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Guidelines for the design of multimode, step-index fibers with intentional
Auctuations of the refractive index of the core are given, with the aim of
reducing muliimode pulse dispersion. It appears possible to engineer a
fiber with carefully designed refractive index fluctuations, the azimuthal
variation of which is governed by the function cos ¢ and the z dependence
of which has a spatial Fourier spectrum with a sharp cutoff frequency.
By limiting the location of the index fluctuations to a region below a certain
radius Tmax, coupling to modes with large azimuthal mode numbers can
be avoided and power loss via coupling to radiation modes can be held to a
minimum.

I. INTRODUCTION

Optical fibers supporting many guided modes suffer from multimode
dispersion. A pulse launched into a multimode fiber excites many
modes, each traveling at a different group velocity. At the far end of the
fiber the pulse is spread out in time because of the different group
delays of each mode. This multimode dispersion effect is usually more
serious than the single-mode dispersion caused by the dispersive effect
of the dielectric material of the waveguide core and by the inherently
dispersive nature of mode guidance. Discussions of multimode dis-
persion in the absence of mode coupling can be found in Refs. 1, 2,
and 3.

S. D. Personick discovered that multimode dispersion in fibers can
be reduced by intentional (or unintentional) mode coupling. If the
power carried in the fiber transfers back and forth between slow and
fast modes, averaging takes place, so that the pulse no longer breaks
up into a sequence of pulses but is forced to travel at an average group
delay with a concomitant reduction in pulse spreading. Although the
spread of a pulse carried by uncoupled modes is proportional to the
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length of the fiber, it only becomes proportional to the square root of
its length if the pulses are coupled among each other.*~*

However, reduction of multimode pulse dispersion by means of
mode coupling must be bought at a price. Any mechanism that causes
coupling among the guided modes also tends to couple guided modes to
the continuum of radiation modes. Power coupled into radiation modes
radiates away causing losses. Radiation loss can be reduced by careful
control of the coupling process.® It is possible, at least in principle, to
provide strong coupling among the guided modes but only very little
coupling to radiation modes. The loss penalty can thus be controlled
and kept to small amounts.®?

Coupling between two fiber modes is caused by a specxﬁc spatial
frequency of the Fourier spectrum of the coupling function. Two modes
couple via a spatial frequency that is equal to the difference of the
propagation constants of the two modes. Control of the loss penalty
for multimode dispersion is thus possible by shaping the Fourier spec-
trum of the coupling function. In general, it is desirable to achieve a
spectrum that provides a sufficient number of spatial frequencies below
a critical frequency and a sharp cutoff of the spectrum at the critical
spatial frequency.®®

In this paper we discuss means of mode coupling by employing in-
tentional fluctuations of the refractive index of a fiber whose unper-
turbed core has a constant index of refraction (step-index fibers). It is
necessary to shape the core-index fluctuations so that only modes with
adjacent azimuthal mode numbers » couple to each other. Additional
control of the coupling process must be provided by a sharp cutoff of
the coupling spectrum that can be achieved by careful design of the z
dependence (z is the axial direction) of the index fluctuations. Finally,
radiation losses can be minimized by limiting the index fluctuations
to a region near the fiber axis.

The paper begins with a discussion of the requirements on the Fourier
spectrum imposed by the desire to minimize the loss penalty. Next we
provide explicit expressions for the power-coupling coefficients and
estimate the amount of index fluctuation that is necessary to achieve
a desired reduction in multimode dispersion.

This discussion is intended as a guide to the fiber designer, pointing
out the possibilities available for reduction of multimode dispersion
and explaining the difficulties that must be overcome.

Il. SHAPING THE SPATIAL FOURIER SPECTRUM

We consider two modes with propagation constants 8; and @;. Inter-
action between these modes is described by a coupling coefficient that
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depends on the distortion of the core boundary or on refractive-index
irregularities. The azimuthal symmetry of the irregularity provides
selection rules for the coupling process. The z dependence of the
irregularity enters the coupling process via its spatial Fourier spec-
trum. A sinusoidal component of the Fourier spectrum of the form

F () cos 6z (1)
couples the two modes only if the relation?f
|B: — B;i| =8 (2)

is satisfied. (This requirement stems from first-order perturbation
theory and is valid provided that the coupling is weak.)

