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Theory of the Single-Material, Helicoidal Fiber
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(Manuscript received March 29, 1974)

The theory of propagation in a new single-material, single-mode, optical
fiber is given. The modes are of the whispering-gallery type, with the
propagation taking place along helicoidal paths close to the boundary of a
cylindrical dielectric rod. The beams are confined in the azimuthal direc-
tton in helicoidal ridges. It s shown that single-mode, low-loss operation
18 possible if the helix pervod is of the order of the rod cross-section area
divided by the wavelength and the ridge area is of the order of 1 percent of
the rod cross-section area for two channels. The rod is supported by heli-
cotdal wings that play a role in the mode-selection mechanism.

I. INTRODUCTION

The best-known single-mode optical fiber is the clad fiber. If the
difference in refractive index between core and cladding is small,
single-mode propagation can be achieved for core diameters that are
large compared with the wavelength. It is, however, desirable to use
just one material, such as quartz, that exhibits low impurity and scat-
tering losses. In a previous work,! we indicated that single-mode propa-
gation could be achieved in a single-material configuration that we
called a “helicoidal fiber.” Iigure 1 represents a more recent version
of this type of fiber.

To explain the mechanism of operation, let us consider first a cy-
lindrical dielectric rod with radius a = p. The refractive index of the rod
is perhaps n = 1.45 (quartz), and the surrounding medium is air. Waves
are guided along the rod boundary as shown in Fig. 2a. These so-called
“‘whispering-gallery modes” can be represented by rays repeatedly
reflected from the boundary because of total reflection. In the interior
of the rod, the modes are described by Bessel functions J,(kr)
X exp (ivg), where v is a large integer and kr is a large number of the
order of v. Because kr and » are both large and comparable to one
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Fig. 1—Open view of the single-material, helicoidal fiber for two optical channels.
The two optical beams propagate in the two ridges shown, with areas ¢ X 2d. The
helicoidal motion is essential to maintain confinement. High-order modes are not
confined. They radiate away to the envelope through the wings (only part of one is
shown). The ratio period/diameter is much larger than that shown in the figure.

another, the Bessel functions can be approximated by Airy functions.
The field is oscillatory from the rod boundary down to a slightly smaller
radius r, called the caustic (or turning point) radius. For radii smaller
than r,, the field decays exponentially. Thus, the field of whispering-
gallery modes elings tightly to the rod boundary. The distance between
the caustic and the boundary, which defines in some sense the ‘“thick-
ness” of the mode, is for the fundamental mode of the order of (A%a)?,
with A the wavelength in the medium and a the rod radius. For ex-
ample, if A = 1 yum and a is equal to 8 mm, the fundamental mode
thickness is of the order of 20 um. It increases with the mode num-
ber m, approximating as m! As m increases, the phase velocity in-
creases too.

These whispering-gallery modes can be generalized to take into
account a motion along the rod axis z. The combined rotation and axial
motion results in a helicoidal path that can be understood from simple
ray-optics considerations. The only significant difference from the
previous case is that the radius a of the rod should be replaced, in the
expression for the mode thickness, by the helix radius of curvature,
p = a/sin? 8, where § denotes the angle that the helix makes with the
rod axis. For example, if a is 80 um and # = 0.1 radian, the mode
thickness is the same as in the previous example, where a was assumed
to be 8000 um. If # is equal to zero, there is of course no confinement
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Fig. 2—(a) Whispering-gallery modes clinging to a circular boundary with effective
radius p (=a/sin? 8). The field (m = 0, 1, - - -) is described exactly by Bessel functions
and approximately by Airy funetions. (b) Cross section in a local r, £ plane.

near the rod boundary. Observation of helicoidal rays in optics has
been reported.?

Let us now assume that we have selected a convenient value for 6,
perhaps # = 2.5°, and that we wish to define one or more channels in
the azimuthal direction. This can be achieved with helicoidal sepa-
rators,! or ridges, as shown in Fig. 1, that follow the path of the desired
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whispering-gallery modes. It is clear, intuitively, that the optical power
will tend to remain in the ridges. As the mode number increases, either
in the azimuthal or radial direction, the modes occupy larger and
larger volumes and eventually “spill out’’ of the ridges. Because there
is maximum confinement in the ridge when 6 = r/2 and no confine-
ment at all when 8 = 0, it is plausible that only a single mode remains
confined in the ridge for a proper choice of §. The higher-order modes
radiate away from the ridge along the boundary. They can be ab-
sorbed easily without degrading the fundamental mode. In this paper,
we justify the above intuitive arguments and show that strong dis-
crimination against unwanted modes can indeed be obtained.

