Copyright © 1975 American Telephone and Telegraph Company
Tue BeLs SyaTeM TECHNICAL JOURNAL
Vol, 54, No. 1, January 1975
Printed in U.S.A.

A New, Fast-Converging Mean-Square
Algorithm for Adaptive Equalizers With
Partial-Response Signaling

By K. H. MUELLER
(Manuscript received December 5, 1972)

A new, generalized mean-square algorithm is presented to adjust the
taps of a transversal adaptive equalizer. Any knowledge of the channel or
the signaling format can be taken into account and will speed up the con-
vergence process. The main applications are seen in partial-response sig-
naling, where the new algorithm eliminates the interaction between the
individual tap increments. This is achieved by decorrelating the compo-
nents of the gradient in a fized weighling matriz prior {o the adjusiments.
Convergence is then extremely fast. If the channel has only phase distor-
tion, a single iteration is sufficient to obtain the optimum tap vector (for
any timing and carrier phase). This is verified by computer stmulations.
Finally, the new equalizer is compared with another structure recently
proposed, and some advaniages of the new system with regard to tmple-
mentation and flexibility are poinled out.

I. INTRODUCTION

Together with sophisticated modulation techniques and bandwidth-
conserving signal designs, automatic transversal equalizers are the
prime characteristics of the new generation of high-speed data modems
that have appeared on the market in the past few years. These modems
allow data rates in the range of 3600 to 9600 b/s to be transmitted
over voice-band channels. In addition to point-to-point transmission
between computers and data processing centers, a large demand for
high-speed data sets exists in multiparty polling systems. Because a
message in such a system may consist of only a few hundred bits, it is
essential that the start-up time of the modem be very short. Prefer-
ably, the modem start-up time should waste fewer bits than are
contained in an average message to guarantee a reasonable system
throughput. This would basically imply that start-up time should be
inversely proportional to the data rate; this is a very contradictory
requirement, since more accurate and complex operations are usually
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required during start-up of a high-speed modem than with a low-speed
version. Timing recovery, carrier recovery (if required), and training
of the automatic equalizer are the most important start-up operations.
The time that must be allowed for the equalizer training is usually
the major delay in start-up; thus, it seems worthwhile to concentrate
some of our efforts in this direction.

During the past few years, much attention has been given to partial
response signaling.’ ¢ Some of these waveforms are particularly
attractive for data transmission over band-limited channels, since they
have a spectral zero at the Nyquist frequency. These signals can easily
be generated with virtually zero excess bandwidth, and yet their time
response decays faster than that of a sin (z)/z pulse. These advantages
result from a controlled amount of intersymbol interference in these
signals, which increases the number of levels in the baseband eye
pattern. In some formats, the impulse response has odd symmetry
and the spectrum is zero at de (which is of particular interest if ssB
modulation is used).’ If a traditional transversal automatic equalizer
with an Ms (mean-square) gradient algorithm®? is used for partial
response signals, the initial convergence will be very slow. Chang has
shown that the spread of the eigenvalues of the signal autocorrelation
matrix can become very large for Class IV partial response signals,
and he proposed a new equalizer structure that eliminates this problem
and thus can give fast convergence.? Of course, with the appropriate
modification of some parameters, his conclusions can be extended to
other partial-response signals as well.

In this paper, we propose an alternate solution to the problem of
fast partial-response signal equalization. Instead of changing the
equalizer structure, we propose to modify the tap updating algorithm.
The coefficients associated with the new algorithm are given by a
simple matrix inversion.

The advantages of the new equalizer structure are not limited to
partial-response signaling. Any knowledge of the channel or the
signaling format can be used to speed up the convergence process.
The classic transversal equalizer evolves as a special case (Nyquist
signaling) of the more general configuration that is proposed in this

paper.

