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A model based on frustraled total reflection of waves in a multilayered
medium has been developed to analyze the crosstalk between mullimode
optical fibers. Kappa (x), the parameler indicating the power distribution
among the modes of the fiber, and fiber cladding thickness play very tm-
portant roles in determining the crosstalk isolation between fibers. Sig-
nificant but less dominant effects on crosstalk are due to variations in fiber
numerical aperture, length, and transmitting wavelength.

I. INTRODUCTION

Crosstalk between communications circuits has long been a problem
concerning engineers and designers in the telecommunications in-
dustry. In a digital communications system using optical fibers as a
transmission medium, at least a 30-dB signal-to-crosstalk ratio will
be needed. In those applications where a lossy jacket around the fiber
is undesirable, proper design of optical fiber cables and circuits requires
an understanding of the parameters that control crosstalk between the
fibers.

A number of models can be found in the literature to describe cross-
talk between optical fibers.!—8 Maxwell’s equations are the usual start-
ing point for these models, and a field theory approach describing the
coupling coefficients between individual modes results. Each of these
models provides insight into a possible mechanism for describing cross-
talk between optical fibers, and each is operationally useful for cal-
culating crosstalk between single-mode fibers or guides with a small
number of propagating modes. A very interesting model describing
crosstalk resulting from scattering from a rough core-cladding inter-
face is also described in the literature.®

In this paper, a meridional quasi-ray tracing procedure is used to
describe crosstalk between highly multimoded optical fibers. This
approach is an extension of work developed by H. P. Yuen!® and N. 8.
Kapany.!'"- The mechanism for crosstalk coupling of energy between
fibers is that of frustrated total internal reflection of waves in a multi-
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layered medium. Integral expressions for crosstalk and transmitted
power are developed in terms of the geometry of the system, the ab-
sorption loss of the fiber cores, the transmission and reflection coeffi-
cients at the core-cladding interface, and the energy distribution at the
launching end of the fiber. It is assumed in this work that the propagat-
ing modes within a fiber are uncoupled. The error resulting from this
assumption should be small when the excitation is chosen to coincide
with the equilibrium energy distribution and the coupling between the
fibers is weak. A computer evaluation has been made of the integral
expressions for crosstalk and transmitted power. Results of a study
showing the functional relationship between far-end equal-level cross-
talk (FExT) and cladding thickness, mode energy distribution, length,
numerical aperture, and wavelength are included in this paper, along
with a discussion of future work in this area.

Il. DERIVATION OF GENERAL TRANSMISSION AND CROSSTALK FORMULAS

For the system of fibers shown in Fig. 1, we present a general deriva-
tion of the transmission of energy within a fiber and the crosstalk be-
havior between fibers. We assume that each fiber in an assembly is
excited by a source that focuses its power on the center of the entrance
end of a fiber, exciting meridional rays as shown in Fig. 2. The ray
incident at an angle 8, to the axis of the fiber is refracted into the fiber
at an angle 6 which can be simply related to 8, by the law of refraction.
Consider a distribution of input radiant intensity or input power per
unit solid angle F,(8, ¢) for some polar angle defined on the entrance
surface. A certain fraction of the power, T,(6, ¢), will be transmitted
into the fiber because of refraction at the entrance surface. Within the
incremental solid angle, sin 8dfd¢$, the power coupled into the fiber,
dP (6, ¢), can be written as

dP(0, ¢) = F(6, ¢) sin 6d6dé = F,(0, ¢)To(0, ¢) sin 6déde (1)

(F%2).. =Foe. (10)

or

We assume here that an absorption coefficient @ per unit length is
defined for the fibers. The coefficient « takes into account both bulk
absorption loss and scattering loss.

The power flux just prior to hitting the core-cladding interface of the
fiber for the first time is given by

(&), = =reos, @

where d is the fiber core diameter.
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Fig. 1—System of optical fibers.