The first step of the calculation is to obtain the propagation con-
stants of whispering-gallery modes in circular cylinders in a con-
venient form. This is done in Section II. In Section I1I, we investigate
the case of helicoidal boundaries in the local mode approximation and
obtain the design parameters. In Section IV, the case of small ridges
is investigated with the help of a new perturbation method.

The single-material helicoidal fiber discussed in this paper can be
compared to the single-material ridge guide recently demonstrated?
and analyzed.*® These two single-material fibers have features in
common. The mode-selection mechanism rests on similar general
principles. It can be ascribed to a coupling between ridges carrying
trapped modes and two-dimensional substrates carrying radiation
modes.® In the case of the ridge guide, the slab constitutes the two-
dimensional substrate needed to ensure single-mode propagation. In
the case of the helicoidal fiber, the dielectric rod itself can be con-
sidered a two-dimensional mode sink because the whispering-gallery
modes that it guides have a restricted thickness in the radial direction,
as we have discussed before. In both cases, a good discrimination
against high-order modes should in principle be obtained by increasing
the distance between the absorbing elements and the ridges, because
these elements are coupled through the radiation field rather than
through evanescent waves.

The theory given in this paper is applicable to purely metallic heli-
coidal waveguides as well as to dielectric waveguides. The metallic
helicoidal waveguide is attractive as a low-loss, multichannel, single-
mode system for long-distance microwave communication. It can be
compared to the groove guide” shown in Fig. 4¢c. The metallic helicoidal
waveguide has the advantage that TEM modes are absent. In the
groove guide, any lack of symmetry between the two plates introduces
a large loss through coupling to the (slower) TEM modes. This is, in
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fact, also the reason for the superiority of the dielectric ridge guide!
over the metallic groove guide.’

Il. PROPAGATION OF WHISPERING-GALLERY MODES IN CYLINDRICAL
SURFACES
Let us consider a circular dieleetric cylinder with radius a. For E
modes, the ¢ and z components of the electric field have the form

E(r, ¢,2) = J,(ur/a) exp [i(v¢ + k.2], (1)

where
wt = (k* — kdad. (2)

Assuming that the discontinuity in refractive index is sufficiently
large, a condition well satisfied for quartz rods in air, the boundary

condition at r = a is
Jo(uw) =0, (3)

because, for the type of mode considered, the field tends to vanish at
the boundary. The zeros of J, are denoted un(v), m =0,1,2, ---.
We introduce new coordinates £, ¢ in place of y, # (see Fig. 1)

t=rcosf¢ —sinfz, @)
{=cosfz+ rsindg,

where
6 = tan™ (271/p), (5)

the quantity p, for ‘“‘period,” being for the moment an arbitrary con-
stant. The wave numbers TI';, T'; in the new coordinate system are
related to v, k. by

v=rcosfI';+ rsinf Ty, (6a)
k.= —sinfT; + cosfT;. (6b)

They are such that
e+ Il = vop + ka2 (6e)

The characteristic equations, (2) and (3), are now written, using
egs. (6),

—sindT; + cos 8 T'p)%a? + un(rcos 0y + rsin 8 Ty) = ka2 (7)
£ £

Equation (7) provides us with the desired relation between I'; and T';.
We wish to simplify this relation. Because we are interested in whisper-
ing-gallery modes corresponding to large values of », we can use the
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Table | — Values of b parameter in eq. (10)

m bm [3x(2m + 3/4)/2¥ 7t (JW.K.B.)
0 1.85575 1,841
1 3.24461 3.239
2 4.38167 4.379
3 5.387 5.385

following approximation for u,(v)?
Un(¥) = v + burl, (8)

where b,, is given in Table I. In the second column in Table I, the
J.W.K.B. approximation for b,, obtained from simple ray optics con-
siderations is given. As we can see, the error does not exceed 1 percent
even for small m.