It is not hard to envision a sufficient number of spatial frequencies
that couple all modes among each other. However, as pointed out in
Section I, coupling to radiation modes causes power loss by radiation
from the fiber core.®® It is thus essential to avoid coupling between
guided and radiation modes. To see whether this is possible, we must
study the spacing (in B space) between the guided modes. I have com-
puted the propagation constants of all the guided modes for a step-
index fiber with

V = (n} — nd)¥ka = 40, (3)

where n; = refractive index of fiber core, n. = index of cladding,
k = free-space propagation constant, a = fiber core radius. The prop-
agation constants were obtained as solutions of the simplified eigen-
value equation of the optical fiber.!® When the propagation constants
are listed in order of their numerical values, regardless of mode number,
they appear approximately evenly spaced. This behavior of the propa-
gation constants of fiber modes contrasts with the behavior of the modes
of a dielectric slab. Here we find that the spacings between modes in-
crease monotonically so that the spatial frequencies, required to couple
nearest neighbors, also increase.? By providing a cutoff to the Fourier
spectrum of spatial frequencies contained in the coupling function, we
can provide coupling among lower-order modes of the slab and uncouple
cither the last guided mode or a few of the higher-order guided modes,
depending on the value of the spatial cutoff frequency (see Fig. 1).
Once the highest-order (or a few high-order) guided modes are un-
coupled from the rest, there is no danger of incurring radiation loss
caused by the coupling process. Things are not quite that simple in
the round optical fiber because the modes are not naturally arranged
with ever-increasing spacings between neighbors.
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Fig. 1—Schematic drawing of the desired spatial Fourier spectrum of the z de-

endence of the index fluctuations. The shape of the function is unimportant except
or its abrupt cutoff.

A good approximation to the actual solution of the eigenvalue equa-
tion is obtained if we approximate the Bessel function by the formula’

o) = \/?r cos [(:62 — )} — p arccos (%) - E] "

@ = )

In weakly guiding fibers the transverse electric field component can be
represented as '3
E, = AJ,(kr) cos (vp)e*P2, (5)
with
k = (nik* — g9 (6)

To a good approximation, we may assume that E, = 0 at the core
radius r = a. This approximation is better for modes far from their
cutoff value but it gives a reasonable indication of the propagation
constants for practically all modes. An approximate eigenvalue equa-
tion of the guided modes thus follows from (4),

2 2 — rYy_T_ B
[(xa)? — »*]* — v arccos ( m) 7 2m — 1) 3 )
form = 1,2, 3, - - -. By regrouping this equation we obtain a form that
is useful for iterative solutions,
r \ )¢
xa=[v‘*’—l—[(m—%)vr—l—varccos(a)]} . (8)

Using (6) and (7) we derive the following approximate expression for
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the spacing between guided modes,

) rAm — Av (m — D=
ag= -S43 ’ : ©)
Bl v [(ka)? — »2 ]}
AB is the spacing between modes that are separated by an amount Ay
of the azimuthal mode number » and by a change Am of the radial
mode number m.

If we place no restriction on the allowed values of Ay or Am, it is
impossible to shape the spatial Fourier spectrum of the coupling func-
tion so that coupling to radiation modes is avoided. It is thus necessary
to introduce definite “‘selection rules” for the coupling among the
guided modes. We shall see later that it is possible to shape the refrac-
tive-index distribution or the deformation of the core-cladding bound-
ary such that only modes with

Av = =*1 " (10)

can couple to each other. We shall thus assume that the selection rule
(10) is enforced and continue our discussion on this assumption. The
allowed values for Am remain arbitrary. However, it is true that the
spatial frequencies for coupling between modes (that is, the value of
AB) are larger for larger values of Am. Since it is our aim to introduce
a cutoff frequency into the spatial Fourier spectrum so that modes
with large spatial frequency separation will be uncoupled, we restrict
the discussion also to a limited range of values for Am and consider
only the case

Am =0 or =+1. (11)
Using (10) and taking Am = 0 we obtain from (9)
_&| (m—=Dr Am =0
48] = vB |[(ka®) — »*]} 1’ for Av = +1. (12)

For Am = %1 we obtain from (10) and (9)

_ & |[m — 1 +vIr Am = — Ay
|88 = w8 | [(xa)? — pr ]} l} for Av = 41 . (13)

The case Am = + Av has been excluded since it leads to larger spatial
frequencies than those obtained from (13).

