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Two Derivations of the Time-Dependent
Coupled-Power Equations

By S. D. PERSONICK
(Manuscript received April 12, 1974)

In this paper, the lime-dependent coupled-power equations originally
derived by Marcuse from intuitive arguments are rederived two ways, one
using the coupled-line equations with perturbation theory and the other
using the Kronecker product approach of Rowe and Young.!

I. INTRODUCTION

Suppose a multimode fiber guide with random mode coupling is
excited by an optical source at one end at time { = 0.

This input excitation will produce, at time ¢, a response of optical
power in each mode » at a position z from the input end given by
8, (t, 2).

Marcuse? has suggested from intuitive arguments that s,(, z) should
satisfy the following differential equation

2 (b D) + g (.6, 2) = T | Kna [Pt 2)
- (§ |K”,i2F)(3,(t, Z)), (1)

where K,, is the coupling coefficient in the coupled-line equations
(described below) between modes g and v, F is the spectral height of
the mechanical perturbation in the fiber geometry responsible for the
coupling, (s.(t, z)) is the average! power in mode g at position z, and
C, is the group velocity in mode v.

In this paper, we derive eq. (1) from the coupled-line equations first
using perturbation theory and then using the Kronecker product
approach of Rowe and Young.?

The importance of this work is to show that the intuitive eq. (1)
does in fact follow directly from (z) the coupled-line equations, (i%)

t Subsequent to the writing of this paper, it became known to the author that many
of the results included in the paper were independently and concurrently derived by
R. Steinberg of Columbia University.!

t Average for an ensemble of guides with similar gross properties and similar
excitation.
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voltage linearity of the guide (from Maxwell’s equations), and (4%%)
ensemble averaging over the random coupling perturbation. It is
encouraging to note that skillfully framed power-flow arguments such
as those used by Marcuse lead to the same results as the more cumber-
some approaches that start from the coupled-line equations.

It should be pointed out again that, however it is derived, eq. (1)
describes the average of the flow of power for an ensemble of guides.
How the flow of power in a particular guide compares to the average
flow is still an open subject.*

Il. ANALYSIS

We start with the coupled-line equations that describe the z evolu-
tion of <A, (w, z)—the complex amplitude of the voltage in a mode v at
position z resulting from a single Fourier component of the optical
excitation at frequency w at position z = 0. (We can use Fourier
components since the guide is linear in voltage.)

%w,—z) - ; A, (w, 2)K,uf(2) exp (8, — Bu)z], (2)

where A4,(w,2) (the complex amplitude in mode v) = A,(w, 2)
X exp [—18.(w)z],
B, = propagation constant for mode » (which is a function of

w), and
K,.f(2) = coupling coefficient between modes u and v (K}, = —K.,).

If the input power excitation is a function of time, then the average
power response at position z is given by the average of the square of the
complex envelope, a.(z, t), at position z, i.e.,

(8:(2, 1)) = (las(z, O [?) = f(,/J,,(m + o, 2)As(w, 2)) exp [i(w + o)t]
X exp (—iwt)dwd(w + o), (3)

where the complex envelope a,(t, z) is the Fourier transform of .4, (o, 2).
We shall next derive eq. (1) by obtaining a differential equation for

(9/02)(s:(1, 2))-

2.1 Perturbation theory approach
Following techniques used previously by Marcuse,” we first write

2 (Auw + 0, DAY, 2)) = <[5'3;A,(w + o, z)] A%, z))

+ (A.,(w +0,2) [a% Ao, z)])- (4)
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Using (2) in (4) we obtain

2 (Aulw + 0, DA%, 2))
= (Z Ao + 0, K., J 2

-exp {1[B.(w + 0) — Bulw + 0) ]2} A%(w, 2))
+ @ Av(w + o, 2) AL (w, 2) K, f(2) exp { —i[B.(w) — Bu(w)J2}). (5)

Next we recognize that the perturbation solution to (2) is given by
N z
4.(2) = A.() + le KwAn(z’)[’ J(z) exp [+4(8. — Bu)x]dz. (6)

We shall now substitute (6) into (5) with the following approxima-
tions: We assume f(z) is independent of A4,(z")A;(2') for z > 2. We
keep only terms that are second order in K., because first-order terms
would include the factor f(x) to first order and, since f(z) has been
assumed independent of A,(z)A.(z") for = > 2/, the expectation of
these terms would vanish [ f(z) has zero mean].

We obtain

2 (4w + 0,430, 2))
= £ (Ailo + 0, 20430, DKk [ (1@ 1@)
exp i[B,(0 + o) — Balw + 0)](z — 2)dz
cexp {i[Bs(w + o) — Bs(w + o) ]z}
+ T (Al + 7, )i, )KK [ (@)
-exp [ —1[B:(w) — Bs(w)J(z — 2)}dz
exp (i[Bu(0 + ) — Bulw + o) — Buw) + Bsw) T}, (D)

plus two similar terms where w and w + ¢ are interchanged and the
conjugate is taken.