We note further that a is not very different from r. Thus, we set
a = r + {,t < r. Because we are considering waves that do not depart
very much from the reference helicoidal path, T; is very close to k&, and
the transverse wave number I'; is small compared with I';. Neglecting
products of small quantities, (7) becomes

I = 1"? + ]_"% = sz]- -} 2t/p - 2bm(kp)vi:lx (9)

where we have introduced the reference helix curvature p = a/sin? 6.
The term 2¢/p expresses the fact that, at the reference radius r, the
phase velocity is smaller than at the boundary with radius a. The term
2bm(kp)~1 results from the radial variation of the field. The larger the
radial mode number m, the smaller the tangential wave number T.
Note that the system is approximately isotropic.

lll. HELICOIDAL BOUNDARY

In the previous section we have assumed that the boundary is a
circular cylinder with radius . We now assume that a is a function of
£, but that it remains independent of {. By letting a vary with £, we
generate a helicoidal surface. Azimuthal confinement of the whispering-
gallery beams can be expected for various well-shaped profiles a(£).
For simplicity, we assume here that a(£) = aq, a constant, for —d < ¢
< d, and a = r, where r denotes the reference radius, anywhere else
in the period. A slightly tapered transition region is assumed. Mode
mixing can therefore be neglected in the evaluation of the propagation
constants of the modesm = 0, 1, 2, - - -, A small amount of mode mix-
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ing is nevertheless needed for this mode-selection mechanism to
operate. 7

From (9), the wave numbers for the fundamental mode (m = 0)
and first-order mode (m = 1) in the ridge (unprimed number) and
outside the ridge (primed number) are, respectively,

I3 = k2[1 4 2t/p — 2by(kp)~1], (10a)
T3 = kL1 — 2bo(kp)=], (10b)
It = k1 + 2t/p — 2b1(kp)~1], (10c)
2, = k2[1 — 2by(kp)1]. (10d)

The axial wave numbers I'yy and Ty for the two modes 0 and 1 are
now obtained using the standard dielectric slab theory. If we normalize
the axial wave number Iy by defining

K* = (Tf — T§)/(T5 — Tg) (11)

and introduce the V parameter
V2= (T3 — I'd)ad?, (12)
we have, for the modes m = 0, an explicit relation between V and K,
V = {tan'[K(1 — K] + nr/2} (1 — K24, (13)
wheren = 0, 2, 4, -+ - correspond to even modes andn = 1, 3, -+ to

odd modes.* A similar relation holds for the modes m = 1, n = 0,
1,2 ---.

The axial wave numbers T, of these various modes m,n are plotted
in Fig. 3 as functions of the ridge width 2d, for A = 1 ym, n = 1.45
(quartz), a rod radius @ = 50 gm, and a ridge height ¢ = 3.5 um. We
have chosen 6 = 2.5° corresponding to a helix radius of curvature
p = 25 mm. Modes whose axial wave number is less than I'y (the wave
number of the fundamental mode outside the ridge) suffer radiation
losses.

This figure clearly shows that only one mode (m = 0, n = 0) is free
of radiation loss if 2d is less than 14 ym. For 2d = 14 pgm, the field of
the fundamental mode decays in azimuth by a factor of 1/e at a
distance

fo = (T — T3)~ = 6.3 um (14)

on either side of the ridge. For two channels, the “wings” holding the
* The mode number n should not be confused with the refractive index n.
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Fig. 3—Axial wave numbers T'tmn for various m and n modes (r and £ coordinates).
Radiation loss is suffered whenever Ty < I'y. The radiation zone is shaded. This
figure shows that single-mode propagation is possible if the ridge width 2d is less
than 14 gym (for Ao = 1 pm, n = 1.45,¢ = 3.5 um, @ = 50 um, and ¢ = 2.5°).

rod in Fig. 1 are located at a distance ra/2 = 80 um from the corruga-
tion. At that distance, the field has decayed by a factor of more than
10%. The fundamental mode therefore suffers negligible radiation loss
(bending losses are not considered here). If we set the condition that
£ be 15 of ma/4, we obtain the approximate condition 8 & A/a for
single-mode low-loss operation. More detailed relations are given at
the end of Section IV.

