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On the Theory of Self-Resonant Grids

By I. ANDERSON
(Manuscript received May 27, 1975)

An approximate theory is developed to predict the frequency response
of a self-resonant grid. The grid is comprised of capacitive and tnductive
elements and exhibits a band-stop resonance. The analysis is based upon
the derivation, from physical considerations, of an equivalent circuit
representation of the grid structure. Predicted results compare well with
measured data.

I. INTRODUCTION

Arnaud and Pelow!" have recently described measurements of the
transmission properties of several new types of self-resonant, metal grid
structures. These grids, which are readily fabricated by photolitho-
graphic techniques, have applications as millimeter-wave quasi-optical
filters, or diplexers, in communications satellite antennas and in beam
waveguide systems. The grid elements are symmetrical such that the
grids may be used with two orthogonal polarizations. In this paper,
we derive theoretical expressions for the frequency response of the
simplest of the new grids and compare the results with measured data.

The grid to be considered here is a periodic array of ‘“‘Jerusalem”
crosses as shown in Fig. 1a. We wish to determine the grid frequency
response in terms of the dimensions of the elements when the planar
transmitted wave is incident normally. On account of the complex ge-
ometry of the grid elements, an exact treatment as a boundary value
problem would be prohibitively difficult. Computer-oriented, numeri-
cal techniques??® have provided a powerful means of solution for grid
structures in the form of arrays of rectangular, or circular, apertures.
The successful application of these techniques requires,* however,
considerable caution in approximating the unknown aperture fields.
When the aperture geometry is complicated, as here, this aspect of
the numerical approach poses a considerable difficulty.

Now, in general, the transmission properties of grid structures can
be described® in terms of an equivalent impedance, together with a

*In eq. (2) of Ref. 1, A should be replaced by A/2.
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Fig. 1—Jerusalem-cross array and approximate equivalent circuit.

section of transmission line which represents propagation in free space.
For example,® consider the transmission of a plane wave incident nor-
mally upon a grid of thin, perfectly conducting, parallel metal strips of
period p. When p < \, where \ is the wavelength, the equivalent
impedance is a shunt inductance, or capacitance, depending upon
whether the electric vector of the incident wave is parallel to, or per-
pendicular to, the edges of the strips. In the following section, an
approximate circuit representation of the present grid is derived from
physical considerations and from the known results for grids of
parallel strips. This approach lends itself to a simple understanding of
the grid transmission properties and, furthermore, leads to useful
design formulae.

1l. ANALYSIS

As shown in Fig. la, the period of the array is p, the width of the
inductive strips is w, and the separation between adjacent crosses is
g. The length and width of the capacitive segments of each cross are
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d and h, respectively, and the thickness of the grid is ¢. It is assumed
that

K wKLp, h<&p <A, and g<KLd < (1)

The electric field, E’, is incident normally on the grid with the electric
vector directed as shown. For purposes of discussion, we shall refer
to this as the “vertical” direction; the incident magnetic field, H', is
then in the horizontal direction. The effect of the vertical “dipoles,”
each of length d and width %, at the sides of the crosses is negligible
for d < ). It is therefore assumed that only current that flows parallel
to Ei, along the vertical inductive strips and across the horizontal
capacitive strips, is significant in determining the field scattered by
the grid. On the basis of this assumption, we now consider the mag-
netic and electric fields in the vicinity of the grid.

Since w < p and h < p, the magnetic field about the grid, due to
current flowing along the vertical inductive strips, is approximately
the same as that about a corresponding uniform inductive grid of
period p and strip width w. Hence, the stored magnetic energy of the
Jerusalem-cross grid may be represented approximately by the equiva-
lent inductive reactance, X (w), of this uniform grid, where’

X (w) = % {In [cosec (’;—wp)] + F(, w)] (2)
" FOvu) = s+ [ Fa-a] (3)
! 1+ Qs? 4\ !
with

Q=[1—(§)2]—}~—1; c=cosz(;—1£); s=1—c (4

The reactance X (w) is normalized with respect to the intrinsic im-
pedance of free space. The first term in (2) can be derived® from mag-
netostatic considerations; the second term is a correction factor which
is negligible when p << \. Since ¢ << w, the effect of thickness upon the
inductive reactance is negligible.?

With regard to the distribution of electric field, it is noted, from
symmetry considerations, that there is no component of electric field
normal to the grid on the planes A and 4’ of Fig. la. Without dis-
turbing the electric field we may, therefore, insert a pair of infinitely
thin, perfectly conducting plates at A and A’ which are perpendicular
to the plane of the grid and distance p apart. In the quasi-static case,
when p <\, the electric flux about the grid elements within this
parallel-plate transmission line is concentrated between the gaps of
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the horizontal capacitive segments. We assume this concentration to
be maintained at all frequencies for which p < A. Since g < d, the
effect of fringing at the extremities of the segments is negligible and the
electric flux, per unit width of the parallel-plate line, is d/p times that
of a corresponding uniform capacitive grid of period p, gap width g,
and thickness ¢{. This implies that the stored electric energy, of the
Jerusalem-cross grid, may be represented approximately by an equiva-
lent capacitive susceptance

an=§mmm (5)

where B,(g, t) is the (normalized) susceptance of the corresponding
uniform grid. For the case ¢ = 0 we have®