Il. A GENERAL MEAN-SQUARE ALGORITHM

Let us assume a transversal equalizer structure with N taps, with a
tap signal input vector x; and a tap coefficient vector ¢ at time ¢, + k7.
The equalizer output y: is given by

Ui = XiC (1)

144 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1975



and will not, in general, be exactly equal to the desired reference value
dx, the error being

e = Yk — dy. (2)
The Ms error that appears at the output will thus be
& = Efei}, (3)

and we now choose a tap-updating algorithm that adjusts ¢ in such
a way that the Ms error (3) is minimized. The gradient of ¢ with
respect to ¢ can easily be obtained by combining (1) to (3),

g = 2% = Blax) = dc - v, @)
where we have introduced the signal autocorrelation matrix,
A = E{xxi}, (5)
and the signal correlation vector,
v = E{xidi}. (6)

The optimum tap vector in the mean-square sense that minimizes (3)
is obtained when we set the gradient to zero,

Copt = Ay, (7)
We propose a tap-updating algorithm of the form
Cmyl = Cm — ngmj (8)

where gn is the gradient evaluated with tap-vector ¢, after the mth
iteration, and @, is a nonsingular matrix, which is discussed below.
Obviously, an algorithm of the general form (8) will stop updating
(turn itself off) when ¢ = Cope. If the algorithm converges at all, it
will thus converge to the ms solution (7). The traditional steepest-
descent gradient algorithm is obtained as a special case from (8)
if we set @, = I (or a more general diagonal matrix instead of the
unity matrix 7 if tapering should be included).

The algorithm (8) can be written in the form

Cmi1 = (I — QuA)Cm + Qnv. (9)
If we introduce the tap error vector
Om = Cm — Copty (10)

it is easy to show that

dmsr = (I — QuA)om = 11 (I — QmuA)é1. (11)
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Obviously, the convergence can be controlled to some degree by the
selection of @, since this choice affects the eigenvalues of 7 — @n,A.
This is discussed in Section III.

Ill. SELECTION OF THE Q@ MATRIX

First we will make some general remarks without specifying that
the signal format be partial response. If the channel characteristics, de-
modulating carrier phase, and timing instant were perfectly known,
we would select Q@ = Q. = A~ and then obtain c,,; after the first
iteration. Actually, if that knowledge were available, it would, of
course, be easier to preset the taps to ¢,y or to introduce a suitable
fixed compensation network. Unfortunately, the transmission channel
is not completely known. If, however, the spread within these channels
is not extreme, we can reduce the average equalizer training time if we
select a good estimate of the optimum tap vector for initial presetting.

For example,
¢ = E{A;7v}, (12)

where the expected value is taken over the ensemble of channels, and
a similar estimate for @,

Qm = Bm[E{A:} ] (13)
For a particular channel with
A = E{4:} — A, (14)
the critical matrix B; = I — Q.A; then becomes
Bi = (1 — 8w + BulE{A:} A (15)

If we select B = 1, the average B; matrix is equal to the zero matrix.
For a randomly selected channel, the B; matrix will, on the average,
be much closer to the zero matrix than with a gradient algorithm, and
faster convergence may be obtained. Modern digital signal-processing
techniques allow quick and easy change (or selection) of (12) and (13)
with different read-only memories at a fraction of the costs that are
involved when traditional compromise equalizers have to be changed.
Furthermore, even different signal formats may be processed effi-
ciently with the same modem.

IV. APPLICATIONS TO PARTIAL-RESPONSE SIGNALING

Our results have so far been quite general, as we have not yet
defined a special signaling technique. As was already mentioned in
Section I, we see a particular promising application to processing zero
excess-bandwidth partial-response signals. For such signals, the A
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matrix depends only on the amplitude characteristics of the channel
and is independent of the phase parameters® (timing phase, carrier
phase, and phase characteristic of the channel). Since the amplitude
response of voice-grade channels is relatively constant over the trans-
mission band (or at least under much better control than the phase
response), we may select an estimate

Qm = Bndq, (16)

where A, is the ideal partial-response signal matrix. More specifically,
for Class IV signaling, the matrix elements of 4, are

[Aoda = 8 — 38iks2 — 20542 (17)
and for duobinary are
[AoJie = ik + 38041 T 38501, (18)
The inverse of both (nonsingular) matrices may be expressed as
Al=I-¢)'=1+G+G+ -, (19)

which shows that the elements of A5 are rational numbers, and are
symmetric with respect to both matrix diagonals.

Having selected an ideal channel as an estimate for @, our algorithm
takes the form

bmin = (I — BnAg'A)ém = Bném. (20)

Obviously, if we have only phase distortion, then A = A4, and we
may select 8, = 1. The equalizer will then reach its optimum tap
vector within a single iteration because the matrix B, is zero.

If the channel has amplitude distortion, then A # A, and thus
B, # 0. The eigenvalues \; and eigenvectors w; of 45" A are defined by

AFIAW; = MW, (21)

Following a procedure shown by Chang,® we premultiply both sides by
wiA, and obtain
_— WIAW; .

