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A study of the marker-register dial-tone delay problem in No. 5 crossbar
switching machines led to a special type of cyclic queuing model. In this
paper, we present a method for calculating approximately the steady-state
delays of an arriving customer. When applied to the marker-register
problem, the model emphasizes the order in which markers are assigned
to waiting calls and the fact that part of the markers’ time is unproductive
when an “all registers busy’ condition occurs. Some numerical results are
presented, which agree with the observed phenomenon that, for a constant
marker load, the delays of Touch-Tone® calls are influenced by the load
on the dial-pulse originating registers, and vice versa. The results are
compared to those of a simulation of the same problem. The numerical
results compare favorably in the range of loads that produce a dial-tone
speed of between 0.05 and 0.15.

. INTRODUCTION

The queuing model described in this paper resulted from a study of
the marker-register dial-tone delay problem in No. 5 crossbar switching
machines. A number of queues with Poisson arrivals of equal rates
are served in a cyclic order by a server with constant service time.
Upon arriving at a nonempty queue, the server chooses a customer
from the queue at random. After one service time, the customer either
leaves the system with a certain predetermined probability or rejoins
his queue. In both cases, the server uses a fixed amount of time and
moves to the next queue; thus, at most one customer leaves the system
following each arrival of the server at a queue.

Related models were treated by Cooper,! Cooper and Murray,? and
Eisenberg.? In Refs. 1 and 2, the server either empties the queue being
served or serves all those present at the queue in its arrival epoch.
The case of two queues with different arrival rates is treated in Ref. 3.
In these papers, the Laplace-Stieltjes transforms of the waiting time
distributions were obtained. Attempts to obtain the distributions for
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similar models by approximate methods were made by Leibowitz* and
Schay, Jr.

The method presented here approximately calculates the steady-
state delays of an arriving customer. The approximation is carried out
by modifying the model to achieve a manageable state space. Next,
the method is applied to the problem of dial-tone delay in the No. 5
crossbar switching machine. The order in which markers are assigned
to waiting calls and the fact that part of the markers’ time is unpro-
ductive when an ‘““all registers busy” condition occurs are emphasized
in the model. The numerical results presented agree with the observed
phenomenon that, for a constant marker load, the delays of Touch-
Tone® calls are influenced by the load on the dial-pulse originating
registers, and vice versa. The results are compared to those of a simu-
lation of the same problem.

Several features of the No. 5 crossbar machine, which may have an
influence on the dial-tone speed, were excluded. Some of these features
were investigated in subsequent work by H. A. Guess® and are de-
scribed in more detail in Section XVI of this paper.

Il. THE MODEL

Let N queues E,, E,, -+, Ex, N = 2, be given. Customer arrivals
to each queue constitute independent Poisson processes, all having the
same rate A. The queues are served by a single server in the following
way : At each point in time, the server is at some queue. Transitions
in its position occur at discrete time epochs which are equally spaced
with periods of duration T. At such time epochs, the server moves
instantaneously to the next nonempty queue in a circular order, chooses
a waiting customer in that queue at random, and stays with this
customer until the end of the period. The served customer then leaves
the queue with probability p*, or remains in the queue with probability
g* = 1 — p* If all the queues are empty at a transition point, then
no change occurs in the position of the server.

We assume further that 7 is small with respect to the accuracy
with which we want to know the delays, and thus all the arrivals can
be assumed to occur at the transition epochs and the queuing process
can be considered in discrete time. Thus, if X, is the number of
arrivals to E; at the kth time epoch, then all X; ,, 1 £ ¢ = N,k = 0,
are independent identically distributed random variables, all having
a Poisson distribution with mean AT.

lll. THE FULL STATE SPACE

The state of the queuing system at any time epoch is defined as the
(N + l)tuple (mi, ms, - -+, my, n), where m; is the number of waiting
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customers at I, and n is the position of the server before the transition.
We call the set of all such states the full state space. It is then clear
from the discussion in the previous section that our queuing system,
with the full state space, is a stationary Markov chain. Thus, in
principle, one can calculate transient and steady-state probabilities.
However, the full state space is much too large for practical computa-
tional purposes.

Consider, for instance, the dial-tone delay problem where a typical
number of N is 15. Then, even if the system is so underloaded that
each m; can be restricted to be either 0 or 1, we have 215 X 15 ~ 500,000
states. A natural approach, which we follow in the remainder of the
paper, is to approximate the behavior of our system with systems
having a smaller size state space.