Figures 2 and 3 illustrate the boundaries of various regions in mode-
number space », m. Both figures were drawn for V = 40 [see eq. (3)],
n1 = 1.515, and n, = 1.5 so that n1/n. = 1.01. The solid line delineates
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Fig. 2—Various regions in mode-number space v, m. All curves belong to V' = 40,
ns = 1.5, and ni/na = 1.01 with the exception of the solid line labeled (V = 30).
The solid lines indicate the boundaries of the range of guided modes for the respective
V values. The broken line labeled am = 0 delineates the area below which coupling
of modes with the selection rule A» = =1 and Am = 0 is possible. The broken line
labeled Am = — Ap limits the range of coupling with the selection rule Av = =1,
Am = — Ay. The dash-dotted line is the limit of the coupling range caused by the
location of 7 = Tmsx = 0.8a. The spatial Fourier spectrum cuts off at fmaxz = 0.15.

the boundary of guided modes; it is obtained by plotting those values
of v and m that result in ka = V [see eq. (14)]. All guided modes are
located to the left and below the solid line. The broken lines* represent
lines of constant spatial frequency. They result from plotting the com-
binations of » and m values that result in A8 = 6uax. The line labeled
Am = 0 was computed from (12) and the line Am = —Av was ob-
tained from (13). The broken lines delineate the boundaries for mode
coupling with the spatial Fourier spectrum of the coupling function of
Fig. 1, the cutoff frequency of which is § = Omax. Modes below and to
the left of the broken lines couple to their nearest neighbors via the
selection rule Ay = +1 and Am = 0 or Am = —Ay. Modes located
to the right and above the broken lines cannot couple to each other

* The meaning of the dash-dotted lines and the solid line labeled (V = 30) will be
explained later.
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Fig. 3—Same as Fig. 2 except that fpexa = 0.165, rmax = 0.5a.

since no spatial frequencies achieving this coupling are available.
Figures 2 and 3 differ only in the choice of the cutoff frequency Omax.
There are no transitions with Ay = =1 that couple via smaller spatial
frequencies than the ones indicated in the figures. It is thus apparent
that it is possible to provide coupling among most guided modes by
means of the Fourier spectrum shown in Fig. 1. However, modes to
the right and above the uppermost broken line remain uncoupled. It
is necessary to uncouple a few higher-order modes in order to avoid
coupling into the continuum of radiation modes. The conditions shown
in Fig. 2 achieve this goal almost completely. Only the mode m = 1,
v = 34, lying on the boundary of the guided-mode region, is coupled
to radiation modes as well as the other guided modes. Power is thus
able to flow out of the guided-mode region causing radiation losses via
this one guided mode. This power loss could be avoided by decreasing
O max-

The conditions prevailing in Fig. 3 would result in a high loss penalty
since all modes with m < 4, » > 21 on the boundary of the guided-
mode region couple to guided as well as radiation modes. However, we
shall show later that it is possible to prevent mode coupling for modes
exceeding a certain maximum » value that can be chosen by a suitable
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design of the intentional index fluctuations. It is thus possible to
achieve a low loss penalty even for the conditions shown in Fig. 3
provided the coupling mechanism is carefully designed to avoid cou-
pling for modes with » > 20.

Modes located between the two broken lines in Figs. 2 and 3 can
couple only to their neighbors above and below in the mode-number
plane. However, since the members with low » values below the line
Am = — Av are able to couple to their neighbors to the left and to the
right, all modes below the uppermost broken line are actually coupled
together.

We can give an approximate rule for calculating the spatial cutoff
frequency appearing in Figs. 2 and 3. We begin by specifying the
maximum » value on the mode boundary for which mode coupling
should cease. As mentioned earlier, the design specification for this
value vmex will be given in the section on mode coupling. Next we need
to know the corresponding value of m on or near the mode boundary—
the solid line in Figs. 2 and 3. We obtain it from the cutoff condition
xa = V and (8),

1 vox Vmax 1o 2
Munex = 5 = 22 arccos( s )—i—W(V Ab (14)

Substitution of vmax 2nd Mumex into (12) using 8 = n.k yields the
desired value for A = Omax. For V = 40 and vau.x = 20 we obtain
from (14) Mmax = 4.61 and from (12) fmaxa = 0.17 in agreement with
Fig. 3. Of course, it does not make physical sense to use a noninteger
Mumax, but it is advisable to use this value in (12) in order to obtain a
more accurate value of Omax. Incidentally, (14) defines the mode
boundary if we use it for all possible values » = vuax.

. POWER COUPLING COEFFICIENTS

Mode coupling in multimode dielectric optical waveguides is most
conveniently described by a coupled-mode theory. The power coupling
coefficients are defined as follows:%:*

h-n.nm = (lKvn.pmlz)- (15)

The symbol ( ) indicates an ensemble average. The coefficient K,n um
stems from the coupled amplitude equations and is defined as®

wep 2

4P J,

The angular frequency of the radiation is w, € is the dielectric permit-

Kynum = dq’Jj;w rdr(n? — n3) & Eum. (16)
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tivity of vacuum, and P designates the power normalization constant
of the modes, the electric field vectors of which are indicated by script
letters. The refractive-index distribution of the actual guide with index
fluctuations is n while n, indicates the index distribution of a perfect
guide from which the actual guide deviates only slightly. Our interest
is focused on introducing intentional index fluctuations for the purpose
of mode coupling. We are thus free to choose n to achieve our goal.
It was pointed out earlier that coupling to radiation modes is unavoid-
able unless certain selection rules are imposed on the coupling process.
Our discussion in the last section was based on the selection rule
Ay = +1. To achieve this selection rule we must require that the
refractive-index distribution be of the following general form:

n? — ng = 2mAng(r) f(2) cos ¢. (17)

We know from earlier work that the ¢-dependence of this index dis-
tribution leads to the desired selection rule.?

