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The variations in the geomelry of a step-index optical fiber are deter-
mined as functions of position along the azis of the fiber by an analysis of
the backscattered light produced when a beam from a cw laser is incident
perpendicular to the fiber axis. The power spectrum computed from this
distortion function 1s then utilized with coupled-mode theory to predict
the mode coupling, the reduction in pulse dispersion, and the accompany-
ing increased radiation loss of the fiber. The theoretical calculations support
experimental observations and account for a partial reduction in the multi-
mode pulse dispersion.

I. INTRODUCTION

Optical-fiber communication systems utilizing incoherent light
sources such as light-emitting diodes require the use of multimode
waveguides to insure efficient excitation of the guide. Such guides,
however, suffer from multimode pulse dispersion, because modes with
higher group velocity arrive at the receiver earlier than modes with
lower group velocity, limiting the information-carrying capacity of the
fiber.

Thus, in a fiber of length L, uniform core of index n, uniform cladding
of index n (1 — A), and constant cross section, a short pulse feeding
equal amounts of power to every mode at the input will arrive at the
other ends with a width r = nAL/c, where ¢ is the speed of light in free
space.! For example, a fiber with A = 0.01 and n, = 1.5 will have a
delay spread of r/L = 50 ns/km, a serious limitation on either high-
capacity or long-distance transmission.

Multimode pulse distortion can be reduced by introducing coupling
between the guided modes.? The reduction in the pulse length comes
about because some power traveling in a fast mode is eventually trans-
ferred to a slow mode, while power starting out in a slow mode finds
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itself at least partially in a fast mode, so that the extremes of the
group velocity spread are partly equalized. The root-mean-square
delay spread is proportional to the square root of the product of fiber
length L and the coupling length L. associated with steady-state power
transfer.? The multimode delay spread r is thus reduced by a factor of
(L./L)* which, in the case of strong coupling, L, < L, can be sig-
nificant.

One coupling mechanism that has been investigated in detail is
geometric variations of the fiber along the longitudinal direction z.* If
the deformation function f(z), which is defined by these variations, is
expanded in a Fourier series, two guided modes x and » with propaga-
tion constants 8, and B, will be coupled by the Fourier component
whose spatial frequency is given by® @ = 8, — B,. In other words, the
spatial period is the beat wavelength between the uth and »th modes.
Using n; = 1.5 and A = 0.01 as before and assuming a signal wave-
length of 1.0 um and a fiber core 50 um wide, the beat wavelength for
the adjacent lowest-order modes is 10 mm and for the adjacent modes
near cut-off is 0.7 mm. Spatial periods greater than 10 mm will have
very little effect on mode mixing and spatial periods less than 0.7 mm
will create signal loss by coupling guided modes to the radiation field.

In this paper, the observation is reported of interface irregularities
“ynintentionally” introduced into a fiber during the pulling process.
Distortions that are on the order of several microns are detected and
measured by a backscattered light analysis technique. With the dis-
tortion function in hand, the power spectrum is computed and utilized
to predict mode coupling, reduction in pulse dispersion, and accom-
panying increased radiation loss of the fiber. This represents the first
time that the distortion function of a real fiber has actually been mea-
sured and utilized to prediet transmission behavior.

Il. EXPERIMENT

The fiber studied was pulled from a preform produced by a chemical
vapor deposition (cvp) process.* The core of the fiber is elliptical, with
major and minor axes on the order of 50 um and 30 pm, respectively.
The corresponding measurements for the outside fiber dimensions are
118 um and 110 ym. A microinterferogram and a plot of the index pro-
file are shown in Fig. 1. The profile is close to that of a step-index fiber
with a very slight modification at the center. The maximum index
difference between the core and the cladding is about ny — ne = 0.0135
or A = 0.0093. It is important to point out that the refractive index
profile did not vary by measurable amounts (less than one part in 10)
over distances of interest for mode mixing in the fiber (0.2 cm to 2.0
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Fig. 1—Microinterferogram and index profile of cvp step-index fiber.

cm), though it did vary from one end of the 1-km fiber to the other.

If the geometry of the fiber remained uniform along its length as in
Fig. 1, the fiber would propagate a given set of modes that would not
couple among each other, producing a pulse spread of approximately
45 ns/km. The measured pulse width at the 10-dB point, however, was
about 10 ns after nearly 1 km of fiber.5

To determine the core-cladding interface distortion, which we believe
is at least partially responsible for this reduction in pulse dispersion,
a backscattered light analysis technique was utilized.® This method can
be used to detect the parameter b/a, where b is the radius of the fiber
core and a is the radius of the cladding, assuming constant indexes of
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refraction for the core and the cladding.” The technique has been ex-
tended to make observations on extended lengths of fiber by the set-up
shown in Fig. 2. Light from a cw He-Ne laser is directed to oscillating
mirror M; by means of fixed mirror M,. The oscillating mirror serves
to transform the ~1-mm circular beam into a line 1-mm wide, with
length determined by the amplitude of oscillation. This line impinges
upon the fiber, and the backscattered light is detected with photo-
graphic film.