The local mode theory used in this section is expected to be appli-
cable when the ridge width 2d is large compared to the ridge height, ¢,
and large compared to the wavelength, . In the next section, we find
that a perturbation method applicable to small ridge areas (2 ¢d) leads
to almost identical conclusions.

IV. LINE PERTURBATION OF SURFACE WAVES

We give a general theory of the trapping of surface waves by rods
of small cross section. This theory is then applied to helicoidal ridges
of small cross section. |

Let us consider an isotropie surface, perhaps an inductive surface,
supporting a plane wave with wave number k. Let us introduce a di-
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Fig. 4—Various methods of introducing a line perturbation on a surface wave.
(a) Reactive (e.g., corrugated) surface perturbed by a dielectric rod. (b) TEM waves
perturbed by a dielectric slab. (c) “Groove guide.”” (d) Ridge guide considered in
this paper. The torsion of the helicoidal motion is not essential. The radius of curva-

(d)

ture p of the helix is the important parameter that determines mode selection.

electric rod of very small cross section parallel to this surface, some
distance away from it (Fig. 4a). Because the power carried by the plane
wave is infinite, a straightforward application of the conventional
perturbation method does not give any meaningful result. Therefore,
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we shall proceed the other way around. We start from the perturbed
state and assume that we know the propagation constant A > k. The
wave is in that case confined transversely with a decay rate (h? — k2)%.
We now “peel off’” the rod and evaluate the successive perturbations
until the perturbation resulting from the rod vanishes. By specifying
that h — k in that limit, the initial value of A is obtained.

For simplicity, this method is first explained for the case where
€ = €, the perturbed field being of the order of the unperturbed field.
Let ¢ be a parameter such that ¢ = 0 corresponds to the absence of the
rod and ¢ = 1 corresponds to the presence of the rod. Furthermore, o
is so chosen that, in the perturbation formula

dh/de = a(h? — k), (15)

« is a constant. This can be done because we have factored out a term
(h* — k*?¥ inversely proportional to the power carried by the mode.
(The distortion of the field in the close neighborhood of the rod does
not contribute significantly to the total power, because of the large
transverse extent of the field.) The ratio ¢ is essentially the ratio of the
present cross-section area of the perturbating rod to its original eross-
section area. Integrating eq. (15) from ¢ = 1 to ¢ = 0, we obtain

ﬁ "2 — )Mk = « (16)

or
h=Fkecosak(l — a?/2). (16b)

To clarify the significance of this result, let it be applied to a con-
figuration where the exact solution is known. Consider two parallel
perfectly conductive plates with spacing D carrying TEM modes, as
shown in Fig. 4b. If we introduce a dielectric slab with ¢ & ¢; and
width 2d, we obtain the so-called ‘‘H-guide” configuration proposed by
Tischer.® (Note, however, that we consider here the H modes rather
than the low-loss modes.) The parameter ¢ = y/d, where y is shown
in Fig. 4b, clearly satisfies the requirements set up above. The con-
ventional perturbation formula (see, for example, Ref. 5, Part II, eq.
(21), withE, ~E, H, ~H,E' = E, H' = —H) is

ah = 4o [(c — wrras / [E X H-as. (17
For our case, we obtain, taking into account the exp [ — (h? — k%)}|y| ]
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dependence of the field on y,
dh/do = (uo/eo)t(h* — k(e — eo)wd = a(h? — k). (18)
Thus the constant « is, from (18),
a = (n* — 1)kd, (19)

where €/¢; = n* Application of (16b) now gives the perturbed wave
number A
h = k[1 + 3(n? — 1)%24d%]. (20)

The exact solution to the problem, for small (n? — 1)kd, is well known
[see, for example, Ref. 5, Part II, footnote after eq. (11)]. We have,
with the approximation tan [(n? — 1)*d)] &~ (n? — 1)¥kd,

Bt — k2 = (n? — 1)%dd2. (21)

Equation (21) coincides with our perturbation result, (20), because
h ~ k. Having satisfied ourselves with the validity of our perturbation
technique, we apply it to a small wall perturbation. We assume that
the case of quartz in air is the same as the case of a metallic boundary,
except for the wavelength \/n replacing \.

For a wall perturbation with cross-section area s, the perturbation
formula is

Ab = %w.unst/ fE X H-dS, (22)

if the electric field is equal to zero. Note that h increases if the volume is
increased, e.g., if we introduce corrugations in the wall.