We found in the preceding section that it is also desirable to avoid
coupling among modes with large » values. It follows from the proper-
ties of Bessel functions that the field intensity of the transverse field
components is very weak for radii that obey the relation

Kkr < v.

This result is easily interpreted in terms of ray optics. Modes with
large values of v are represented by skew rays that spiral around the
fiber axis. These rays avoid the vicinity of the waveguide axis and stay
nearer to the core boundary for larger values of ». The radius defined
by xr = v represents the turning point below which a ray with a given
value of » does not penetrate. The coupling formula (16) shows that
mode coupling depends on the field strength at the point where the
index irregularity is located. By providing refractive-index variations
that do not extend beyond a radius 7., it is possible to limit mode
coupling to modes whose » values remain below a maximum value
near the mode boundary that is defined as

Tmnx
Vmax = V T " (18)
«a has been replaced by its maximum value V. The values of vmae and
the corresponding values for mmax and .. defined by (14) and (12)
determine the position at which the dotted curves labeled Am = 0
cross the solid curves in Figs. 2 and 3 that define the guided-mode
boundary in mode-number space. Coupling of guided modes to radia-
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tion modes can be avoided by limiting the » values of those modes that
are coupled by index fluctuations. If the intentional index fluctuations
do not extend beyond the radius 7max, coupling is restricted to those
modes that remain below a boundary defined by the equation

¥ = KTmax- (19)

If we combine this equation with formula (8) we obtain the function
m = m(») that defines the boundary in mode-number space beyond
which mode coupling ceases, because the index fluctuations are re-
stricted to radii r = Tmax,

1 v a? H
m—ﬂﬂ(a:;“)

This boundary is shown as a dash-dotted line in Figs. 2 and 3. We now
have the means of providing coupling among all guided modes that
remain inside the nearly triangular areas that are bounded by the
dotted lines labeled Am = 0 and the dash-dotted lines in Figs. 2 and 3.
If these areas remain below the guided-mode boundary (the solid line
labeled ¥V = 40 in Fig. 2), coupling to radiation modes can be avoided.

After this digression into the fundamental properties of mode cou-
pling we proceed with the derivation of specific coupling formulas.
Substitution of the field vectors, given by (5) and in more detail by
Ref. 3, into (16) we obtain with the help of (17)

(20)

Kt vyum (2) f rg () (o) (k) dr

TP PPN PPN Bt oy ey e L R

Kvn.ym =

The parameter v, is defined as
= (Bl — nik?)* (22)

and §,, is Kronecker’s delta symbol.
Of the many possible choices for the function g(r) we use only two
examples that may be of particular practical interest. First we use

g(T) = Wa(f‘ — 'n"mm:)- (23)

W is the very narrow width of the ring of index fluctuations. We sub-
stitute this equation into (21) but proceed immediately to the power
coupling coefficient (15). The Fourier spectrum is defined as

F(8) = lim —— f " f)ede (24)
L= w \{Z 0
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and the power coupling coefficient for a narrow, ring-shaped refractive-
index fluctuation is given as

h — ANW}‘:Tmax‘Yvri'Ypme(Kvnrmnx)J,u(Kum'rmnx) 2
P Va1 (kyn@)d o1 (kuma@)

<JF|2>6F:!:1'M' (25)

Because the relation
Jy(kyna) =0 (26)

is approximately valid we have used
Jv+1(Kvna) = ‘—Jp_l(K”;a). (27)
As a second example we consider the funetion

1 forr < rmax

2
0 forr > Tmax- (28)

glr) =

Limiting the index fluctuations to a wide range, 0 < r < 7uux. In this
case the power coupling coefficient assumes the form

Aﬂkrmu'}’vn')’pml:xnmt]v(Kyn'l"mnx)Ju—l (Kpmrmax}
hvn.pm = - Kvnl]v-l("vn'rmnx)lfp(Kpmrmax):l
I‘YQEK%,; —_ Klﬁm]rly—l(l‘\-pna)']ﬂ*l("ﬁma)
(P [")6os1,0  (29)