IV. THE “BLACK BOX” APPROACH

Some important facts about the system ean be deduced by consider-
ing only the total number of customers in all the queues § = m; +
ma + -+ + my. It is clear that the system with this single state is
again a stationary Markov chain. It is, in fact, a discrete version of
an M/D/1 queue, with the added feature that a customer who is held
by the server returns to the queue with probability ¢*. Alternatively,
the service time measured in units of 7 may be considered as having
a geometrical distribution with mean 1/p* The traffic intensity of
the system is the p = ANT/p*; thus, we have Theorem 1.

Theorem 1: A necessary and sufficient condition for the nonsaturation
of the system is ANT < p*.

Note that, because of the symmetry, a particular queue in the sys-
tem is saturated if and only if the system as a whole is saturated ;

hence, Theorem 1 provides a saturation condition for all the individual
queues.

Let us denote by A7 the probability that a Poisson-distributed ran-
dom variable with mean AN 7" attains the value 7. The system has the
following transition probabilities. For s > 0,

Pr(s—s') = Av_p* + Av_q*
and

Pr(0—s) = A4,.

The equations for the steady-state probabilities P, are then
8’41
Py = ASPo+ 3 (Av_gpp* + AL_g®)P, §=0,1,---. (1)
a=1
Equations (1) can be solved recursively, starting with Py = 1 — p.
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One can also calculate the generating function

1

Pw) é Pt

_ (p*=a)(1 —u)
- uq* _|_ p* — uea(l—-u) ’

where @ = ANT. By evaluating P’(1), the expected value of the total
number of customers in the system § is

. 2a— o .
P - @)

V. THE MODIFIED MODEL

We now consider our original system with a new state space. A
state will now consist of a triplet (m, M, n), where m = m;, M = ma.
+msz + -+ 4 my, and n is the same as previously, namely the posi-
tion of the server before a transition. It is clear that the new state
space is much smaller than the full state space ; however, the Markovian
property is lost. This can be seen by the following argument: If M
was positive at time £ — 1, and if in the transition between k — 1to k
the server skipped a large number of queues, then those M customers
were concentrated in the remaining queues; thus, it is probable that,
in the & to & + 1 transition, a small number of queues will be skipped.

At this point, we modify our model to make it a Markov chain with
respect to the new state space. To do this, we need to define one-step
transition probabilities so that the behavior of the modified model
will approximate that of the original model. Let the position of a
customer be the queue number where he waits. Our key assumption
concerns the probability distribution of the positions of the M cus-
tomers, given the state (m, M, n).

For the remainder of this section, let us enumerate the queues
E,, ---, Ex by starting with the queue following the position of the
server and observing the cyclic order, skipping ¥:. Next, we make the
following assumptions: Let M > 0; then

(¢) The positions of the M customers are independent, identically
distributed, random variables.

(#7) The probability that any one of the M customers will be in the
ith queue (in the new order) is x: (M), where

_ _ (N — 71— 1)R(M) . _

(M) = b(M) + = i=1,2 -, N—1,
where b(M) = 1/(N — 1) — [R(M)/2M7] and determination
of R(M) is described below.
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The rationale behind assumption (77) is that a customer is less likely
to be in a queue that has just recently been visited. The average differ-
ence between the number of customers in the first and last queues is,
according to assumption (z7), M[m (M) — wx_1(M)] = R(M), which
should be approximately equal to the expected number of arrivals
during one full cycle of the server. Thus,

R(M) ~ \TRo(M),

where Ro(M) is the expected number of nonempty queues, given M.
Finally, we approximate Ry(M) by

ron) = v -1 [1- (F22)"],

where the right-hand side is the expected number of nonempty queues
among K, ---, Ey, if the M customers are uniformly distributed.
We conclude this section by using the new assumptions to calculate
some probabilities that will be needed later.
Let J denote the number of successive empty queues following the
position of the server (when E, is disregarded), / = 0,1, ---, N — 1.
The distribution of J depends on M. Let

QM) =Pr(Jzj—-1)
M) =Pr (J=j—-1)
j=1,2, -, N.

Using assumptions (z) and (¢7), we have

e0n = ['Eman]" i=y N1

i=j

0 if M>0
Qn (M) =

1 if M =0,

and
g;(M) = Q;(M) — Q1 (M) j=1;--,N—-1
gn (M) = Qn(M).