In (7) we have again assumed independence between f(x) and
A,(w, 2') for z > 2. Now we assume that terms that are rapidly vary-
ing in z can be neglected, i.e., we neglect terms proportional to
exp{i[B.(w) — B.(w) ]z} unless p = ». We obtain for small z — 2’ [so
that (A(w + o, 2)4"(w, 2)) & (A(w + 7, 2V A% (w, 2')) ]

S (Ao + 0, 430, 2) = = T (A + 0, 430, )| Kl F
+ X (Au(w + 0, 2)Au(w, 2))| K, |?F
-exp {i[Bs(w + o) — Bu(w + o) — Bulw) + Bulw) e}, (8)
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where F is the spectral height of the random process f(z), i.e.,

Fe2 [0 (@16
exp ({80 + o) — B0 + ) ]@ — D}d@ — ) (9)

is assumed independent of [Bu(w + ¢) — B.(w + ¢)], which implies
(f(x)f(2)) = Fo(z — 2).

Next we assume that each mode has a well-defined group velocity
within the frequency band of interest, that is,

Bu(w + o) — Bulw) = gu (10)
Substituting (10) into (8) we obtain, using (2),
2 (Ao + 0, 2430, 2))
= 2 (A + 0, A, 2)) exp (i02/C)
= — ¥ | K| F (Ao + 7, 2) A0, 2)) exp (ia2/Cy)
45 Ko F A + 0, Al 2)) exp (ioz/C). (1)
But ’
2 (Ao + 0, A, 2)) exp (i02/C)
= oxp (i02/C5) | 35 (Ar(a + 0, Ale, 2)
+E (o + 0 A2 |- (12)

Substituting (12) into (11) and Fourier transforming as in (3), we
obtain

3 (6u,2) + g3 (5:(8,2))
= = T Kl F @) + T Kl Pl 2), - (13)

which is the same as eq. (1).

2.2 Kronecker product approach
Rowe and Young?® assume two modes and write (in our notation)

6A1§:, 2) _ K12f(2) exp [3(81 — B2)z] As(w, 2)

aAz(w, Z) (14)

9z = Kzlf(?) exp I:T:(,Bz - ﬁl)Z] Al(w} Z),
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where
Ku = Kg] = ZK

They then assume that f(z) is the derivative of an independent in-
crements process satisfying

(f(2)f(2")) = Fé(z — 2') (Dirac delta).

They divide the fiber into intervals (sections) of length A and assume
that all the coupling takes place at the right end of each interval. They
obtain the following difference equation :
Ay(w, 1A) = cos (Ke))Ar[w, (I — 1)A] + isin (Kcp)Ao[w, (I — 1)A]
-exp [2(81 — B2)lA]
Ag(w, 1A) = isin (Kep)Ar[w, (I — 1)A] exp [Z(8: — B1)IA]
+ cos (Kcp)Ao[w, (1 — 1)A],

(15)

where

= f(2)de.

Intervali
From (15) we obtain
(A1(w + o, 10)AT(w, IA))
= (cos? (Ken)){di[w + o, (I — 1)AJA[w, (I — 1)ATD)
+ (sin? (Kei))(A:z[w + o, (I — 1)AJA5[w, 0 — DA])
-exp {i[B1(w + ¢) — Bi(w) — B2(w + o) + Ba(w) J}.  (16)
In (16) we used the fact that ¢; is independent of A1[w, (I — 1)A]
and A[w, (I — 1)A7] because f(z) has been assumed to be the deriva-
tive of an independent increments process. We also used the fact that
terms like (sin (Ke;) cos (Kea)) equal zero because ¢ is a symmetrical

random variable.
In the limit as A — 0 (intervals {I} get small) we have

(cos? (Kc¢;)) —» 1 — FK2A  (sin® K¢;) — FK?A.
We obtain from (16)

2 (e + 0, 941w, 9)
= —FK*(41(w + 0, 2)41(w, 2)) + FE*(4s(w + 0, 2)A3(w, 2))
-exp {i[Bi(w + o) — Bi(w) — Ba(w + o) + B2(w) J2},
2 (Ao + 0, 2)45(s, )
= —FK*A4s(0 + 0)A43(w)) + FEK*(41(0 + 0)41(w))
-exp {i[B2(w + 0) — B2(w) — fr(w + o) + B1(w) J2}.

COUPLED-POWER EQUATIONS 51



ThiS iS the same as eq. (8) W'lth Ku = Kn = ’tK a,nd Ku = Kzz = 0.
Thus, the coupled-power equations follow from (17) by Fourier trans-
forming and making use of approximation (10).
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