The argument of the power spectrum (|F%|} in (25) and (29) is
ﬁrn - ﬁnm-

IV. PULSE WIDTH REDUCTION BY INTENTIONAL MODE COUPLING

Random coupling of the modes of a multimode fiber causes the many
pulses, traveling on different guided modes at different group velocities,
to be coupled together so that an equilibrium pulse establishes itself
traveling at an average group velocity. Its ensemble average has a
gaussian shape®® the width of which is given by the formula®

T = 4(p:L)}, (30)
with!!
JEee(s-g)Ee |
. p= v, Va
e B @

Equation (30) shows that the width of the pulse grows proportionally
to the square root of the length L of the fiber. The parameter p: is the
second perturbation of the first eigenvalue that results from an alge-
braic cigenvalue problem, B!’ are the components of the ith eigen-
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vector, p¢” is the ith eigenvalue of zero order, and v, and v, are the
group velocity of mode » and the average group velocity.

The evaluation of this expression is difficult. If only a few guided
modes exist, computer solutions of the eigenvalues and eigenvectors
can be obtained. If many modes are guided, it is possible to convert
the algebraic eigenvalue problem to a partial differential equation,
provided that it can be assumed that only nearest neighbors couple
among each other.?!1? For modes close to the edge of the coupling
range, indicated by the dotted lines in Figs. 2 and 3, the assumption of
nearest-neighbor coupling is well justified since the spatial Fourier
spectrum of the coupling function lacks the higher frequencies re-
quired to couple a mode to a neighbor farther away. However, the
lower-order modes are crowded more closely so that there are spatial
frequencies available for coupling to modes other than the nearest
neighbors. This increase in coupling strength is partially compensated
for by the fact that modes above the dotted line labeled Am = —Aw in
Figs. 2 and 3 can couple only vertically. In order to be able to give an
order-of-magnitude estimate of the index fluctuations required to
achieve a certain reduction of the pulse width, we shall assume that
nearest-neighbor coupling can be assumed and provide an expression
for the pulse width reduction that may be regarded as a crude approxi-
mation.

We use the theory presented in Ref. 3. The only modification neces-
sary to the formulas presented in Section 5.6 of Ref. 3 consists in the
realization that our coupling scheme avoids radiation losses, so that
the highest-order members of the group of coupled modes are not
depleted contrary to the assumption in Ref. 3. The eigenvectors and
eigenvalues defined on p. 235 of Ref. 3 can be used, except that the
first eigenvector is now constant, independent of the mode number.
All eigenvectors are mutually orthogonal and properly normalized.
Using the procedure explained in Ref. 3 we obtain the result

po T _ 0225V

AT (Lh)?
T is the full width at the 1/e points of the gaussian-shaped pulse, At
is the width of the pulse train that would exist in the absence of cou-
pling, V is the normalized frequency parameter defined by (3), L is
the length of the fiber, and h the power coupling coefficient. It was
assumed that only nearest neighbors couple to each other and the
strength of these coupling coefficients was assumed to be identical for
all the modes.

(32)
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R is the improvement factor that indicates the reduction of the
length of the pulse relative to its uncoupled length. It is thus desirable
to achieve as small a value of R as possible. Values of R > 1 do not
deseribe a physically meaningful situation. The formula may result
in values £ > 1. This indicates that the coupling is not strong enough
to achieve an equilibrium pulse in the length of fiber available.

We are discussing numerical values for the two types of couplings
described by (25) and (29). Values have been computed for

i _ 'Ywna'Yy+l,ma‘]v(K:ﬂnrmax)Jv-l»l("u+l.mrmax) 2
hy'n;u+l,m - [ .f,,_l(x,,na)J,(x,+1lma) (33)

and

_ 'ana'Yy+l,ma[Kv+1.va(Kvn'rmux)r]v(xﬂ-l.mrmnx)

Hyn;v+1,m = - KlﬂﬂJVﬁl(Kvﬂrmnx)l]v+1(Kv+1,mrmnx):| (34)

G(KE" - Ki—*—l.m)‘]l‘*l (K..na)J,(x,.,_l_,,,a)
for all the modes of a fiber with V' = 40, n, = 1.515, and n,/n. = 1.01.
A few sample values are listed in Tables I and 1I. The values listed