VI. TRANSITION PROBABILITIES FOR THE MODIFIED SYSTEM

Given a state (m, M, n), the transition probabilities of the position
of the server can be expressed in terms of the Q;(M) and g;(M)’s as
follows.

CYCLIC QUEUE DELAYS 1737



For m > 0,
nr—n(M) if n'>n
Pr(n—n") =<Qnx-nna(M) if ' =1
0 if 1<n <n
Form =0, M > 0,
gu_n(M) if n'>n
Pr(n—n') =40 if n'=1 (3)
Q'N-{»n'—n—l lf ]- < n’ é n,
and, form = 0, M = 0,
1 if n'=n
Pr (n—on') =
0 if »n'=n
Let us denote by A; and a; the probability that Poisson-distributed
random variables with means A(N — 1)T and AT, respectively, attain
the value 7. We can now write the state transition probabilities.

Form >0, M > 0:
Pr(m, M, n) — (m', M’, n’)]
Ar—m@ui—n (M)[Amr—peap™ + Ase—ug®] if 0" >n
= 1 Auw-mQni1-n(M)[am—my1p* + am_mg*] if o' =1,
0 otherwise.
Form =0, M > 0:
Pr [(01 M: n) — (ﬂl’: M’: nf)] = afm’[AM'—M+1p* + AM'—MQ*]
Gnr—n (M) if n'>n
X 40 if »=1
gNin—naa (M) if 1 <n'

A
2

Form >0, M = 0:

Pr[(m, 0, n) — (m', M’, n')]
AM‘[am'fqulp* + am'fmq*:l 1f n’ 1:

0 if ' #£1,
and finally, form = M = 0,
AQm: Azyr I n'=n
Pr[(0,0,n) — (m', M',n")] = (4)
0 if n' #n.

Vil. STEADY-STATE EQUATIONS FOR THE MODIFIED SYSTEM

If we consider the total number of customers in the system s = m
+ M, then it is clear that all the results of Section IV remain valid
for the modified system. In particular, ANT < p* is the necessary
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and sufficient condition for the existence of a steady state. In the
following discussion, we assume that this condition is satisfied. Let
P(m, M, n) be the steady-state probability of the state (m, M, n)
satisfying the following equations.

Forn' >1,m" =20, M =z 0:
P(m', M', n')

2 Z ' —mGnr—n (M)A ppr—yep1p™ + Appr_pg*]

a=l m=0 M=l

XP(m, M,n) + Z Z A [Arer—aap® + Apr_pg*]

n=n’ M=1

Xqnpn—na(M)P(0, M, n) 4+ am Ay P(0,0,n"). (5)
Forn'=1,m"20,M' =20

N m'4+1 M’

P(m',M', 1) = gl Z_:l MZ_U Aser aQuir a(M)[@mi—mirp* + Cmr—mg*]
XP(m, M,n) + amw Ay P(0,0,1).

VIIl. NUMERICAL SOLUTION OF THE STEADY-STATE EQUATIONS

Equations (5) can be solved either as a system of linear equations
with the auxiliary equation
2 Pm,M,n) =
m,M,n
or by starting with any initial distribution and iterating it through (4)
until a desired degree of convergence is obtained.

It seems adequate to adopt the second method since the steady state
of the modified system is of interest to us only as an approximation
to the steady state of the original system. Thus, an extensive compu-
tational effort to obtain an accurate solution to (4) is not warranted.

A good initial distribution to start the iterations can be obtained in
the following way. We have

N
> X P(m,M,n) =P, s=0,1, -,

m+M=35 n=1

where the P, were computed by the method outlined in Section IV.
If we divide the s customers uniformly among the queues and make
the position of the server random, we get the following distribution :

1 1
Poy(m,s — m, n) = FB(m,;L,s) P,
§=0,1, - m=40,  -,s n=1---, N,
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where B(m, 1/N, s) is the binomial probability of m successes out of
s trials, with probability of success = 1/N.

IX. EVALUATION OF THE DELAYS FOR THE MODIFIED SYSTEM

Let f(m, M, n, k) be the probability that a customer arriving at
E, will wait k& service periods before leaving the system, given that
on his arrival the system went into the state (m, M, n). The customer
stays for at least one service period, so £ = 1. Notice also that m = 1.

