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This paper describes an implementation of a speaker-independent digit-
recognition system. The digit classification scheme ts based on segmenting
the unknown word into three regions and then making calegorical judg-
ments as to which of siz broad acoustic classes each segment falls into. The
measurements made on the speech waveform include energy, zero cross-
ings, two-pole linear predictive coding analysis, and normalized error of
the linear predictive coding analysis. A formal evaluation of the systems
showed an error rate of 2.7 percent for a carefully controlled recording en-
vironment and a 5.6 percent error rate for on-line recordings in a noisy
computer room.

I. INTRODUCTION

With the widespread growth in the use of digital computers, there
has been an increasing need for man to be able to communicate with
machines in a manner more naturally suited to humans. The realization
of this need has motivated a great deal of research in automatic recog-
nition of speech by computer.'—* Although only a moderate degree of
success has been obtained in solving the problems associated with
machine recognition of continuous speech,* a greater degree of success
has been obtained in recognition of isolated words from a fixed vocab-
ulary. The performance of these systems range from about 92 percent
correct decisions for 561 isolated words by an individual for which the
system has been carefully trained® to nearly error-free performance for
the recognition of a limited vocabulary (e.g., the digits) also spoken
by a speaker for which the system has been trained.® However, per-
formance of many of these word-recognition algorithms is radically
degraded when the system has not been tuned to the speech character-
istics of the individual user. The subject of this paper is an isolated-
word, digit-recognition system that achieves high accuracy without
having to be trained every time a different speaker wishes to use the
system.
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The development of a speaker-independent limited-vocabulary word
recognizer is inherently more difficult than a speaker-adaptive system
that can use comparatively simple pattern-matching algorithms to
recognize the input words. It has been argued that the extended effort
needed to design a speaker-independent system is unnecessary in view
of the relative ease of training an adaptive scheme to learn to recognize
the speech of a new user. There are two major reasons why such argu-
ments are invalid. For small vocabulary systems (e.g., digit recog-
nizers) with a large number of potential users, it is not feasible to store
training data for every possible user. Furthermore, most systems can-
not train themselves on new speakers very rapidly. Thus, the turn-
around time for new users is often a major factor limiting the use of
speaker-dependent systems. For a large vocabulary (250 words), the
time required for a new speaker to form reference patterns for all the
words in the vocabulary can be prohibitive. In addition, the variation
with time of a speaker’s voice characteristics may necessitate frequent
updating of his reference patterns. Finally, the design of a speaker-
adaptive word-recognition algorithm is so dependent on the uniqueness
of each talker that very little insight is gained in the actual problem of
recognizing speech. On the other hand, it is hoped that the development
of a speaker-independent scheme will contribute to an understanding
of the acoustic attributes of speech that reliably distinguish the various
sounds. Without such an understanding, it would be difficult to dupli-
cate the human capacity of recognizing the speech of a wide variety
of speakers.

This paper discusses a speaker-independent digit-recognition system
that was implemented on the computer facility of the acoustics research
department at Bell Laboratories. Section IT discusses the basic speech
parameters that are measured and shows how the digits can be classi-
fied from these features in a speaker-independent manner. This section
includes a discussion of the various signal-processing techniques that
are heavily relied on throughout the classification process. Section II1
discusses the digit-classification scheme. The classification procedure
is a tree-like decision algorithm for which backwards tracing is allowed
when one of the parallel-decision algorithms indicates a high prob-
ability of error. Section IV gives the results of a formal evaluation of
the recognition system. Finally, the paper concludes with a discussion
of the strong and weak points of the system and suggestions for how it
can be improved.

Il. FRAMEWORK OF THE RECOGNITION SYSTEM

Figure 1 is a block diagram of the overall digit recognition system
that was implemented. Following endpoint alignment in which the
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Fig. 1—Block diagram of the overall digit recognition system.

interval containing the word to be recognized is carefully determined,
the speech is analyzed every 10 ms to obtain zero-crossing rate, energy,
two-pole model linear-predictive-coding (Lpc) coefficients, and the
residual Lrc estimation error. To aid in making preliminary classifica-
tion decisions, the speech interval is segmented into three well-defined
regions. All the speech information is fed in parallel into a preliminary
decision-making algorithm that chooses one of several possible digit
classes for the input utterance—e.g., one class contains the digits 1
and 9. A final decision is then made based on the presence or absence
of certain key features in the input speech.