" widow, @)

Since both A, and A are symmetric, positive, definite matrices, we
conclude that all \; are positive. Chang® has further shown that the
eigenvalues can be bounded by

|H (@) |2 = N = [H (@) |G (23)

where H(w) is the quotient between the actual and the estimated
channel transfer function. For convergence, the spectral radius p of
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B, must be less than unity ; this is guaranteed if we choose

0<,3,,.<i, (24)

A11.'[!!:
since the eigenvalues p; of B, are given by
pi =1 — Bl (25)

If the amplitude distortion is small, A5'4 is close to the identity
matrix, and the eigenvalues \; will be closely scattered around unity.
We would then select 8, &2 const &2 1, and the matrix B would be
close to the zero matrix with all eigenvalues u; close to zero. The tap
error vector after m iterations is given, from (20),

om = (I — BAG'A)™po = B™$o (26)

if 8 is constant (this is, of course, replaced by the usual matrix product
if 8 = Bm). The squared magnitude of ¢ and the excess Ms error are
given by the expressions

[ém|* = ¢5B* 40 (27)
¢ = $IBmABm,, (28)

and can be used to estimate the convergence speed. The procedure
and the results are practically identical to those of Chang® and are,
therefore, not repeated here.

V. IMPLEMENTATION

Figure 1 is a basic block diagram of the new equalizer. A version with
only three taps is shown for clarity, although a much larger and prefer-
ably even number of taps would actually be used. The upper part
represents a traditional Ms equalizer with the well-known circuitry
for correlating the error signal with each tap signal to obtain the
gradient g = Ac — v. Because of the particular structure of A for
partial response signals, the components of g are highly correlated.
The tap corrections obtained with a direct gradient algorithm would
thus not be independent of each other. This interaction (which would
cause a very slow convergence) can be eliminated if the gradient is
“/decorrelated” in the fixed weighting matrix @ shown in the lower
part of Fig. 1. The resulting outputs are now decoupled and can be
used to adjust the taps free of interaction to obtain rapid convergence.

A somewhat different arrangement is shown in Fig. 2. Here the
(same) @ matrix is placed between the tap signals and the correlators.
It is obvious that this arrangement is equivalent to Fig. 1 because the
error signal is common to all correlator inputs.
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Fig. 1—Use of @ matrix in a first implementation of the new algorithm.
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Fig. 2—Use of @ matrix in a second implementation of the new algorithm.
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Fig. 3—Use of P matrix to obtain a modified equalizer structure.

As a comparison, we show in Fig. 3 a three-tap equalizer proposed
by Chang.® Here the input signal is first transformed by a weighting
matrix P into a set of orthonormal components that are then processed
as in a conventional equalizer. It is, in fact, identical to a conventional
equalizer except that the input signal vector x is replaced by Px,
where P is a suitably chosen matrix such that PTP = A;'. Initial
presetting of the equalizer and constraining the range of the variable
gain coefficients can, however, be quite complicated with this structure.
These difficulties are avoided in the new proposal, since the equalizer
structure remains unchanged and only the updating algorithm is
modified.

Although the number of multiplications is the same in all three
structures (Figs. 1 to 3), we would like to point out one very important
difference: in Chang’s structure, the accuracy of the transformation
is very critical. The input signals must be represented by their full
precision (say, 10 bits). To avoid round-off errors when all the products
are summed up, more than 12 accurate bits of these products must be
processed and can then (after summation) probably be rounded off
to 10 bits for the transformed tap signal. Any errors introduced in this
process will result in undesirable output noise that cannot be compen-
sated for by the equalizer. In the new equalizer, however, only the tap
increments are affected by errors in the matrix calculation. Obviously,
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a much lower accuracy is needed; in the extreme case, the correct
polarity will be sufficient. Even with comparatively large errors, the
tap-vector noise can be kept low by suitable scaling of the increments.
We thus conclude that the new equalizer has inherent advantages as
far as complexity, cost, size, speed requirements, and time-sharing
possibilities are concerned. Furthermore, simpler algorithms can be
derived from this one. If, for example, the structure of Fig. 2 is used
for an algorithm with tap signals quantized to one bit, the matrix
operation is reduced to controlling the addition and subtraction of
the coefficients and may, for a medium-sized equalizer, be cheap and
efficiently replaced by a suitably programmed read-only memory.
For such nonmean-square algorithms, the optimum @ matrix will, in
general, of course, be different from Ag™.