The power reflected from the first reflection at the core-cladding
interface can then be written as

(% )m = e "WDSIR (g, $)F (6, 4). (3)

The power transmitted into a neighboring fiber from the first reflection
at the interface is given by:

(3 ), = =T, )7 G, 9) @
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Fig. 2—Meridional ray fiber excitation.
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Fig. 3—Ray tracing of transmitted and crosstalk rays in adjacent optical fibers.

The next section shows how R(6, ¢), the reflection coefficient, and
T(6, ¢), the transmission coefficient, are calculated. T'(6, ¢) in this
study is, in effect, the mechanism for obtaining crosstalk between fibers.
Crosstalk is shown to be caused by frustrated total reflection of plane
waves at the interface of a multilayered medium. The reflected rays
continue their propagation down the fiber until they hit the wall again.
A fraction of energy is then tunneled as crosstalk to the neighboring
fibers, and another fraction is reflected. This process is repeated until
the rays reach the exit end of the fiber, as illustrated in Fig. 3. Let us
make the following definitions:

(2
dQ )p“

(gg ) = transmitted power density at the nth hit
Tn

().,

The following power expressions for the nth hit clearly hold.

incident power density at the nth hit

Il

reflected power density at the nth hit.

(3_5 ) = (%)P“T(": ¢) (5)
(%)R - (%)P“R(": ¢) (6)
(3 ) = ()= Q
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For a ray of angle # relative to the fiber axis, the total number of
hits M is the largest integer smaller than (L/d) (tan 8) + 1.

M=[d‘2tan6+%] (8)

and the total path length is L sec 8. The output power distribution at
the exit end is therefore

apr
(de ) = EIRN(E, ) (6, ¢), (9

so that the total output power of the fiber is

T fmax
Poupus = | i [ sin 6F (8, )R (6, @)~ ==0T (0, ¢)dbdg. (10)

If the exit end of the fiber is not matched to the surrounding medium,
there is a transmission factor, T,(8, ¢) # 1. From eqgs. (2), (5), (6),
and (7), we obtain

(% ), = oV TR, 9T T, 9F (0, 9. (D)
Ta

Let each crosstalk ray at the nth hit suffer a further attenuation
A'(8, ¢, L, n) before it reaches the exit end. The total crosstalk output
power is then given by

2r fmax
Pu= [ [ sinoF(s, )70, 0)
o [ M
X S [R(6, ¢)]"147(8, &, L, n)e—0—beetgody  (12)
n=1

Note that M is a function of 8. Equations (10) and (12) provide the
general formula for signal and crosstalk output power at the end of the
fiber as a function of the system parameters. For a specific model of
the crosstalk transfer, it is necessary to provide explicit expressions for
F(o,), R(6,¢), T(8,¢), and A'(8, ¢, L, n). A very simple model is
discussed later in this paper.

That quantity of particular interest in system design is the signal-
to-crosstalk power ratio defined by

S PDU.LD[IL
il — I output, 1
(%)= o (13)
Far-end equal-level crosstalk in decibels is then defined as
— Puutput
FEXT = 10 logio—2 - (14)
Pxr
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Il. FRUSTRATED TOTAL INTERNAL REFLECTION IN A MULTILAYERED
MEDIUM—A CROSSTALK MECHANISM

In this section, a discussion is given of frustrated total reflection of
plane waves in a multilayer medium. This mechanism is the one re-
sponsible for crosstalk in our model and serves as the basis for our
crosstalk power transmission calculation.

Consider the usual representation of total internal reflection shown
in Fig. 4. The ray is completely reflected when ¢ exceeds the critical
angle, ¥, = sin™! (ng/ni). The field amplitude decays exponentially
in the optically rarer medium. This picture is quite different when we
look at the energy flow of the waves more closely.'”7 The Poynting
vector in the rarer medium is by no means zero; only its time average
vanishes. This energy flow is depicted in Fig. 5, which also shows that
a displacement A exists, because of the Goos-Hinchen shift,'®!® be-
tween the incident and reflected beam. For plane waves, this shift is
readily calculated.!® It increases with decreasing angle of incidence ¢,
as expected. The Poynting vector also makes a deeper penetration
when  is smaller.