In this section, we show how the various digits can be characterized
in terms of certain acoustic features. Then we discuss some key signal-
processing functions that are heavily relied on in the decision algo-
rithms and that contribute strongly to making the system speaker-
independent.

2.1 Characterization of the digits

The elemental speech units (phonemes) that comprise English words
can be classified into two broad categories, vowels and consonants.
The vowels can be further classified into front (/i/, /1/, /e/, /e/, and
/ae/), middle (/3/, /A/), and back vowels (/u/, /U/, /o/, and /o/). It
is also convenient to subdivide the consonants into the categories
noise-like (fricatives, plosives) and vowel-like (nasals, glides). Table I
gives a list of the sequence of phoneme categories for each of the ten
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Table | — Sound classes characteristic of the digits (from Ref. 6)

Sequence of Sound Classes

VYNLC - FYV — VLC — BV

VYLC - MV — VLC
UVNLC — FV — BV
UVNLC — VLC — FV
UVNLC —- BY - MV

UVNLC —- MV — FV — VNLC
UVNLC — FV — UVNLC

UVNLC - FV - VNLC —- FV - VLC
FV —- UVNLC

VLC - MV - FV - VLC

g
&

LTI WN —~O

VNLC = Voiced, noise-like consonant.
UVNLC = Unvoiced, noise-like consonant.
VLC = Vowel-like consonant.
FV = Front vowel.
MV = Middle vowel.
BV = Back vowel.

digits, 0 through 9. Our approach toward speaker-independent
recognition of the digits is to use a set of robust measurements to
classify the phonemes into the six broad categories listed in Table I.
By robust measurements, we mean acoustic parameters that give a
general indication of the gross nature of each phoneme without being
too dependent on the speaker’s voice characteristics. Through a com-
bination of parallel processing and self-normalization, the phoneme
categories are determined and the spoken digit is recognized. We now
discuss the criteria for the selection of the robust measurements that
are used, the technique of self-normalization of measurements, and
finally the method of parallel-processing of the data to give a speaker
independent classification of the digits.

2.2 Robust measurements for digit recognition

The requirements for a recognition parameter to be selected as being
a robust measurement are:

(7) The parameter can be simply and unambiguously measured.
(4) The parameter can be used to grossly characterize a large pro-
portion of speech sounds.
(#4) The parameter can be conveniently interpreted in a speaker-
independent manner.

Based on the above requirements, the zero-crossing-rate and spectral-
energy parameters are excellent candidates for robust measurements.
These parameters can be used to effectively characterize the general
acoustic properties of the sound categories listed in Table I. For ex-
ample, noise-like sounds have a relatively high zero-crossing rate,
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relatively low energy, and a relatively high concentration of high-
frequency energy. Thus, the noise-like sounds of any speaker can be
characterized quite accurately based on these measurements. The term
“relatively,” in the above classification of noise-like sounds, can be
conveniently interpreted for a given speaker by a simple self-normaliza-
tion technique discussed later in this paper

To measure the distribution of spectral energy, a two-pole LPc
analysis has been suggested by Makhoul and Wolf” as an excellent
means of representing the gross features of the spectrum. Figure 2
(from Makhoul and Wolf”) shows the results of applying a two-pole
model to a variety of speech sounds. This figure is a comparison of the
spectra of several speech sounds obtained directly from Frr spectrum
measurements compared with the spectra of the best two-pole Lrc
fit to the spectrum. For a two-pole Lpc analysis, there is either one
complex-conjugate pole or two real poles. In Fig. 2a, the spectra for
the sound /sh/ as in the word ‘“‘short” are plotted. For this example,
the two-pole Lpc analysis gives a complex conjugate pole at about 3000
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Fig. 2—Comparison of FFr spectra and two-pole Lpc spectra for several speech
sounds.
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Hz—i.e., the region of maximum energy concentration in the spectrum.
In Fig. 2b, similar results are shown for the vowel /a/ where the major
concentration of energy in the spectrum is around 800 Hz. In the ex-
amples of Figs. 2¢c and 2d (a voice bar and the vowel /i/), the major
concentration of spectral energy is around 0 Hz; thus, the two-pole
LPcC analysis gives two real poles in the right-half z-plane. From Fig. 2,
it can be seen that the computed pole frequency gives a good indication
of the location of the dominant portion of the spectral energy of the
sound and can thus be effectively used to characterize sounds with
relatively high-frequency or low-frequency concentrations of energy.
For example, noise-like sounds are characterized by a relatively high-
frequency spectral concentration of energy, while nasals and vowels
generally have a much lower frequency for the energy concentration.