For H waves uniform along the y-axis (see Figs. 4c and 4d) (E, = E),
we have, from Maxwell’s equations,

Hz = - (k/w#D)E) (233)
H, = (iwpo)'9E/ dx. (23b)

Il

Substituting in (22) we obtain the perturbation
Ak = (s/2K) (0 /oz)2(h* — k?)! / Jeraa. (24)

Defining o as z/t (see Figs. 4c or 4d), the constant « defined in (15) is
found to be

« = (3/2k) (0, 8z)? / f Fdz, (25)
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the derivative being evaluated at the first zero of E(z) for the mode
m = 0, the second for the mode m = 1, and so on.
For whispering-gallery modes, we have

E = Ai(t), (26a)
where Ai( ) denotes the Airy funetion and
t = (2k*/p)'x — (2K*/p)~H(k* — A7), (26b)
p being the boundary radius. Substituting in eq. (25), we obtain
a = 2f.kid/p, (27)
where f, is a numerical factor
o = (dAI/dD)2r / [ " AL, (28)
lo, t1, =+ *, tm, * - -+ being the zeros of Ai(f). By numerical integration, we
find
fo=0.981--- (29a)
f1=10.955---. (29b)

Thus, the change in propagation constant resulting from a wall
deformation of area s = 2td is, from (27),

hn — k = 310K/ 0% (30)

As long as the perturbation is small, k; remains smaller than Iy and
only the mode m = 0 is free of radiation loss. For a sufficiently large
perturbation, however, h; may exceed I'y. Then the modes m = 0 and
m = 1 are both free of radiation loss, that is, the system is no longer
single-mode. The condition for the system to be single-mode is therefore

hm — Ty < Ty — Ty,

or
fuk*s?/p* < 2k(bo — by) (kp)~H. (31)

Iy, I'r, and the constants by, by were defined in Section III. The above
condition can be written, using the values in Table I for by, by,

ks < 1.74(kp)?. (32)

If we take the limit d — 0 in the expressions given in Section 1II, we
obtain instead
ks < 1.68(kp)?, (33a)
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which is very close to the perturbation result, (32). Thus, the local mode
approach and the perturbation approach agree closely, not only in
form, but also numerically. Because p R2 a/6?% 6 being the angle that
the helix makes with the z axis, and 8 = 2ra/p, p being the helix
period, condition (33) for single-mode operation can be rewritten

s < 0.012(\*p*/a)t. (33b)

The extent £, in azimuth of the fundamental mode, defined as the
1/e point of the field, £ = (hi — k¥~ =~ (2k)~*(ho — k)7, is, from
(30) with m = 0, given by

kEo = p/ks. (34a)

If we specify that the fundamental mode field has decayed by a factor
of 10% at the “wings,” located, for two channels (see Fig. 1), a distance
wa/2 away from the ridge, we must have & = (ra/2)/11.5. Introducing
the helix period p, this condition for the fundamental mode to have
small radiation loss can be written

s > 0.005(Ap/a)2 (34b)

The condition for a single mode to propagate, (33b), and for the fun-
damental mode to have small radiation losses, (34b), are consistent if

p < 5a¥/\. (35)

For example, if @ = 50 pum, A = (1/1.45) um, according to eq. (35),
the helix period, p, must be smaller than 18 mm. A period of 10 mm,
for instance, would be quite adequate. Note that for such rather long
periods the optical path is not significantly increased by the circular
motion. Radiation into free space is negligible, as long as the medium
surrounding the ridge is air. For mechanical reasons, however, we may
want to use a material with lower index. In that case, radiation into
the surrounding medium may be a limitation.

V. CONCLUSION

The single-material helicoidal fiber proposed earlier by the author
has been shown to support only one mode, with low radiation loss,
provided the following two conditions are satisfied:

Helix period /2 rod cross-section area/wavelength.
Ridge area & rod cross-section area/70.

More detailed calculations, similar in spirit to the ones given in
Ref. 5, would be necessary to specify the magnitude of the radiation
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losses and the exact value of the mode discrimination. The helicoidal
fiber, like any single-mode fiber with large mode cross section, may be
sensitive to bending losses. The bending loss is therefore another key
point that needs to be investigated.
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