A few words should be said about the structure of the matrix
Q = A in the special case of partial-response Class IV signaling. It
can be shown that every second diagonal array is zero; furthermore,
if N is even, every second row (or column) is a shifted version of the
previous one. These properties are identical to those of Chang's P
matrix (the remaining nonzero coefficients are, however, different from
those of the P matrix) and can be used to simplify the signal-processing
operations.

Finally, we would like to point out that an all-digital implementation
for higher data speeds (group band) would still be extremely complex
and expensive. For such applications, an array of operational amplifiers
with suitable weighting resistors (probably mounted on a ceramic)
would be a far more economic solution with the present state of the art.

VI. SIMULATIONS

To test the proposals made in this paper, a 15-tap Ms equalizer was
simulated. A 4800-b/s, ssB-modulated, partial-response, Class 1V
signal was selected. A parabolic delay characteristic was assumed
with 1-ms delay difference between the passband channel center and
edges. Table I shows the coefficients of the matrix @ = Agt In Fig. 4,
the equalizer convergence is shown for four different timing phases
that are separated by 90 degrees each. After each iteration, the ms dis-
tortion of the overall impulse response is plotted. It is seen that the
minimum is basically achieved with the first iteration (the small resid-
ual error after the first iteration results from the time-domain trunca-
tion and round-off errors in the components of the initial impulse
response during the simulation). Some additional simulations were
made with an wms stochastic approximation algorithm (adjustments at
the symbol rate) and with amplitude distortion; they also showed a
clearly improved convergence when the decorrelation matrix was used.
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Table | — Decorrelation matrix for N = 15
(elements multiplied with 36)

64 0 56 0 48 0 40 0 32 0 24 0 16 0 8
0 63 0 54 0 45 0 36 0 27 0 18 0O 9 0
5 0 112 0 96 0 80 0 64 0 48 0 32 0 16
0 54 0 108 0 90 0 72 0 54 0 36 0 18 0
48 0 96 0 144 0 120 0 96 0 72 0 48 0 24
0 45 0 90 0 135 0 108 0 81 0 54 0 27 0
40 0 B8O 0 120 0 160 0 128 0 96 0 64 0 32
0 36 0o 72 0 108 0 144 0 108 0 72 0 36 0
32 0 64 0 96 0 128 0 160 0 120 0 8 0 40
0 27 0 b4 0 81 0 108 0 135 0 90 0 4 0
24 0 48 0 72 0 96 0 120 0 144 0 96 0 48
0 18 0 36 0 54 0 72 0 90 0 108 0 54 0
16 0 32 0 48 0 64 0 80 0 96 0 112 0 56
0 9 0 18 0 27 0 36 0 45 0 54 0 63 O
8 0 16 0 24 0 32 0 40 0 48 0 56 0 64
4 MsD

1.0
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Fig. 4—Convergence of new algorithm for different timing phases.
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Vil. CONCLUSIONS

The spread of the eigenvalues of the signal autocorrelation matrix
can become very large for signals with nonflat amplitude spectra. If
the gradient with respect to the tap gains of an ms equalizer is calcu-
lated, its components are highly correlated. The resulting interaction
of the individual gain adjustments may cause a very slow equalizer
convergence. We have proposed a new Ms algorithm that eliminates
these problems. With this new algorithm, a set of uncorrelated tap
increments is calculated so that the individual adjustments are de-
coupled from each other. This can be achieved in either of two ways:
The gradient can first be calculated in the conventional way (corre-
lation of error signal and tap signals) and then be multiplied by a
decorrelation matrix Q to produce the final correction vector. On the
other hand, tap signals can first be passed through such a matrix and
the resulting outputs can then be correlated with the error signal. The
matrix Q is chosen as the inverse of the expected (average) signal
autocorrelation matrix A. The new algorithm was simulated for partial
response signals with zero excess bandwidth. In the case of a flat
channel, the optimum tap coefficients can then be determined within
a single iteration, independent of delay distortion, carrier phase, and
timing instant. This was confirmed by simulation. Compared with
other recent proposals for fast start-up, the new algorithm features
simpler presetting and requires less accuracy in the matrix trans-
formation. Furthermore, this method can easily be extended to systems
with nonmean-square cost functions.
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