Figure 3 (also from Makhoul and Wolf?) illustrates the dynamic
behavior of the computed pole frequency of the two-pole model and
the corresponding spectrogram of the utterance, ‘‘Has anyone measured
nickel concentrations - - - .”” Examination of Figs. 2 and 3 shows that,
for vowel-like sounds, the computed pole frequency is invariably
situated somewhere between the first and second formants. In general,
when F, and F, are not too far apart and have comparable amplitudes,
the pole frequency falls almost midway between the two resonances.
Since F; does not usually have as much dynamic movement as F, the
computed pole frequency tends to follow the motion of the second
formant. Since the motion of F; is quite important in the characteriza-
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Fig. 3—Spectrogram and computed pole-frequency of two-Pole Lpc model for the
utterance, ‘Has anyone measured nickel concentrations - - ./
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tion of the digits, the ability of the two-pole Lpc analysis to track this
motion has been used in the classification phase of the digit-recognition
system.

It should be noted, however, that when either F; and F, are suffi-
ciently far apart or the amplitude of F, is significantly greater than
the amplitude of F, the pole frequency will either follow Fy or result
in two positive real poles. Figure 3 shows that, during the /i/ in the
word “anyone,” the pole frequency begins to dip sharply as the separa-
tion between F; and F, grows greater and finally results in positive
real axis poles as the separation reaches some critical threshold. For
nasal sounds, the energy is so highly concentrated near the first reso-
nance that the two-pole model usually results in positive real axis
poles, as seen in Fig. 3.

In addition to using the computed pole frequency as a measure of
the location of dominant spectral energy and a characterization of the
dynamic movement of Fs, the normalized error of the two-pole model
contains important information about the spread of spectral energy.
The normalized or residual error is defined as

V=1-— airy — Qsqre,

where a, and a; are the two-pole Lpc coefficients and r; and r, are the
normalized autocorrelation coefficients. It can be shown that the more
concentrated the energy spectrum, the lower the normalized error.®
For speech sounds, the relative magnitude of the normalized error
generally increases from sonorants to vowels and then to fricatives.
Within the three vowel types, the back vowels have the lowest relative
normalized error and the front vowels have the highest. By observing
the relative changes in the pole frequency and normalized error, im-
portant information about the structure of the voiced region of the
word can be obtained. An example of the usefulness of the pole param-
eter in specifying the speech sounds comprising the digits is given in
the next section.

In summary, a reasonable set of robust measurements that have
been implemented for this digit recognition algorithm is as follows:

(i) Zero crossing rate, which is defined as the number of zero cross-
ings in a fixed frame length (on the order of 10 ms).

(%) Emnergy, which is defined as the sum of the squared values of the
speech waveform in a given frame.

(i) Normalized error obtained from a two-pole Lpc analysis of a
given speech frame.