With this picture we can see that, if a third medium of refractive
index, n1, is brought into close proximity to the first surface from below,
as shown in Fig. 6, some energy will be trapped by it as the incident
rays make their penetration. This trapped energy will then propagate

niy > n2

¥ >y

nq

n2

Fig. 4—Total internal reflection from plane dielectric boundary.
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Fig. 5—Displacement of ray—the Goos-Hénchen shift.

into the third medium. This phenomenon of energy transmission
through a lower refractive index slab for incidence greater than the
critical angle is called frustrated total internal reflection. It is a wave
phenomenon outside the domain of pure geometrical optics and is
exactly analogous to the tunneling of quantum mechanical particles
through a potential barrier, which is classically forbidden.

Consider now three homogeneous media that might represent the
core, eladdings, and core of adjacent fibers and model them by two half
spaces of refractive index, n,, separated by a third medium, n,, of
thickness, {. We have three homogeneous media for which the trans-
mission coefficient can be obtained by matching boundary conditions
directly. The result, for plane wave incidence, is well known in the

¥ >y

np > nz

~ - n2

e — 3
/
N\

m

Fig. 6—Frustrated total internal reflection in a multilayered dielectric medium.
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literature!s and has been derived in the appendix for the N media case
and specialized to the three-media case discussed here. We assume that,
in the vieinity of the core-cladding interface, the signal can be repre-
sented as a plane wave and quote the result for the lossless case for the
geometry and notation shown in Fig. 7.

Let
2 1
vy = [(%:) sin? 6; — 1] . (15)

The transmission coefficient, T'(6, ), which can be defined as the
ratio of the transmitted power flux to the incident power flux, is
given by

1
T, ¢) = [Al cosh? B8 + [(nzy? — nu cos? 61)/2n1ns cos fyy J* sinh? 8 ]

1
+ A’[ cosh? B8 + [(n cos? 8, — ¥2n:1)/2 cos Biningy I sin? hB ] » (16)

where

A, = the fraction of incident power polarized perpendicular to the
plane of incidence.
A, = the fraction of incident power polarized parallel to the plane

of incidence.

8= 2% naty. (17)

Formula (16) is written in terms of 6,, the incident angle at the input
of the fiber, and is used in the calculation of crosstalk power later in this

paper.

01>9c

1 ny > n2

/
\

b

_ Fig. 7—Geometry for_calculation of transmission and reflection coefficients in a
single-layered three-medium dielectrie.
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IV. CROSSTALK FORMULA ADAPTED TO CIRCULAR GEOMETRY

We assume now that the only crosstalk that is modeled here is that
which is due to frustrated total reflection. The geometry of the rays
near the fiber wall at a hit is illustrated in Fig. 8 which is a cross-sec-
tional view of a fiber and one of its neighbors. Here, ¢ is the polar
angle which also serves to define the length ¢. Using simple geometry
we see that

t=ccos¢p — d/2 — [(d/2)2 — c2sin? ¢ |} (18)
and that the angle ¢, for which the line ON is tangent to the circle
0’ is

¢m = sin~! d/2c. (19)

Let E denote the center point of the entrance end of the fiber. Then a
meridional ray ES hitting the wall of the fiber lies in the plane of inci-

Fig. 8—Geometry of two adjacent round optical fibers.
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dence EOS, which cuts the fiber 0’ at a line passing through S’ parallel
to the axis of the fiber. The transmission coefficient is calculated in
the form of plane wave tunneling through a slab of thickness ¢, as in
Fig. 7. When the medium between is homogeneous and lossless, eq. (16)
can be used.

The transmitted ray will propagate as a skew ray and emerge from
a point a number of wavelengths from 8’ depending on 8, as is clear
from Figs. 5 and 7. Since the displacement A is small compared to the
path length between bounces and very small compared to the length
of fiber we are interested in, we can essentially regard the ray to emerge
from S’ for the purpose of calculating the path length of the trans-
mitted ray.