Table | — Sample values of normalized coupling coefficients
for a narrow ring of refractive-index fluctuations
located at r = rp,, with rp../a = 0.8

v n ﬁvn;y-}-l, n ﬁyn: v41, n=1
1 1 2.212 1068 0.
1 2 4.608 10¢ 3.987 108
1 3 1.023 106 2.879 10¢
1 4 1.287 10 7.733 10¢
1 5 4.780 10¢ 5.678 10°
1 6 3.844 108 1.931 10¢
1 7 2.726 10¢ 4.107 10¢
1 8 7.018 10¢ 8.497 108
1 9 2.262 10¢ 5.610 102
1 10 2.431 108 5.888 108
1 11 4.236 108 4.181 108
1 12 3.964 108 2.115 10¢
10 1 4.945 107 0.
10 2 7.071 108 1.981 108
10 3 1.597 107 8.981 103
10 4 1.517 107 1.841 107
10 5 1.321 108 2.600 108
10 6 1.467 106 1.451 10°
10 7 3.179 107 9.235 108
10 8 4.896 107 4.112 107
20 1 5.807 107 0
20 2 3.229 108 1.227 108
20 3 4.017 107 1.360 108
20 4 4.954 107 2.556 107
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Table Il — Sample values of normalized coupling coefficients
for a wide band of refractive-index fluctuations extending
from r = 0 t0 r = Iyax With ru./a = 0.8

v n Hm: vl n Hrn;v+1, n—-1
1 1 6.078 10¢ 0.
1 2 1.141 108 1.349 10¢
1 3 8.734 10¢ 6.439 10¢
1 4 4.845 10* 8.157 10*
1 5 4.439 10* 5.351 10¢
1 6 6.481 10* 3.728 10¢
1 7 7.628 10¢ 4.844 10¢
1 8 6.336 104 6.806 10¢
1 9 5.318 104 6.709 104
1 10 6.474 10* 5.431 10¢
1 11 8.767 10¢ 5.794 104
1 12 1.136 10° 8.628 104
10 1 1.817 10° 0.
10 2 5.642 10* 8.361 108
10 3 1.215 108 2.730 108
10 4 1.652 108 3.173 108
10 5 1.377 108 4.373 105
10 6 1.627 108 4.063 10°
10 7 3.429 108 4,248 108
10 8 1.299 108 9.413 10°
20 1 7.904 104 0.
20 2 5.450 108 1.264 108
20 3 6.717 10® 4,260 10¢
20 4 2.118 108 7.286 108

in Table I fluctuate because the narrow band of refractive-index varia-
tions may occasionally find itself located near a node of one of the two
field functions so that the coupling coefficient can even vanish for a
certain pair of modes. I'or this reason it is advisable to provide at least
two bands of the kind (23) at different radii. The coupling coefficients
for the second case, listed in Table II, corresponding to a wide band of
refractive-index fluctuations, show far less variations. For want of a
better procedure we use average values of the coupling coefficients in
(32). It may be expected that the low values of the coupling coefficients
determine the rate at which power is exchanged among the modes. On
the other hand, we know that more than just nearest neighbors couple
for low values of » and n. In order to achieve an order-of-magnitude
estimate we use the arithmetic mean of the entries in the first block of
data in the tables for » = 1 and obtain for the average value of the
coupling coefficient A from Table I and (25)

2
h=2X 106(“””‘““) Il—f: (|F|?%). (35)

aV?
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Likewise, we find from Table I1 and (29)

AT e \?
h=7X 104( Tras ) (|F|2). (36)

It is clear that (35) and (36) hold only for the special case V = 40,
ny = 1.515, and ny/n. = 1.01. These values correspond to a fiber with
radius @ = 30 pm if the free-space wavelength is assumed to be
= 1 um.
We are now asking for a pulse width reduction of R = 0.1 in a
fiber whose length is L = 1 km. From (32) and (36) we obtain with
Tmax = 0.8a

(An)¥(|F[?) = 4 X 107a. (37)
The value obtained from (32) and (35) is identical with (37) if
W/a = 0.19. (38)

It is apparent from (37) that it is the product of (An)? with the ampli-
tude of the spatial power spectrum [of the z dependence of the index
fluctuations f(z)] that determines the effectiveness of the index flue-
tuations for reducing pulse dispersion. We relate these quantities to
the rms variation of the refractive index as follows. For slight index
differences we have

n: — ni = 2n,(n — ny). (39)

Thus we obtain from (17), using g(r) = 1 according to (28),
((n — no)?) = 3(An)*(f2(2)). (40)

The average { ) includes in this case also averaging over cos? ¢. The
variance (J?) is related to the power spectrum by the equation

(1 = 1 [T (F@2)d0 = T2 1P, (41

On the right-hand side of this equation we introduced the average
value of the amplitudes of the spatial power spectrum (|F2|) and the
spatial cutoff frequency 8...x. If we interpret (|F%|) in (37) as the
average amplitude appearing in (41) we obtain from (37) through
(41)