(iv) Pole frequency (or frequencies) obtained from a two-pole Lrc
analysis of a given speech frame.
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2.3 Self-normalization of parameters

Almost all classification algorithms use some set of threshold levels
in the decision process. Using a fixed set of thresholds leads to a large
number of problems for speech recognition in that many of the thresh-
olds are speaker- or time-dependent. To eliminate this difficulty, the
technique of self-normalization of parameters was used in which many
of the most significant thresholds were obtained from measurements
made directly on the speech sample being recognized. Thus, for ex-
ample, in the case of setting thresholds on zero-crossing rate to deter-
mine whether a sound is noise-like or nasal, a statistical description of
the zero-crossing rate (zcr) was made for the entire utterance. The
statistical description consisted of measuring the mean of the zcr and
its standard deviation over the region of strong energy (i.e., the region
where the energy exceeded 10 percent of the maximum energy of the
utterance). Based on zcr measurements, one criterion for classifying
a segment as noise-like was if its zcr exceeded a level one standard
deviation above the mean during the segment. Figure 4 shows the zcr
measurements for the word ‘“seven.” Indicated in this figure are the
average zcR and a range of one standard deviation around this average.
During the initial /s/, the zcr is significantly above the threshold, as
anticipated.

120

/SEVEN/

0 0.1 0.2 0.3 0.4 0.5 0.6 07
TIME IN SECONDS
/s/ /8/ /Iv/ 18/ /n/

Fig. 4—Energy and zcr for one example of the word “seven.”
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Fig. 5—FEnergy and zcr for one example of the word ‘‘nine.”

In much the same manner, a self-normalized zcr threshold can be
set for classifying a segment as a nasal-like sound. In such cases, the
zcr generally falls below a level one standard deviation below the aver-
age zcr for the utterance. As an example, Fig. 5 shows the measured
zcr for the word “‘nine” and gives the spread of zcr around the average
value. For the initial and final nasals, the zcr is much lower than the
average and thus is a good indication of the nasals.

The idea of determining thresholds based on measurements made
during the course of the utterance being recognized can be used for any
or all measurements described in the preceding section. For example,
Fig. 6 shows the two-pole model normalized error and the pole fre-
quency for the word ‘“nine.” The nasal sections are clearly charac-
terized by low normalized error and a zero-Hertz pole frequency. In
contrast, Fig. 7 shows the same measurements for the word “six.”
Again, the noise-like sections are clearly depicted by the relatively
high values of normalized error, pole frequency, and zcr.

The transitional nature of the normalized error and pole frequency
can be used to classify the vowels into types high, middle, and back.
Figure 8 shows the normalized error and pole frequency throughout
the word “two.” After the frication region, which is marked by high
normalized error and low energy, the normalized error uniformly
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Fig. 6—Complete set of measurements for one example of the word “nine.”

decreases. The decrease in the normalized error is due to the fact that
the vowel nature changes from front (because of the /t/) to back. Thus,
without specifying any absolute thresholds, the constituent structure
of the voiced section of the word can be obtained by noting the relative
changes in the normalized error. As described earlier, changes in the
pole frequency can also be used to indicate the constituent vocalic
structure. As seen in Fig. 8, the pole frequency is continually decreasing
throughout the voiced region in the word ‘““two,” thereby indicating
a continually decreasing second formant. As another example, Fig. 9
shows the parameters for the word ‘“four.” The gradually increasing
normalized error and pole frequency are indicative of a progression
from a back vowel to a middle vowel.

2.4 Parallel processing

Using the self-normalization technique, each robust measurement
can, by itself, classify a speech sound into one of the six broad categories
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Fig. 7—Complete set of measurements for one example of the word “six.”

of interest. Unfortunately, the classification will not be error-free; but
if the results of all the measurements are ‘“‘intelligently” pooled to-
gether, then the classification performance can be significantly en-
hanced. The operation of combining the measurements is termed paral-
lel processing. Parallel-processing ideas have met with good success in
other areas of speech processing.®

The idea of parallel processing as it is used here not only involves
a suitable combination of the robust measurements but also the in-
corporation of certain structural constraints of the lexicon as addi-
tional input. For example, as seen in Fig. 9, the initial section of the
word shows only a slight indication of the initial fricative /f/ (i.e., the
high zero crossing and normalized error for the initial 10 to 20 ms of the
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Fig. 8—Complete set of measurements for one example of the word ‘‘two.”