Skew ray analysis shows!? that the length of the skew ray crosstalk
path lengths are also given by L sec §. We can now calculate the ex-
pressions for Pxr and Pgyypu. From the above discussion, substitution
into the crosstalk integral, eq. (12), yields

Al(n)e—ad(‘n-—h csed — —aLsech (20)

and
M M
ngl [R(G, ¢)]ﬁ_1Ar (TL) E—ad(n—}) csed — e—aLaacB ﬂgl R(a’ ¢) n—1

]

The crosstalk integral simplifies to

fmax 2r
Pxr= [ ao[" dosin 0F (5, 9)e=*T(0, 9)

1-— R(H: ‘ib)M
[ | @

Making a change of variable to { with

do _ ¢ — (d/2) — (L+ d/2)° (23)
dt  (t+d/2){(@ - AL+ a) — Y

we can then write
fmax tz d¢ .
Pxr = Nf de | dt ( E) sin OF (6, t) e == T (9, t)

' 1— R(6, )™
[ g | @

where N = 2 times the number of fibers adjacent to the excited fiber.
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V. SIMPLIFIED CROSSTALK FORMULAS USED FOR INITIAL

COMPUTER STUDY

A specific model requires a knowledge of F(6, ¢), B (6, ¢), and T(8, ¢)
in eqgs. (24) and (10) to calculate the crosstalk between fibers. As a
first-order approximation, the following assumptions were made:

(7) The interfiber medium is lossless and homogeneous so that eq.
(16) is valid as well as:

(19) T(6,¢) + E(6,¢) = 1. (25)

(747) The input angular power distribution of the fiber is a gaussian
function of the form

F(0,¢) = e/, (26)

where « is a parameter that is a measure of the width of the
beam and also an indication of how the power is distributed
between the modes of the fiber. 6, is the critical angle of the
fiber.

(7v) The air spaces between the fibers are replaced by cladding
material for the purposes of calculating the transmission co-
efficient, T'(6, ¢). A partial check of this assumption showed
that the primary contribution to crosstalk occurred for small
values of ¢. Replacing the air spaces by cladding material
caused & maximum error in crosstalk of 4.5 dB.

Under the assumptions mentioned above, the crosstalk integral,
(24), becomes

_ fmax 3] d¢
Pxp = N/a deﬁl dt(a)

X sin fe=@teelaess (1 _ [1 — T(9, £)]*}. (27)

The total output power of the transmitting fiber becomes

2r fmax
Postpur = f ¢ f sin g~ @/ —aLed[ ] _ T(g, 4)]¥do. (28)

VI. COMPUTER STUDY—SUMMARY OF RESULTS

A computer program was written and the integrals (27) and (28)
were evaluated for typical fiber parameters. A number of studies were
made to determine how FEXT [eq. (14) ] varies as a function of cladding
thickness, numerical aperture, length, « (kappa), and wavelength.
Table I is a guide that defines the parameters and relates the variables
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Table |