B.(g,0) = {ln [cosec (2;0)] + F(\, g)] (6)

where F(}, g) is given by (3) with w replaced by g. The equivalent
impedance of a uniform capacitive grid of thickness { includes® a seg-
ment of transmission line of length ¢. When ¢ < 0.5, this transmission
line may be represented by a II-network of shunt capacitors and a
series inductor. In the present case, { << A, the series element may be
neglected and the total suseceptance is'**

umn—Bmm+%m @)

The second term in (7) may be derived equivalently by considering
the additional (parallel-plate) capacitance introduced by the finite
thickness of a capacitive diaphragm in a parallel-plate transmission
line of height p. From (5), (6), and (7), the capacitive susceptance of
the Jerusalem-cross grid is approximately

B(g, 1) = 22 [m [cosec (2p)] +FO, 0) + 3 8)

We have obtained approximate values of reactances with which to
deseribe the stored magnetic and electric energies of the grid and now
consider the equivalent circuit representation. It has been assumed
that only current that flows vertically along the inductive strips, and
across the gaps of the horizontal capacitive segments, is significant
in determining the transmission properties of the grid. This suggests
that the Jerusalem-cross grid can be represented approximately by a

*In Ref. 10, the sign of the second term for B, in eq. (83) on p. 200 should be
positive.
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reactance, X, where

1

X,,—X(w)—m, 9)
shunted across a transmission line of impedance Z, as shown in Fig. 1b.
The impedances in the equivalent circuit are normalized with respect
to the impedance (Z,) of free space, and the impedance seen by a plane
wave incident normally on the grid is Z;. The grid transmission co-
efficient is now expressible in terms of the grid reactance X,. The input
impedance, Z;, is

71X,
Zi = ——2—-
1+ X, (10)
The corresponding voltage reflection coefficient, R, is

Z;—1
E = Z;+1 (11)

and the grid power transmission, | T'|?, is

4X3
2 =1 — 2 — 0

l T' 1 |RJ 1 + 4:X3 (12)

Substituting (2) and (8) into (9) and (12) then gives the grid trans-
mission response in terms of its dimensions. To the present order of
approximation, |7T'|? is seen to be independent of A when A << p.
A first-order approximation for the rejection wavelength A,, defined
by the equation X, = 0, is readily found by assuming p << \ so that
the terms F(\, w) in (2) and F(}, g) in (8) may be neglected. Further-
more, if the effect of grid thickness is also neglected, by putting ¢ = 0,
and if the cosecants are replaced by the small argument forms, we find

~Pn (2P
X(w) ~2n (W) . p&A (13)
B(g, :)z%ln(i—’;), P&t = 0. (14)

From (9), the wavelength, )., at the rejection resonance is then

e \/dpln(f—z)ln(i—’;)- (15)

This result provides an approximate functional dependence of the
resonant wavelength upon the grid geometry.

The effect of the dielectric sheet which supports the grid has been
neglected in the preceding analysis. In general, the presence of an
adjacent, low-loss, dielectric layer will increase the grid susceptance,
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Fig. 2—Transmission response of Jerusalem-cross array.

B(g, t), by modifying the electric field in the vicinity of the capacitive
gaps. In the case examined by Arnaud and Pelow,! however, the sheet,
which has a relative permittivity of about 2.5, is thinner than the grid
itself and, as such, is not expected to modify the grid transmission to
the present order of approximation,

lll. COMPARISON WITH MEASUREMENTS

The grid measurements of Arnaud and Pelow! were conducted under
approximately plane wave conditions and for a range of incidence
angles from 5 to 45 degrees.* It was found that the frequency of the
rejection resonance, and the shape of the transmission response, were
practically independent of the angle of incidence within this range.
Figure 2 shows the predicted frequency response for normal incidence,
as obtained from (12), compared with measured data for an incidence
angle of 5 degrees. The experimental curve is from Fig. 3 of Arnaud and
Pelow’s paper and is for a grid of dimensions p = 1.400 mm, d = 0.750
mm, w =k = 0.180 mm, g = 0.090 mm, and ¢ = 0.018 mm. The
shape of the transmission response is predicted well by the theory;
the error in the prediction of the rejection frequency is 7 percent. The
first-order expression (15) for the rejection wavelength is within 10
percent of the value obtained from (12).

IV. CONCLUSIONS

We have examined the transmission properties of a self-resonant
grid that is comprised of capacitive and inductive elements. An

*No measurements were taken at exactly normal incidence to avoid multiple
reflections within the measuring system.
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approximate theory has been developed to predict the frequency
response of the grid when illuminated by a plane wave at normal inci-
dence. The theory is based upon the construction of an appropriate
equivalent circuit in which the values of the reactances are obtained
by modification of known solutions for simple, parallel strip grids. A
comparison of results with measured data shows an error of 7 percent
in the prediction of the grid rejection resonance. By way of compari-
son, the corresponding approximate expressions (2) and (6), for parallel
strip grids as obtained from rigorous analyses,” can be in error by
about 1 to 5 percent over the range of frequencies considered here.
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