A typical backscattered light distribution is shown in Fig. 3. Figure 3a
is the overall pattern arising from a 12-cm length of fiber, and Fig. 3b
is an expansion of the section on which measurements are made. The
magnification in Fig. 3b is approximately 1 to 1. Figure 3a is symmetric
about the midpoint with sharp cut-offs at the ends, typical of the back-
scattered light distribution.® As we go from the center of the pattern
outward, we observe a region of enhanced fringe intensity. The loca-
tion of the last fringe in this region is determined by the parameter
b/a, assuming constant n; and n..” Here we interpret b and a as an
average diameter. If the fiber were of uniform geometry along its
length, the fringes would be straight parallel lines; the departure of
this fringe from straightness gives a measure of the variation of b/a,
and hence the distortion function of the fiber.

Measurements were made on several 14-cm lengths of fiber taken
from both ends of the 1-km length. The appearance of the fringe dis-

OBSERVATION SCREEN——
OR PHOTOGRAPHIC FILM

Fig. 2—Optical arrangement to determine core distortion function.
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(b)

Fig. 3—Backscattered light patterns. (a) Complete pattern from 12.0-cm section
of fiber. Slit in center allows for passage of incident light and bright spots in center
are photographic artifacts. (b) Expansion of section of interest.
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tortion was similar visually for other sections taken from intermediate
portions of the fiber, but detailed measurements were not made on
them. Figure 4 is a representative curve of the core distortion. The curve
shows Ab = f(z) plotted versus position along the fiber axis, with
measurements made every 2 mm. The f(z) variations are on the order
of several percent.

We believe that the core-cladding interface distortions observed
were introduced into the fiber during the pulling process. The preform
was reduced to fiber form in an oxyhydrogen flame-pulling apparatus.
Either the instability of the flame as a heat source or slight movements
of the fiber because of air currents and back-flame effects or combina-
tions of these are probably the contributing factors. Nonuniform pull-
ing speeds and varying preform geometry may be additional factors,
but they are expected to introduce variations with a much longer

periodicity.
11l. ANALYSIS

Given the core distortion function, the Fourier transform is then
obtained by computer. A typical transform plot is shown as a bar

f (2) IN pm
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Fig. 4—Representative core distortion function.
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graph in Fig. 5. We see that significant components exist in the coupling
regions of interest. It is our aim to relate this spatial Fourier spectrum
of the distortion function f(z) to the pulse width reduction caused by
mode coupling. The theory is described in detail in Ref. 8 for a fiber
whose core maintains its circular cross section but is randomly bent.
The core of the fiber examined in this paper has an elliptical cross see-
tion, and the observed variations consist of changes in the ellipticity.
Modes of the elliptical fiber are very complicated and are difficult to
apply to a mode-mixing analysis. For this reason, we simplify the prob-
lem by assuming that the fiber core nominally has a circular cross sec-
tion that deforms itself randomly into an ellipse. It is assumed that
this model is capable of yielding order-of-magnitude estimates of the
performance of the actual fiber.

The core-cladding boundary r of a fiber with elliptical deformations
can be deseribed by the function®

r = b+ f(z) cos 2¢. (1)

The constant radius of the perfect fiber is b, f(z) is the distortion func-
tion shown in Fig. 4 whose Fourier power spectrum is shown by the
vertical bars in Fig. 5, and ¢ is the angle of the cylindrical coordinate
system. A fiber with the core-cladding deformation of (1) couples
modes according to the selection rule Ay = £2.% The label », indicat-
ing the azimuthal mode number, enters the field expressions® via
€08 v¢ Or sin ve.
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Fig. 5—Fourier transform of core distortion function.
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If the power spectrum of f(z) drops off sufficiently rapidly to limit
mode coupling to nearest neighbors, the coupled power equations
reduce to the form!?

a};;'m = hy+2,m;v.m(P»+2.m - Pu.m) - hv,m;v—2,m(Pv.m - Pv—z,m)

+ hn+2,m—1;v.m(Pv+2.m—1 - Pv,m) - hv.m;!—!.ﬁH—l(Pvm - P-—2.m+l)- (2)