. Range of
Far-End Crosstalk | Figure
as & Function of | Number Parameters Held Constant In%?rf:l;iiint
d Core Diam NA =0.10,d =254 um, L =1
S e 9 kmA=, 98 um - —03t0 0.7
¢  Cladding Disn a = 20 dB/km, x = 0.25, 0.35,
0.4, 0.5, 10. 0
% 10 NA=,)(\)1= d6—254pm,L 1 4 031t007
a = dB/lcm = 0.25, 0.35,
0.4, 0.5, 10.0
d NA =0.20,d =254 pm, L =1
P 11 km, A = U.ﬁ 28 um - — 0.3 to 0.7
a = 20 dB/km, x = 0.25, 0.35,
0.4, 0.5, 10.0
d NA = 0.10,d = 50.8 ym, L = 1
2 12 "\ = 0.6328 ym Z _05t09
a= /km, x = 0.25, 0.35,
0.4, 0.5, 10.0
d NA=0.15,d=50.8,um,L—1
P 13 km, A = 0.6328 pm - =05t 09
a = dB/km::—025 0.35,
0.4, 05,1
d NA=020d—508.um,L=1
= 14 km,\= 6328 4 2 _05t09
= 20 dB/k m,« —025 0.35,
0 4, 0.5, 10.
d NA =0.10,d = 762 um, L = 1
. 15 km, » = 0.6328 i 0.5 to 0.9
a = 20dB/km, « = 0.25, 0.35,
0.4, 0.5, 10.0
A = 0. Ld L = 1
‘-j 16 [N ot o™ £ 051009
e = 20 dB/km, « —025 0.35,
0.4, 0.5, 10.0
% 17 [N YD s ™ P = 12 051000
a = 20 dB/km, « =025 0.35,
0.4, 0.5, 10.0
Numerical aperture 18 d =508 um, ¢ = 85 um, @ = 20 [ NA = 0.05 to
dB/km, L' = 1 km, A = 0.6328 | 0.30
um, « = 0.25, 0.35, 0.40, 0.50,
10.
Fiber length 19 d =508 um,c =8 uma=20 |L =100m to
/km, NA = 0.15 5 km
A = 0.6328 um, x = 0.25, 0.35,
0.4, 0.5, 10.0
« (Kappa) 20 |L=1kmd=508um,c=85 |x=01t 10
um, a = 20 dB/km
NA = 0.15, A = 0.6328 pm
Wavelength 21 L =1km,d = 50.8 ym, c = 85 A = 0.6328 to
um, o = 2 /km 1.06 pm
NA = 0.15, « = 0.25, 0.35, 0.4,
0.5, 10.0
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\._. K=0.26 NA=0.10
80 |- \ d=25.4pm
b L=1km
70 \ A =06328pm

L] @ =20dB/km

60 —
50 -

a0 |-

FEXT IN DECIBELS

20 -

10 | | | | | ]
0.2 03 04 0.5 0.6 0.7 0.8 09
d/c
(26.4) (19.05) (12.7) (8.5) (5.4)

CLADDING THICKNESS IN MICROMETERS

Fig. 9—rexT vs. d/C (claddmg thickness), d = 25.4 um, NA = 0.10, L = 1 km,
A = 0.6328 pm, « = 20 dB/km

in the study to the figure numbers appearing in this paper. Figures 9
to 11 show, for numerical apertures of 0.10, 0.15, and 0.20, respectively,
the relationships between FexT and cladding thickness for a 1-mil fiber
core diameter. For the same numerical apertures, Figs. 12 to 14 and
15 to 17 show this relationship for 2- and 3-mil core diameters.
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Fig. 10—rexT v8. d/C (cla.ddmg thickness), d = 25.4 ym, NA = 0.15, L = 1 km,
A = 0.6328 ym, « = 20 dB/km
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Fig. 12—FEXT vs. d/C (claddmg thickness), d = 50.8 ym, NA = 0.10, L = 1 km,
A = 0.6328 um, ¢ = 20 dB/km.
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Fia. 13—rExT vs. d/C (cladding thickness), d = 50.8 um, NA = 0.15, L = 1 km,
A = 0.6328 um, « = 20 dB/km.
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FEXT IN DECIBELS

NA=0.15

d=76.2 tm
L=1km
A=0.6328 um
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0.5 0.6 0.7 0.8 0.9 1.0
d/C
(38.1) (25.4) (16.3) (9.5) (4.2)

CLADDING THICKNESS IN MICROMETERS

Fig. 16—FExT vs. d/C (cladding thickness), d = 76.2 pm, NA = 0.15, L =1 km,
A = 0.6328 um, « = 20 dB/km.
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Fig. 17—rExr vs. d/C (cladding thickness), d = 76.2 um, NA = 0.20, L = 1 km,

A = 0.6328 um, a = 20 dB/km.
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For practical claddings greater than 12 microns in thickness, in-
creasing the cladding thickness will improve crosstalk isolation by
approximately 0.8 dB/micron. Cladding thickness is an important
design parameter for improving crosstalk isolation between optical
fibers. If we attempted to eliminate crosstalk by coating the cladding
with an opaque substance, cladding thickness would also play an