word), and one might conclude that there is no frication. However, for
the digits, it is known that only 1, 9, and 8 do not normally begin with
frication. Since the zcr, normalized error, and pole frequency are rela-
tively too high for the digits 1 or 9, these digits can be safely omitted
from consideration. In addition, a combination of the facts that the
normalized error is low and increasing and that the pole frequency is
increasing indicates that the voiced region in the word is more than
likely composed of a back-type voiced sound followed by a middle-type
voiced sound. Since the voiced section of the word ‘‘eight’” is a front
vowel sound, the odds are quite high that the word is not “eight.”
Additional evidence that the word is probably not ‘“‘eight” can be
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Fig. 9—Complete set of measurements for one example of the word “four.”

obtained from the lack of a burst at the end of the spoken word. By
pooling knowledge from the individual measurements with information
about the structure of the words in the lexicon, the weak frication in
the spoken “four” can be recognized. Thus, the major feature of
parallel decisions is the ability to arrive at a correct decision even if
one or more of the parallel inputs is in error. In the next section, we
discuss the organization of the digit recognizer and the specific nature
of the logic rules.

lll. DIGIT RECOGNIZER

As seen from Fig. 1, the first step in the recognition scheme is the
important problem of endpoint alignment (determining the location
of the spoken word during the recording interval). The algorithm used
in this scheme has been described by Rabiner and Sambur!® and has
been shown to give reasonably good results over a wide variety of
speakers and background levels. However, the algorithm sometimes
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has trouble finding the end of the word when the speaker sighs or
puffs after reciting the word. To compensate for this problem, the
decision algorithm does not place too much dependence on the end
region of the word. The “end region” is defined as the region from the
end of the word to the point at which the energy first exceeds 10 percent
of the maximum energy. Equivalently, an ‘initial region” is defined
from the beginning of the word to the point at which the energy first
exceeds 10 percent of the maximum. The remaining section is termed
the “middle region.” The process of determining the three regions of
the word is labeled “interval segmentation’ in Fig. 1.

Throughout the duration of the detected word, the four robust
parameters discussed in Section 2.2 are measured once every 10 ms
(i.e., every 100 points for a 10-kHgz sampling rate) and smoothed using
a nonlinear smoothing algorithm proposed by Tukey.!! In addition,
the first two formant frequencies are computed using a 12-pole LPc
analysis at three points during the middle region. These include the
point of maximum energy, the beginning of the middle region, and the
end of the middle region. Since formant frequencies are quite speaker-
dependent, they were used in the decision process only as a supporting
measurement to discriminate between sounds that were quite dissimilar
when viewed in the F; — F; plane (/i/ and /a/ are examples). The
supporting nature of the formant measurement is also necessitated by
the fact that the extraction of formants is not a simple and unam-
biguous task, and too great a reliance on these parameters is fraught
with danger.

Following the measurement phase, a preliminary class decision is
made for the utterance. An expanded view of the preliminary decision
box is given in Fig. 10. The decision algorithm is in the form of a tree
structure that traces down the most probable branch to arrive at the
decided digit. However, it should be noted that there are provisions in
the algorithm for back-tracking if some measurement strongly suggests
that an error has been made.

The first branch in the tree is to decide whether or not the initial
portion is nasal-like. As we discussed previously, this decision is based
upon the fact that nasal-like sounds have relatively low zcr, low
normalized error, and low pole frequency. If a nasal-like beginning is
detected, the preliminary choice is between 1 and 9. As a further check
on this preliminary 1, 9 decision, the ending region is checked for
nasal-like characteristics. If there is no evidence of initial nasal-like
sounds, the digits 1 and 9 are removed from further consideration.
When the initial region is deemed nasal-like, a relatively simple deci-
sign can be used to decide between 1 or 9. The digit 9 can be distin-
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Fig. 10—Preliminary decision tree for digit classification algorithm.
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guished by a sharp discontinuity in pole frequency (between the initial
nasal and the vowel) and high normalized error during the transition
from the nasal /n/ to the diphthong /al/ (see, for example, Fig. 5). On
the other hand, as shown in Fig. 11, there is no discontinuity at the
end of the nasal-like section in 1.