Theorem 2: The delay probabilities satisfy the following recursive
equations:

7, M, 1) = 2 Qo (1)

and
fm, M,n, k + 1) = a1 + o2
m=z1, M=z0, 1=n=N,; E=1,
where
Z a’m’—-an'—n(M)[AM‘—M-I-lP* + AM’—MQ*]
n'=n+l M'=M—1 m'=m
gy =

Xf(mIJM’:nl;k) 1f M>0, ?’l<N

0 if M=0orn=N

L] L] — 1
a2 = M§M m'g;n_l AM‘—MQNJrl—n(M) [ mn m am’—m+1p* + amr_mq*]
Xf(m', M', 1, k).

Proof : f(m, M, n, 1) equals the probability that the server moves to
E,, that the particular customer is selected for service, and that he
leaves the system after the service period. Hence, the formula for
k=1
For k£ = 1, we have
fm,M,n, k +1)= X Pr[(m, M,n)— (m’, M',n")
m' M’ ., n'

M the customer stays in E,]f(m’, M', n', k).

Using eq. (4), we get that o, is the part of the right-hand side cor-
responding to n’ # 1 and o, is the part of the right-hand side corre-
sponding to n’ = 1.

Theorem 2 provides a method for calculating the delays conditional
on the state. Let f*(k) be the probability that a customer arriving at
E, will wait & service periods before leaving the system, given that
before his arrival the system was in the steady state.
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Theorem 3:

) ) N
*k) = Z > X fm!, M, ', k)P*(m', M', n') Ek=1,2 ---,

m'=1 M'=0 n'=1

where
1 n'—1 M'+1
P*(m’, M', n") = Pn', M',n') — a0 22 2 qu—n(M)
1 — o n=1 M=1
(arossin® + Awng P, M, ) |
and
1 N M
P*¥(m', M', 1) = P, M',1) —as X ¥ Qni1_.(M)
1 — [27)] n=1M=0

[p*P(n’ + 1, M, n) + ¢*P(m’, M, n)]]
form"21, M =20,2=<n"=N.

Proof: The theorem is valid if it is shown that P*(m’/, M’, n’) is the
probability of the state (m’, M’, n') at the point of arrival of the
customer, say, point u, for all m’ =21, M'20, 1 =n’ = N. The
probabilities of states with m’ = 0 is zero, since there is at least one
customer in E,. We know that at « — 1 the system was in a steady
state. The transition probabilities between u — 1 and u, conditional
that at least one customer arrives at E,, are obtained from (4) by re-
placing a; with aj, where

ai i=1,2 ---

0 1= 0.

The expressions for P*(m’, M’, n’) can now be calculated by operating
on the steady-state probabilities with the modified transition prob-
abilities and using the fact that the steady-state probabilities satisfy
eqs. (5).

X. VALIDITY OF THE MODIFIED SYSTEM

The difference between the original and the modified systems is in
the rules of the server movement. In the modified system, the server
does not follow the eyclic order. However, to calculate the delay dis-
tribution, we are interested only in the pattern of the time points
when the server is in E,, and that, hopefully, is similar to the cor-
responding pattern in the original system. The degree of similarity
is difficult to check, except by simulating the original system. Verifica-
tion of the ‘‘reasonability” of the modified system may be made by
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checking whether each E, receives the same number of visits by the
server, and if E, gets the right amount of expected number of waiting
customers, i.e.,

i iP(?M,M,n)Nl n=1 N
0 N

m=0 M=

and

o0

© N
2om 3 ¥ P(m,M,n)~
0 M=0n=1

m=

3
N H
where 3 is given by eq. (2).

Xl. THE MARKER-REGISTER SYSTEM

In the rest of the paper, we apply the model to the dial-tone delay
problem in the No. 5 crossbar switching machine. Following are some
operational features of the No. 5 crossbar switching machines which
are relevant to the dial-tone delay distribution.

Calls appear on line link frames (LLF). The dial tone markers (pTM)
which are not busy are paired to the waiting calls. Under “normal’’
operation, i.e., when several pT™s are free, the LLFs look for available
pTM™s according to a fixed preference order. When all the pTMs become
busy, a gate is closed and the pT™s serve first those LLFs that contain
waiting calls at that moment. If an LLF has more than one call waiting,
only one call will be served during the gating period.

