determinant changed its

* The case of vertically polarized modes can be treated by replacing the electrical
short-circuit planes with magnetic short cireuits.
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sign. By narrowing the increments for 8 successively and oscillating
around the point where the sign change of the determinant occurred,
an approximate solution for 8 was determined. Since the order of mag-
nitude of the determinant was not known a priori, no attempt was
made to reduce the value of the determinant below a certain limit.
Once an approximate eigenvalue had been found, the coefficient c¢{” was
set equal to unity, and the first equation of the system was omitted.
The remaining equation system was solved by inverting the reduced
coefficient matrix. The values of the expansion coefficients were finally
used to calculate the magnitude and direction of the electric field in a
grid of preselected points in the z—y plane.

Figures 3 to 6 compare the magnitude of the electric field vector of
the lowest-order mode of the single-material fiber with the magnitude
of the field of the rectangular waveguide if ¢t/d = 0. Figure 3 applies to
a single-material fiber with the dimensions given by (38) and with
t/d = 0.32. The magnitude of the field intensity is plotted as a func-
tion of x/b for different values of y/d. It is apparent that the field
intensity decreases with increasing values of y. The field is strongest on
axis and vanishes at y = d. In the absence of metallic planes, the field
would not be zero at ¥ = d, but would decrease to a very small value.
The solid curves indicate the field of the single-material fiber, while the
broken curves apply to the rectangular waveguide (¢ = 0). In the
region of the guide where the support slab is present, y/d < 0.32, the
field of the single-material fiber reaches out much further than the field
of the corresponding rectangular waveguide, since it penetrates into
the slab. For y/d > 0.32, the field shape of the single-material fiber
has become identical with the field distribution of the rectangular
waveguide.

Figure 4 shows the field distribution as a function of y/d for four
different values of z/d. The solid curves describe again the field of the
single-material fiber, while the broken curves belong to the rectangular
waveguide. In the y direction, both fields vanish at ¥ = d but, near
the edge of the single-material fiber, its field intensity is quite different
from the rectangular waveguide field. We have plotted the ratio of
the field intensity to the maximum value (the value that the field
assumes for each value of z/d) at y/d = 0. Far from the edge of the
core, the single-material fiber field is identical to the field of the rec-
tangular waveguide. However, near the edge, at z/b = 1, the field is
strong in the region 0 < y/d < 0.32, since it is allowed to penetrate
into the support slab. But in the range 0.32 < y/d < 1, where it en-
counters the dielectric interface, it is relatively much weaker. The
field of the rectangular waveguide is likewise weak near the dielectric
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8} HORIZONTAL POLARIZATION
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Fig. 3—Magnitude of the electric field vector shown as a function of the normalized
horizontal dimension z/b. Solid curves describe the single-material fiber with
t/d = 0.32, and broken curves apply to the fiber with t/d = 0.

interface; it appears strong only because of our normalization with
respect to the maximum field intensity at y/d = 0. For x/b > 1, the
rectangular waveguide field is no longer plotted since it decays rapidly
to insignificant values outside the waveguide core. The single-material
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Fig. 4—Magnitude of the electric field vector relative to its maximum value at
y = 0 as a function of the normalized vertical dimension y/d. Solid and broken
curves describe the single-material fiber with {/d = 0.32 and t/d = 0.

fiber field shows the distribution typical of the lowest-order mode in
the support slab.

Figures 5 and 6 show the same behavior for a single-material fiber
with a much wider slab, ¢/d = 0.8. The field penetrates even further
into the support slab, as can be seen from Fig. 5. However, the field
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Fig. 5—Magnitude of the electric field vector shown as a function of the normalized
horizontal dimension z/b. Solid curves describe the single-material fiber with
t/d = 0.8, and the broken curves apply to the fiber with ¢/d = 0.

distribution in the vertical plane, shown in Fig. 6, is now much closer
to the field distribution in the core of the rectangular fiber.

Figures 7 and 8 show the mode spectra for the single-material fiber
with ¢/d = 0.32. Figure 7 presents the mode content of the field in the
core. Because of our normalization, the square of the mode amplitudes
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Fig. 6—Magnitude of the electric field vector relative to its maximum value at
y = 0 as a function of the normalized vertical dimension y/d. Solid and broken curves
describe the single-material fiber with ¢/d = 0.8 and t/d = 0.