Tracing along the decision tree, the next choice is to decide whether
there is any definite indication of initial frication as shown by sig-
nificantly high zcr, normalized error, and pole frequency. The positive
detection of frication eliminates the choice of the word “eight.” If
there is no definite frication, the end region is checked for a burst and
the middle region is checked for front vowel-like characteristics. The
formant parameters are also used to check if the middle region is com-
posed of only front vowels. A suitable combination of the results of
these tests is used to reject or accept the word “eight” as the digit. It
should be noted that the decision process is in the form of a hypothesis
test. In other words, we assume that the spoken word is “‘eight’’ and
check to see if the acoustic parameters are consistent with this hypoth-
esis. In fact, the basic structure of the entire digit recognizer is to first
hypothesize and then test the acoustic consequences of this hypothesis.
The parallel processing aspect of the decision assigns the appropriate
weight to a particular test. For example, the detection of a burst at
this point in the decision tree is an almost 100-percent indication that
the word is “eight.” However, the lack of a burst does not necessarily
preclude the possibility of “eight,” and this result should be weighed
accordingly.

Assuming that we reject the spoken word as the digit 8, the remain-
ing possibilities are 0, 2, 3, 4, 5, 6, and 7. The end region is then checked
for fricative-like behavior. If frieation is indicated, a hypothesis test
on the digit 6 is made. The middle region is checked for front vowel
characteristics, and the only timing measurement in the entire digit
recognition program is performed. This measurement compares the
relative duration of the initial frication plus ending frication to the
length of the middle region. The frication duration is defined from the
beginning (or ending) of the word until the point at which the zcr
remains within one standard deviation of the average for three time
frames. This definition can be modified when any abrupt discontinu-
ities in normalized error or two-pole frequency indicate a more prob-
able location for frication. In addition, the extent of frication is not
allowed to go beyond the 10-percent maximum energy points that form
the boundaries of the middle region. For the digit 6, the timing ratio
should be less than one and the middle region should be less than 250
ms. A combination of the results of the hypothesis test are used to
verify that the spoken word was *‘six.”
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Fig. 11—Complete set of measurements for one example of the word ‘‘one.”

If no frication is indicated during the ending region, a test for nasal-
like behavior is made. If this test is positive, then a hypothesis test of
the digit 7 is made. From Fig. 12, we can see that zcr, two-pole fre-
quency, and energy dip sharply during the consonant /v/. The hy-
pothesis test consists of verifying these dips and checking the vowel
characteristics on either side of the dip. Again, the combined output of
the test determines whether to reject or accept 7.

If the digits 6 and 7 are eliminated from consideration, the middle
region is analyzed to ascertain its structure. The preliminary analysis
is achieved by noting the relative change in normalized error. If the
normalized error increases, then the structure is characterized as an
initial back vowel to a middle or front vowel. Thus, for increasing
normalized error, the digits 3, 4, and 5 are considered the most likely.
The relative change in the three-second formant measurements are
used as supporting evidence to confirm the structure. For the digits
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Fig. 12—Complete set of measurements for one example of the word ‘“‘seven.”

3, 4, and 5, F, should be increasing. The final decision among the
possibilities 3, 4, and 5 is easily achieved on the basis of the robust
parameters and formant measurements.

If the normalized error decreases during the middle region, the digits
0 and 2 are then the most probable choices. A decreasing F: helps
support these choices. To decide between 0 and 2, a dip detector pro-
gram is used to discover the presence of the sonorant /r/ as depicted
by a slight dip in pole frequency, normalized error, and energy. Figure
13 shows the typical dip behavior for these parameters during the
spoken 0. The presence (or absence) of a dip is checked with other mea-
surements to verify the final decision.
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Fig. 13—Complete set of measurements for one example of the word ‘‘zero.”

IV. EXPERIMENTAL RESULTS

The experimental test of the digit recognizer was conduected in two
parts. The first part consisted of 10 speakers (five women and five men)
who each made 10 complete recordings of the 10 digits. The recording
sessions were spaced over a five-week period to include the effects of
time variation in the testing. The recordings were made in a quiet
room with a high-quality microphone. The decision algorithm was not
designed for the characteristics of each particular speaker, so as to give
a true test of the speaker-independent nature of the scheme. The results
of this experiment are shown in Table II. The average error rate is 2.7
percent.