P,... is the average power carried by the mode labeled », m. In a crude
approximation (applicable for small » values and modes far from cut-
off), the transverse propagation constant can be expressed as'

Kyom = (V + 2m) Zib' (3)

In addition to the already mentioned azimuthal mode number », we
have also introduced the radial mode number m. Together, these two
parameters form the compound mode number

M = v+ 2m. (4)

The expression in the second line on the right-hand side of (2) describes
coupling among modes whose compound mode numbers differ by
AM = 0. In the crude model indicated by the approximation (3),
modes with the same value of M have the same propagation constant
and the same group velocity. This is not strictly true, since the de-
generacy does not exist in the exact theory. However, the modes with
the same M values are coupled very strongly, since coupling among
them is caused by the large amplitudes at low spatial frequencies seen
in Fig. 5. It is thus reasonable to assume that mode mixing among
modes with identical values of M is so rapid that these modes carry
equal amounts of power. This assumption causes the differences of
the power with equal M values to disappear so that only the first line
on the right-hand side of (2) remains. This coupling process is implicitly
taken care of by requiring that modes with equal values of M carry
identical amounts of power. Using the compound mode number, we
write
Pv.m = Py Pv+2,m = PM+2 Pv—a,m = Ppys (5)
hv+2,m:um = hM+2.M hvm:v-—2,m = hM,M—E- (6)
Equation (2) now assumes the form

aP
0z

We proceed by adding all equations of type (7) with the same value of
M.2 However, in addition to this simple summation we use the fact

= hyso.u(Pas2 — Par) — hag,u—2(Py — Pu—a). (7
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that there are M modes with mode number M, but M + 2 modes with
number M + 2. By replacing the differences occurring in (7) by differ-
entials, we obtain

oP aP oP
M —“" = 2(M + Dhasam a};‘;” — 2Mhar. p—s W}d (8)

The replacement of the difference terms with derivatives is an approxi-
mation that is valid if there are very many guided modes, so that the
M numbers are large and can be regarded as a quasi-continuum. With
this approximation, (8) assumes the form
APy P i

We can express the compound mode number in terms of the cone angle
#, at which modes with the same values of M appear in the far-field
radiation pattern that escapes from the end of the fiber.?*? Using'?

2kb
M= (10)
and
o0 T
oM = 2kb’ (11)

with k& = free space propagation constant and b = core radius, we
obtain finally from (9) with ks = h = h(6)

-GV

The propagation of pulses is described by the time-dependent par-
tial-differential equation

14P = \'1 4 aP
z+;§z“(ﬁ)§%(h*0’ (13)
where » = v(8) is the group velocity of the mode labeled 6. Solutions
to this equation are expressed in the form

N )
P(zt,6 = % f 0,() B (w, )¢9 @rgintdes, (14)
=1 —w
The function B;(w, 8) and the parameter p{? (w) are obtained as solutions

of an eigenvalue problem.® The eigenvalue p¢? is expanded into a
perturbation series

p M w) = o + ‘v_“’ + dwpl® + Wl + - - (15)
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The second-order perturbation of the first eigenvalue, pi”, deter-

mines the width of the equilibrium pulse via the formula'+
T = 4\p{'L, (16)

where T is the full width of the gaussian-shaped impulse response of
the multimode fiber measured between the 1/e points and L is the
length of the fiber. It was assumed that the coupling coefficient h is
independent of #. This assumption corresponds to a spatial Fourier
power spectrum of the distortion function f(z) of the form

(PO = & (17)

Numerical differences between our present case and the example treated
in Ref. 3 arise from the fact that the mode spacing (in 8 space) of
nearest neighbors coupled by elliptical core deformations is twice as
large as the spacing between nearest neighbors coupled by random
bends. Taking these differences into account, we arrive at the following
formula for the width of the equilibrium pulse:

_ 1.26ms[ (ny/ma) — 178
T= eNC VL,

in which n; and n, are the refractive indices of core and cladding, ¢
is the velocity of light in vacuum, C is the constant defined in (17),
and L is the length of the fiber.

For comparison with the length 7 of a pulse carried by uncoupled
modes, as mentioned earlier,

(18)

T = %TLEA, (19)
we use the “improvement factor,”
T  1.26A%
=1= , 20
T VCL (20)

with A = ny/ns — 1. The numerical values of R are physically mean-
ingful only if R < 1. If B > 1, the guide length L or the coupling
strength are too small for an equilibrium pulse to have established
itself. The relative decrease of the pulse width achieved by mode
coupling improves with increasing fiber length.