[{((n — ng)?) ]t = 2.52 X 10~4(Bmaxa) . (42)
With @naxa = 0.15 of Fig. 2 we obtain finally
[{((n — ng)®) ] = 1074 (43)
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For our specific example, an rms deviation of this magnitude is re-
quired to achieve a relative pulse width improvement of R =01 (a
ten-times-shorter pulse of coupled modes compared to operating with-
out mode coupling). The spatial Fourier spectrum is agsumed to be
flat from zero spatial frequencies to a cutoff spatial frequency of

aas = 02> = 50 em™, (44)
The shortest period appearing in the Fourier spectrum is thus

A= 0—2—‘”— = 0.13 em. (45)
The index fluctuation of the narrow ring defined by (23) is of the same
order of magnitude as (43) if the relation (38) holds. However, one
narrow ring causes gaps in the coupling process for those modes whose
nulls coincide with the position of the ring. It is thus advisable to use
at least two rings.

V. SUGGESTIONS FOR THE DESIGN OF INDEX FLUCTUATIONS

The spatial Fourier spectrum with a sharp cutoff frequency shown in
Fig. 1 can be generated by passing noise through a low-pass filter.
Another method of producing the desired index fluctuations consists
in superimposing a number of sinusoidal variations. From (17), (28),

and (39) we have
n — ng = Anf(z) cos ¢. (46)

If f(z) is a superposition of sine waves with random phase we have
M
n— ng = An [ >~ sin (2,2 + \b,)] cos ¢. (47)
r=1

The ¢, are random phase functions of the individual sine-wave com-
ponents. As a practical matter, it is probably easiest to generate these
random phases by letting the phase stay constant over a distance D
at which point it makes a random jump to another constant value.
We assume for the purpose of our analysis that the phases are uncorre-

lated among each other.
It can be shown that the power spectrum of the function

sin (2,2 + ¥,) may be approximated by (see appendix)
Sil’.'lz (0 - ﬂv) g
(|F,(8)]%) = G=a)yD (48)
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The total power spectrum of the function f(z) is thus

y Sin? (6 — Q,) g
2y — S——
(F®1" = ¥ —5—ayD (49)
D is the correlation length of the phase functions. In the case that the
phases stay constant and jump randomly to a new value after a dis-
tance D, this distance is identical to the correlation length. The full
width of the spectrum (48) is given by

4r
Af = e (50)
A@ is the distance between the first two zeros of the (sin 2)/z function
on either side of its main maximum. Since we need to fill a spectral
region of width 8,,. we need a total number of

OmaxD

M= 47

(51)

sinusoidal components. If we use D/a = 1,000 we need with 6.0
= 0.15, M = 12 sinusoidal components in (47).

The necessary amplitudes An of the sinusoidal index variations are
obtained from (37). Since the spectral components in (49) overlap
only slightly, we may use

(Pl =2 (52)

at the peak of each sinusoidal contribution. Using the numerical value
of (37) we thus have
An =13 X 10*3(5)}- (53)
D
With D/a = 1,000 we would thus have An = 4 X 1075.

It is clear from our treatment that the numbers given here are only
valid to an order of magnitude because of the many approximations
that were made for their derivation.

The implementation of this prescription for the desired index fluc-
tuations to the design of a fiber is not a trivial matter.

If the refractive-index increase of the core material is achieved by a
doping process, it may be possible to program the doping procedure to
result in the desired fluctuations. Some processes add the dopant in the
gaseous phase to the material of the fiber preform. In this case it may
be possible to control the flow of dopant at a predetermined rate that
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is synthesized as the superposition of sine waves shown in (47). If the
fiber preform is treated in this way, it would be necessary to compress
the periods of the sine waves in such a way that the desired periods
result after the drawing process. As mentioned earlier, the desired
Fourier spectrum can also be derived from filtered electrical noise
signals.

Vi. DISCUSSION

We have studied the possibility of reducing multimode pulse dis-
persion by means of introducing refractive-index fluctuations into the
core of the fiber. Several requirements must be imposed. The coupling
process must be able to couple all modes of as large a mode group as
possible among each other without coupling to the modes of the con-
tinuous spectrum. To achieve this, it is necessary to limit coupling to
the modes inside of the area of guided modes in the mode-number
plane. Modes near the outer edge of this range should remain un-
coupled to avoid radiation losses. This goal can be achieved only by
designing the coupling mechanism so that a definite selection rule is
imposed. For simplicity we considered index fluctuation with an
azimuthal dependence of the form cos ¢. This azimuthal index dis-
tribution ensures that a mode with azimuthal mode number » couples
only to modes with » + 1 and » — 1. Once this selection rule is im-
posed, it is possible to limit coupling to modes inside of an area in
mode-number space not including its outer edge. The boundary delin-
eating the area of coupled modes in the mode-number plane tends to
cross the boundary enclosing all guided modes at large values of ».
Thus the danger exists that power outflow to radiation modes occurs
via modes with large » values. This remaining problem can be avoided
by limiting the intentional index fluctuations to a region inside the
fiber core that remains below a certain radius r < rmax < @.