A confusion matrix for each of the 100 tests of each digit is presented
in Table III. The confusion matrix indicates that all occurrences of
initial frication were correctly detected by the decision algorithm. In
only 6 out of 200 examples of the digits 1 and 9 was the initial nasal-
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Table Il — Error scores for first digit recognition experiment

Correct Wrong Percent Correct

Women
SK 97 3 97
KD 96 4 96
CMceG 96 4 96
BMcD 97 3 97
SpP 97 3 97
Total 96.6
Men
MS* 89 1 08.8
LR 100 0 100
RS 97 3 97
AR* 88 2 97.7
JH 97 3 97
Total 98.1

Sum 954 26 97.3

* Missed one recording session.

like consonant incorrectly determined. The confusion matrix also
shows that most errors were made in the final detailed decision. More
sophisticated processing would probably enhance the final decision
and thereby make the system performance compatible with adaptive
schemes.

Table Ill — Confusion matrix for first digit recognition experiment
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Individual Errors 5 2 8

Total—26 errors out of 980 utterances
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Table IV — Distribution of errors for the second digit
recognition experiment

Number of Digits Incorrect Total Percent Correct
9 1 2
Female (30) 11 15 4 92.3
Male (25) 17 8 0 96.8
Total (55) 28 23 4 944

To ensure the validity of these experimental results, another more
challenging test was conducted. In this experiment, 55 speakers (30
women and 25 men) were selected at random and asked to give one
rendition of the 10 digits. Instead of using a high-quality microphone
in a quiet environment, the input speech was taken from a close-talking
microphone alongside a chattering Teletypewriter. The decision was
performed on-line, and the speaker was only instructed when to say
each digit. The results for this experiment show an average error rate
of 5.6 percent. In addition, no speaker tested did worse than 2 out of
10 wrong. The distribution of errors for this experiment is shown in
Table IV. The distribution matrix indicates the generally good per-
formance of the system.

It should be noted that there was no effort in our experimentation
to select speakers with good diction. The speakers represent dialects
from most of the regions in the U.S. In informal on-line demonstrations
of the system, many non-American speakers (French, Japanese,
Indian, German) tried having their English-pronounced digits recog-
nized. The informal results were in good agreement with the other
experiments. In addition, an informal attempt to “beat” the system
by holding one’s nose or using falsetto also proved generally un-
successful.

V. DISCUSSION

The digit-recognition system that has been described in this paper
can be considered as a first pass in the direction of speaker-independent
speech recognition. Our approach has been to describe a variety of
speech sounds in terms of a set of robust measurements. We then
devised a tree-structured decision algorithm that used these measure-
ments to characterize the acoustic features of the presented word. The
sequence of branches in the tree was designed to resolve the most
obvious sounds and then proceed to the more difficult decisions. Thus,
the relatively easy problem of distinguishing between noise-like sounds
and nasal-like sounds was attacked first, and the determination of the
vowel-like constituents was then determined. The output of the pre-
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liminary decision tree was a small subset of the 10 possible digits that
almost invariably included the spoken word. The major portion of the
errors in the system were made in the box labeled ‘““final decision’ in
Fig. 1.

The preliminary decision tree (Fig. 10) incorporated some original
ideas about self-normalization that effectively eliminated the need for
tuning the system to the characteristics of a given speaker. Such a
decision tree can be extended to prune down a much larger lexicon and
arrive at a small list of possible choices. Improvements in the method
of selection within the list of possibilities could lead to speaker-inde-
pendent systems that can truly compete with the performance of
adaptive schemes. Such improvements could result by incorporating
more sophisticated probabilistic methods into the framework of the
“hypothesize-verify’’ technique proposed in this paper.

Our goal in the development of the digit-recognition system is to
show that speaker-independent digit recognition is possible through an
intelligent description of broad categories of speech sounds. This
description uses what is known about the necessary characteristics
of each category instead of blindly using pattern-matching algorithms
to rigidly quantify the sounds. The later approach is doomed to failure
for a large enough speaker population because it overlooks the fact
that the information in the patterns contain as much personal informa-
tion as linguistic information.
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