IV. DISCUSSION OF EXPERIMENTAL RESULTS

The step-index fiber used for this study exhibited unintentional,
random fluctuations of the core-cladding boundary resulting in mode
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coupling. According to (19), an uncoupled pulse width of =45 ns/km
should have been observed for A = 9.3 X 1073; the actually observed
pulse width was 7 = 10 ns/km. The observed core-cladding irregulari-
ties are able to account for a substantial part of the pulse shortening.

The function f(2) of (1) is shown in Fig. 4 for a 12.6-cm section of
the fiber. We consider the distortion of this fiber section as typical and
representative of this particular fiber. The absolute square values of the
Fourier components of the function shown in Fig. 4 are plotted in the
bar graph of Fig. 5. It is clear that Fig. 5 does not represent the spatial
power spectrum of the distortion function that enters the coupled-
mode theory. The required power spectrum would have to be obtained
by computing the Fourier spectrum of the function f(z) for the entire
length of the fiber. An approximation of this funetion could be ob-
tained by computing Fourier spectra for a large number of shorter
fiber sections and averaging. This procedure is time-consuming if it
must be done manually, and an automated process would be required
to determine the spatial Fourier spectra of the core-cladding interface
distortion of the fiber.

In the absence of more information, we used the Fourier power spec-
trum shown in Fig. 5 to extract information about the mode coupling
process. Since a theory based on a fourth-power law [see (17)] was
already available, we approximated the data in Fig. 5 by fourth-
power-law curves. The four curves plotted in the figure are possible
approximations that may be roughly guessed from the bar graph.
The numbers used to label the curves, T = 15, 20, 25, and 30 ns/km?,
are the result of determining the constant C' of (17) from the curves
and using it to calculate the width of the equilibrium pulse according
to (18). Which of the four curves is the most plausible approximation to
the actual Fourier power spectrum is open to discussion. It appears to
us that the curves between T = 20 and T = 25 ns/km! seem to ap-
proximate the power spectrum reasonably well. The Fourier compo-
nents for high spatial frequencies tend to exceed the values of the
curves, while the curves are a little high for small spatial frequencies.
Perhaps the fourth-order power law is not the best approximation to
the Fourier power spectrum. On the other hand, we do not have enough
information to obtain an accurate power spectrum. The high spatial
frequencies shown in the bar graph result from rapid fluctuations of
the curve f(z) that are partly noise of the measurement process. It can
thus be expected that the amplitudes of the high-frequency compo-
nents appear exaggerated.

The most important point of this discussion is the observation that
the measured core boundary distortions are indeed of the right order
of magnitude to help explain the observed pulse shortening. Qur data
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can easily account for an improvement of the pulse width by R = 0.5.
Since an improvement of R = 0.2 has been observed, it appears clear
that the core boundary fluctuations are an important contributor to
the observed pulse coupling behavior. The remaining amount of cou-
pling may easily have been contributed by the bends of the fiber axis
caused by the support mechanism and/or tension on the drum.
Mode coupling with a fourth-power Fourier spectrum of (17) results
in a loss penalty of!®
R2eWL = 0.5 dB. (21)

o is the steady-state loss coefficient resulting from mode mixing.
Foran B = 0.5, we thus expect an additional fiber loss of ML = 2 dB.
The observed pulse width improvement of R = 0.2 results in a loss
penalty of ¢V L = 10 dB. The fiber losses actually observed area = 30
dB/km at a wavelength of 0.9 um. The difference between these loss
values is attributable to absorption losses in the fiber material.

The improvement factor B of (20) can be expressed in terms of a

coupling length L.,?
L. \}
r=(%) (22)

For R = 0.5 we have L, = L/4 or L, = 250 m, since L = 1 km was
assumed.

V. CONCLUSIONS

Mode coupling in multimode fibers may be caused by a number of
fiber irregularities. Random index fluctuations, random bends, and
core-cladding interface deformations are the most likely candidates.
In this paper we have considered mode coupling by core-cladding inter-
face deformations observed by a light-scattering technique that ex-
tracts the necessary information from the backscattered light of a
laser that impinges on the fiber at right angles to its axis. The mea-
sured information was used to estimate the amount of pulse shortening
that might be caused by this coupling mechanism. We found that the
observed magnitude of the core-cladding boundary irregularities can
explain some observed pulse shortening. The remainder may be caused
by random bends introduced by the surface roughness of the drum on
which the fiber is supported, or by refractive index changes along the
fiber.

It appears that the backscattering technique used for the determina-
tion of the core-cladding interface irregularities may be a useful tool
not only for monitoring the precision of fiber drawing processes but
also for predicting the amount of mode coupling and consequently the
pulse performance of multimode optical fibers. As shown here, to a
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good degree this information can be extracted from a fiber only 12.6
c¢m long.
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