K=0.25
“r /

80—
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0

60—

wv
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w
@
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w
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40—
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L=1km
c=85m
A=0.6328Lm
10+ a=20dB/km
| 1 | | ] ]
0 0.05 0.10 0.15 0.20 0.25 0.30

NUMERICAL APERTURE

Fig. 18—rExXT vs. numerical aperture, d = 50.8 um, ¢ = 85 um, « = 20 dB/km,
=1 km, A = 0.6328 um, x = 0.25, 0.35, 0.4, 0.5, 10.0.
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important role in determining the amount of loss suffered by the trans-
mitted energy in the core owing to the lossy coating. A cross-check of
Figs. 9 to 17 shows a very weak dependence of FEXT on core diameter.

A fiber core diameter of 50.8 um and cladding diameter of 85 um was
chosen to represent a typical fiber geometry in the remainder of this
study. Figure 18 shows the relationship between rExT and numerical
aperture with a fixed cladding refractive index of 1.458. For a given
kappa, crosstalk isolation improves by approximately 6 dB by doubling
the numerical aperture in the range from 0.10 to 0.30. For an NA
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Fig. 19—rExT vs. fiber length d=50.8 um, C=85 ym, a=20 dB/km, NA=0.15,
A = 0.6328 um, x = 0.25, 0.35, 0.40, 0.50, 10.0.
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= 0.15, crosstalk was evaluated as a function of length as shown in
Fig. 19. For a fixed kappa, crosstalk isolation decreased by approxi-
mately 2 dB per decade of length. The effect of kappa on crosstalk is
shown in Fig. 20. Kappa is an indication of the distribution of power
among the modes of the fiber. As kappa decreases in value, the energy
distributed in the lower-order modes of a fiber increases. A knowledge
of the steady-state mode distribution should enable us to estimate an
effective « for use in this model. As illustrated in Fig. 20, « is an ex-
tremely important parameter in determining the crosstalk between
fibers. For kappas less than 0.5, crosstalk isolation is greater than 40
dB for a kilometer length of fiber. For kappas less than 0.40, crosstalk
isolation is greater than 50 dB. The final study, illustrated in Fig. 21,
shows the relationship between rExT and wavelength. For a given
kappa, doubling the wavelength of the transmitting signal decreases
crosstalk isolation by approximately 7 dB. It is envisioned that typical
fiber losses in a future optical transmission system will be less than
the 20-dB/km loss reported here. We will extend, in the future, our
computer study to include fiber losses ranging from 2 to 20 dB/km,
but do not expect this loss parameter to change the general conclusions
drawn in this paper.

To determine if the primary mechanism for crosstalk in optical
fibers is frustrated total reflection of waves in a multilayered medium,
a crosstalk experiment on a long length of parallel fibers must be per-
formed. In this experiment, crosstalk and kappa should be measured
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Fic. 20—FEXT vs. « (kappa), L = 1 km, d = 50.8 ym, C = 85 ym, a« = 20 dB/km,
NA = 0.15, A = 0.6328 um.
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as a function of length at a number of different wavelengths. This type
of experiment will enable us to check many aspects of the model.

APPENDIX A
Calculation of Transmission Coefficients in a Multilayered Medium

The general expression for the transmission coefficients in a multi-
layered dielectric medium is well known in the literature!®:'":18 and is
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presented here. This expression is simplified for the three-medium case
and, ultimately, eq. (16) in the text is derived.

Consider the geometry shown in Fig. 22. Let us suppose that between
two semi-infinite media, denoted by 1 and n + 1, there are n — 1
layers of dielectric material denoted by 2, 3, ---, n. Let a plane wave
be incident on the last layer at an angle of incidence 8,41 and let the
plane of incidence be the z — 2z plane. As a result of multiple reflec-
tions at the boundaries of the layers, two waves exist in each medium
with the exception of medium 1. Qur problem will be to determine the
amplitude of the transmitted wave in medium n + 1 and hence the
transmission coefficient. The following notation will be used.

z; = the coordinate of the boundary between the gqth and (7 + 1)st
layers.

d; = z; — zj_1 = the thickness of the jth layer.

k; = (2r/\)(n;) = the wave number in the jth medium.

a; = k;cos §; = z component of the wave vector in the jth layer.