The spectrum of spatial frequencies of the z-dependent part of the
coupling process must extend from (essentially) zero to a cutoff value
fmax. A prescription for finding fme: was given in the section on the
spatial Fourier spectrum. In principle, this spectrum can be syn-
thesized as a superposition of sinusoidal components with random
phase. This problem is discussed in the section on design suggestions
for index fluctuations.

Our procedure leaves one question unanswered: What happens to
those modes that remain intentionally uncoupled, don’t they broaden
the impulse response of the fiber? These modes may be naturally more
heavily attenuated than the coupled modes because of their proximity
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to the cutoff region in mode-number space. However, if the naturally
occurring losses are insufficient to suppress these modes, steps must be
taken to filter them out. This filtering is possible either by constricting
the fiber at the receiver or by using spatial filtering of the radiation
escaping from the end of the fiber prior to entering the detector. A
reduction of the fiber diameter reduces the V value of eq. (3). Figure
2 shows a solid line labeled (V = 30). In the constricted fiber this line
becomes the new mode boundary. It is clear that the constriction re-
moves all the uncoupled modes in addition to some of the coupled ones.
An additional amount of loss must be tolerated as payment for the
pulse cleaning operation. The total number of guided modes supported
by the fiber is given as':?
2

N, = % (54)
As the V value is reduced from 40 to 30 the mode number drops from
800 to 450. We lose roughly half the power in the attempt to clean up
the pulse distortion that results from the free-running, uncoupled
pulses. However, this 3-dB loss penalty is independent of fiber length
and may be well worth paying in return for a considerable reduction
of pulse dispersion. The conditions of I'ig. 3 are far less favorable,
here about 75 percent of the power would be lost.

Practical implementation of these ideas will tax the ingenuity of the
fiber designer. Introducing desired index fluctuations with the re-
quired sharp cutoff of their spatial Fourier spectrum is an exacting
requirement. The cutoff frequency 6., must be kept to within a few
percent. This means that the spectrum must terminate with a sharp
slope. If the spectrum is synthesized as a superposition of sine waves
we must require that

AB 4 1
b~ Db 1 < 0.01. (55)

The number 0.01 was chosen arbitrarily, but it is certainly of the correet
order of magnitude, A8 was obtained from (50) and M from (51). This
estimate shows that approximately 100 sinusoidal components are
required to ensure that the spectrum has a sufficiently steep slope at
its cutoff point. Of course, this requirement could be somewhat relaxed
by allowing the sinusoidal components deeper inside the spectrum to
be broader than those near its edge. These considerations may enter
into the compromise that the designer wishes to achieve.

The mode spacing (in 3 space) changes as the fiber is bent. The
modes of a dielectric slab waveguide have smaller mode spacing in
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circularly bent sections of the guide. In principle, this effect could alter
our conclusions regarding the possibility of uncoupling high-order
modes near cutoff by limiting the width of the spatial Fourier spec-
trum of the coupling function. However, for the numerical example
used in our discussions, the change in mode spacing due to waveguide
curvature is unimportant for bent slabs whose radii remain about the
limit
R. > 1,000a.

For @ = 30 um, R, would have to be kept larger than 3 ¢cm. It is not
known if the numbers for the round fiber would be identical to the slab
model, but one may expect that waveguide curvature is unimportant
if the radius of curvature remains larger than a few centimeters.

APPENDIX
We provide a simple derivation of eq. (28). Let
J(z) = sin [Qz + ¢ (2) 1. (56)

The phase function ¥ (z) is assumed to be constant over a distance D
but jumps randomly to a new constant value at the end of each inter-
val. The Fourier transform of f(z) is

F(8) = 1 mzl f e sin [z 4+ Y. Je *%%dz
{I-; n=0 Jn

D
| m-1 sin[(ﬂ— ) g]
— Wapi(Q—(n+H)D L A,
N A @— 0 (57)

A term with @ + & has been neglected since its contribution for large
values of D is negligible. It is also assumed that L is an integral mul-
tiple of D,

L = mD. (58)

When we form the absolute-square value of F and take the ensemble
average, all cross terms in the resulting double summation vanish
because of our assumption of random values for ¢,. The phase terms
in the remaining terms of the summation reduce to unity by the process
of taking the absolute-square value. With no summation index left
under the summation sign, the sum results simply in a factor m. Using
(58) we finally obtain

. D
sin? | (¢ — Q) &
(FO)) = —([T_—ﬁ)—Dz—] (59)
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