¢V represents the relative power carried by each mode of the series
expansion (1) and (2). The broken vertical lines give the mode content
of the corresponding mode of the rectangular waveguide. It is remark-
able how nearly identical the mode amplitudes of the lowest-order TE
and TM modes are in either case. Note that the mode amplitudes of
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Fig. 7—Mode spectrum of the lowest-order single-material fiber mode inside its
core. The solid vertical lines describe a fiber with ¢/d = 0.32, the broken vertical
lines belong to the case t/d = 0.

the higher-order modes vanish because of the presence of the perfectly
conducting planes; without them, the rectangular waveguide modes
would also have to be represented by infinite-series expansions with a
very slight mixture of higher-order modes. The mode of the single-
material fiber consists of a mixture of the higher-order modes required

HORIZONTAL POLARIZATION
———1=0
0.10k t/d = 0.32
l‘h— —-GUIDED MODES — —+— — — — —RADIATION MODES— — — — —
0.08p—
Eﬂ.m—-
L
0.04—
0.02—
[ I T S U N T SR B B B
1] 2 4 6 8 10 12 14 16 18 20

Fig. 8—Mode spectrum of the lowest-order single-material fiber mode in the region
of its support slab with ¢/d = 0.32. The short vertical broken line represents the mode
content of the fiber with ¢ = 0.
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to produce the field distortions in Figs. 4 and 6. The rise of the mode
amplitudes for modes with » > 12 is not truly representative of the
actual mode content. If the mode number is varied in the numerical
approximation, it is found that, near the last mode, » = N, the mode
amplitudes always tend to assume increased values. The appearance
of the mode spectrum is thus somewhat dependent on the total num-
ber N of modes used in the series expansion. However, the distribution
of lower-order modes was found to be very similar for ¥ = 16 com-
pared to the spectrum shown in Fig. 7 for N = 20. Only the highest-
order modes appear with different amplitudes. When N = 12 was
used, a different mode spectrum and an implausible field distribution
was obtained, indicating insufficient accuracy.

Figure 8 shows the mode content of the field in the support slab. The
mode amplitudes are much smaller, since much less power is carried
outside the fiber core. The lowest-order TE mode is most prominent.
The short broken line at v = 1 represents the much weaker contribu-
tion of the rectangular waveguide (¢ = 0). For our model, the lowest-
order TM mode outside the core, » = 2, contributes slightly to the
mode field of the rectangular dielectric waveguide, but its amplitude
is too small to be visible on the scale of this figure. It is interesting
that the field of the single-material fiber in the region of the support
slab is represented to a very good approximation by the lowest-order
TE mode of the support slab. The modes » < 8 are guided slab modes
with imaginary values of p,; modes with » > 8 have real valued param-
eters p, corresponding to the radiation modes of open slabs.

Figure 9 is a plot of the direction of the electric field vector in the
vicinity of the corner of the dielectric material at /b = 1, y/d = 0.32.
Far from this corner, the field is horizontally polarized. It is remarkable
how little distortion is evident near the dielectric disecontinuity. There
is no peak in the field intensity at the sharp dielectric corner, and the
field direction is likewise almost unperturbed.

Finally, we present solutions of the eigenvalue equation (system
determinant = 0). Instead of plotting values for the propagation con-
stant 8, we present values for the relative effective width of the fiber
core. If the core boundary at x = b were a metal wall we would have

ks = (39)

T
20

for the lowest-order mode. The actual values of k. deviate from the
value (39) partly because the dielectric discontinuity at z = b is not
an electrical short circuit, and also because the field penetrates some
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Fig. 9—Short arrows indicate the direction of the electric field vector of the lowest-
order mode of the single-material fiber, with ¢/d = 0.32 near the corner of the dielec-
tric material where the support slab is attached to the core.

distance into the support slab. We use the actual value of k. to define
an effective core width

T (40)

The value of k. is obtained from the solution 8 of the eigenvalue equa-
tion with the help of (5) and (9)

The solid line in Fig. 10 represents the relative effective width of the
core for the lowest-order mode of the single-material fiber with the
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Fig. 10—Relative effective width of the core of the single-material fiber as a
function of the relative thickness of its support slab ¢/d for the lowest-order mode.
The solid line is the result of the numerieal solution of the complete theory; the
broken line was calculated from the solution of the approximate eigenvalue equation
(34) ; and the dash-dot line is the result of Mareatili’s theory.

dimensions stated in (38). This mode does not suffer a cutoff. It can
propagate without power outflow into the support slab for arbitrarily
small values of 1 — (¢/d). The computer program had difficulties solv-
ing the eigenvalue problem for t/d > 0.8; thus, the solid curve is not
continued beyond this point. The nonzero value of (b’ — b)/b at
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t/d = 0 represents the field penetration of the rectangular waveguide
mode outside the dielectric core.

The upper dotted line of Fig. 10 is the result of solving the approxi-
mate eigenvalue equation (34). For {/d near zero and near unity, the
approximation is excellent. The departure of the approximation in
the middle of the range is not surprising when we look at Fig. 4.
The approximate solution uses the field distribution represented by the
dotted line of Fig. 4, which is clearly a poor approximation of the
actual field distribution. In fact, it is surprising how good the approxi-
mate solution for (b’ — b)/b is, even in this case. Even though the
solid curve does not extend past t/d = 0.8, we can trust the dotted
curve in this region, since the actual field distribution becomes very
close to the approximate distribution. This is evident from a compari-
son of the solid and broken curves of Fig. 6.