é; = a;d; = the phase change in the jth medium.

Z; = the self-impedance of the jth layer.

Zi, = the input impedance looking into the jth medium from the
j + 1 medium.

The electric and magnetic fields in the jth medium can then be
written as

E; = Ajexp [—ia;j(Z — Z;—1)]+ Bjexp [ia;(Z — Z;-1)] (29)

Hi = 5 |Asexp [—iay(Z — 2;2)] — Byexp [ias(Z = Z;-)]). (30)

{t -
Y -

Fig. 22—Geometry used for calculation of transmission coefficients in multilayered
dielectric media.
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The z and ¢ dependency in this case is omitted for the sake of brevity,
but assumes the general form:

exp 2 (kni1Z SIn Gpp1 — wi).

A; and B;, B; = 0 are the amplitudes of the incident and reflected
waves in the jth medium. The amplitude A4 4, of the incident wave is
assumed to be known. To obtain the transmission coefficient of interest,

Al _ Al _A‘E An—l An

Ta+l = m AzA; A—nm (31)

We can write 2n boundary equations for the tangential components of
the fields and solve these equations for Ay, As, - -+, Apy1; By, By, -+,
B, .1. When these coefficients are known, the transmission and reflec-
tion coefficients for the multilayered medium are obtained.

A second approach, and one that develops an iterative scheme more
suitable to a digital computer, describes the transmission coefficient in
terms of a generalized input impedance.’® This is the approach that
will be followed here. It is straightforward to derive, and it is shown in
the literature that:

A; Z; + Zi,

A;H—l = Z'+‘|_ + Zl" exp (z¢1)' (32)
¥ n

Substituting into eq. (31) yields

_ T Zi+ Zh "
Tat1 J_I:_Il Zo 1 21.7° (ig3), (33)
with d; = 0, where
_Z{7' —iZ;tan ¢,

T Z; — iZ ' tan ¢,

VAN Z;. (34)

Specializing eq. (33) for the three-medium case discussed in the text,

we can obtain, with some algebraic manipulation, the following
formula :

e 42:2, _

(Z1 — Z3)(Z2 — Z3) € + (Z1 + Zs2) (Z2 + Zs) ™

For electric fields parallel and perpendicular to the plane of incidence,
eq. (35) will take different forms. For E,

Z,
5= oot = (39

Z, _ Z,
2 = necos B nay’ (37)

(35)
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where

y = [( ’;—:)2 sin? 6, — 1]* (38)
Z, = \/E (39)

,B = kzdz‘y. (40)
After some algebraic manipulation,
K2 cosh 8 — 1K1K, sinh B8

T T "KZcosh?’B + Kisinhif ’ (41)
where
K; = 2nins cos 61y (42)
K, = n3y? — nji cos? 4, (43)
fOl' Eu
7y = Zocos by _ (44)
ni
Z, = Z,cos 0y _ z_ZL-y’ (45)
Nng Mo
and T, becomes
_ K} cosh 8 + 1K1K, sinh 8 (46)
T2 T "KZcosh? B + Kisinh?p ’
where
K; = nicos? 8, — vynl. (47)

Utilizing eqs. (41) and (46), we can obtain the power transmission co-
efficients directly :

Ty = |'r21|2

1
~ cosh? B + [(nZy? — nf cos? 61) /2nins cos fyy J* sinh? 8

Ty, = [ T2 | 2

(48)

1
~ cosh? 8 + [(n cos? 6, — ¥?ni)/2 cos 61n1nay |2 sinh? B

Equations (48) and (49) were used to obtain eq. (17) in the text of this
paper.

(49)
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