The large error in the approximation in Fig. 10 causes only a very
slight error for 8. For ¢t/d = 0.32, we obtain from the solid curve of
Fig. 10 (b’ — b)/b = 0.1 corresponding to k. A = 0.2856 or Sx = 9.41043.
From the broken curve we obtain (b’ — b)/b = 0.24, kA = 0.2534 or
BN = 9.41135. The relative error in the 8 value is thus only Ag/8 = 0.01
percent.

The dash-dot curve shown in Fig. 10 is a plot of eq. (15) of Ref. 1.
This curve was plotted by using the following identification of the
symbols in Ref. 1 with our symbols: 7' = 2, W = 2b, and H = 2d.
The dash-dot curve of Fig. 10 shows clearly how remarkably accurate
Marecatili’s approximate theory describes the effective width and hence
the propagation constant of the single-material fiber mode. His ap-
proximation deviates more from the ‘“‘exact’ solution (given by the
solid curve) near t{/d = 0 and ¢/d = 1 than does the dotted curve.
The disagreement near ¢/d = 0 is caused by assuming that the field
must vanish at the boundary x = b of the rectangular waveguide.

V. CONCLUSIONS

We have studied the properties of the lowest-order mode of the
single-material fiber using a model that departs from the actual fiber
by the presence of two perfectly conducting planes shown in Fig. 2.
Horizontally polarized modes are not appreciably distorted by the
presence of these planes. In particular, we are confident that the influ-
ence of the support slab on the field distribution and propagation con-
stant of the single-material fiber mode is represented very accurately
by this model. The agreement of the model with metallic planes and
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the free single-material fiber becomes better for fibers with large values
of d/\.

By representing the field of the single-material fiber as a superposi-
tion of the modes of the dielectric slabs in the core region and in the
region of the supports, we find solutions by matching the boundary
conditions in the plane z = b at a finite number of points. We find that
matching along 10 points in the range 0 < y/d < 1 (requiring 20
modes in each region of the guide) provides satisfactory accuracy.

This study shows that the field of the single-material fiber in the
vicinity of the edge, at 2 = b, departs considerably from the field dis-
tribution that would result for ¢ = 0. However, for very narrow as well
as very wide support slabs, a simple approximation using only the two
lowest-order modes of the series expansion yields satisfactory results.
Our theory thus serves the purpose of clarifying the range of appli-
cability of approximate descriptions'? of the single-material fiber and
of inspiring confidence in the validity of such approximations.

In particular, it is our aim to show that Marcatili’s approximate
theory of the single-material fiber is indeed justified and yields very
good results compared to our more precise treatment.
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APPENDIX

It is claimed that the analysis presented in this paper is an almost
exact description of the single-material fiber, and yet the structure that
is analyzed differs from the actual single-material fiber by the presence
of the perfect metallic conductors attached to the fiber core, as shown
in Fig. 2. In defense of this procedure, two remarks may be made here.

The performance of the single-material fiber is dominated not by the
dielectric-air interface on the two sides at y = =d of the fiber core
but by the presence of the attached support slabs. The electromagnetic
fields of the single-material fiber modes extend much further into the
support slabs than they do into the air space outside the core, as shown
in Figs. 3 through 6. The dielectric-air boundary acts almost like an
electrical short circuit, so that the presence of actual short circuits
at the dielectric-air interface at y = =d has a very slight effect. In
particular, it is the radiation of power into the support slabs rather
than into the air space outside the core that signals the cutoff of the
guided modes. This behavior is deseribed correctly by our analysis.
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It is easy to estimate the field penetration into the air space above
and below the core in the absence of the perfect conductors. The field
outside the fiber is deseribed by the functional dependence exp(—vy).
The decay parameter v is defined as [see eqs. (1.2-14) and (1.3—44),

Ref. 57]: .
v = - - (3)]" (42)

With the numbers used in the numerical example, we obtain yA = 7.
This means that, at a distance of A/7 from the air-dielectric interface,
the field has decayed to 1/¢* (or 14 percent) of its power density at the
interface. Instead of having an effective electric short circuit at this
distance, the presence of the metallic planes moves the short circuit
a relative distance of 1.4 percent (in terms of the fiber diameter)
nearer to the fiber core. This small change of the electrical width of the
core has only a very slight effect on the field penetration into the
slabs, which is the most interesting feature of the single-material fiber.
Furthermore, this change can be taken into account by allowing the
value 2d of the modified fiber to be 3 percent larger than that of the
actual fiber.

The cutoff condition of the modes follows from the eigenvalue equa-
tion, which is the condition for the vanishing determinant of the equa-
tion system resulting from the continuity requirements for the tangen-
tial field components. At cutoff, the propagation constant 8 ceases to
have real solutions, but becomes complex. No analytical expression
can be given for the cutoff point. Its determination from the numerical
analysis is difficult. In this respect, the approximate theory proves to
be more powerful, since it is able to estimate the cutoff point.
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