When a ptm becomes idle following the ‘““all markers busy’’ condi-
tion, it looks for a waiting call according to the following scheme. Each
pT™ has its own order in which it scans the LLFs. Thus, for example,
when there are four ptmMs and 60 LLFs, the first pTM will scan the LLFs
in the natural order from 0 to 59, the second pTm will start at LLF 15,
go to 59, and then come back to 0 to 14, ete."

When a pT™ locates an LLF with waiting calls, it chooses one of those
calls and proceeds to look for an originating register (or) for the call.
The above choice may be considered random for all practical purposes.*
If the pTM finds a vacant oRr, then it connects the call to the or, and
the calling customer gets a dial tone. If no or is available, then the
DTM™ releases the call, and it continues to wait in its LLF and to bid for
a pTM. In both cases, the holding time of the pT™ is constant and
approximately equal. We denote this time by T, where T is approxi-
mately 0.25 second. In fact, this time is approximately 0.21 second in

b. This is the recommended arrangement, although not all No. 5 crossbar entities
observe it.

We omit consideration of the systematic preference for serving calls in vertical
group 2.
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the case where no or can be found, but we ignore this difference to
simplify our model.

We also assume that the distribution of holding times of the ogrs
is negative exponential for a conservative estimate of the delay dis-
tribution. The arrival of ecalls to each LLF is assumed to be Poisson,
with the rate being equal for all LLFs. We denote the rate for a single
LLF by A. Finally, in many cases there are two types of calls, dial-pulse
and Touch-Tone, where both types are served by the same pT™s but
require different ors. When there are two types of calls, the ratio be-
tween their arrival rates is assumed to be the same in every LLF.

Xil. A QUEUING MODEL FOR ONE TYPE OF CALL

The system described in the previous section is quite complicated,
and 1t appears that, to model such a system and be able to derive
numerical results from the model, some simplifying assumptions are
inevitable. One such model was proposed by W. 8. Hayward.” Its basie
assumption is that, in order to be served, a call must find both a
marker and a register idle. Once the marker and register start process-
ing a call, they act independently of each other, each having exponenti-
ally distributed holding times. To solve the resulting state equations,
Hayward introduced a system with one type of server, which approxi-
mates the behavior of his model.

The present queuing model emphasizes the order in which the
markers are assigned to waiting calls, and takes into account the
fact that the time a marker spends serving a call is nearly the same,
whether or not it found a free register.

First we assume that each pT™ serves only those LLrs which are of
high priority on its list. Thus, in the example of the previous section,
the first pr™m will serve only the first 15 LLFs, the second pTMm will serve
only the next 15 LLFs, ete. Such an assumption is justified under heavy
load conditions. We denote by N the number of LLFs which are served
by one pTM™.

Next, we assume that each pT™ serves its LLFs in a cyclic order and
that, whenever it finds a LLF with waiting calls, it serves exactly one
call. This assumption is asymptotically valid under heavy traffic
loads, because of the gating procedure described in the previous
section.

Finally, we assume that whenever a pT™ serves a call there is a
fixed probability p* that an or will be available and thus that the
waiting time of the call will end (i.e., the customer gets a dial tone).
This assumption would hold if the availability of the ogs is independent
of the number of waiting calls, which is clearly not the case. This
assumption will cause our model to somewhat underestimate the
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delays, while the first assumption tends to overestimate them. The
value of p* can be taken approximately as the delay probability of a
call, given that the arrival process of the calls to the ors is Poisson, and
therefore it can be computed by the Erlang C formula.

Thus, we arrive at the model which was described in Section II,
with the server the pTm. The server chooses a customer (call) from
the queue at random. After one service time, the customer either leaves
the system with probability p* or rejoins his queue (that is, waits in
his LLF). The server then moves to the next LLF having a waiting call.

Xlll. SOME THEORETICAL AND NUMERICAL RESULTS
It was shown in Section IV that the occupancy of the pTM™ is
ANT
=
Hence, a necessary and sufficient condition for nonsaturation of the

system is ANT < p*. Also, the expected total number of waiting calls
in the LLFs which are served by the prm is

5= Sy 2~ e

Thus, for a fixed occupancy of the pT™, the expected total number of
waiting calls is a monotone decreasing function of p*. The same is
true for the expected delay, W, since by Little’s formula

= § §
W= 5Tv =

— 1 2
W= s ()

A standard measure for the quality of service is the dial-tone speed
(pTs), which is the probability that the call will have to wait three
seconds or more for a dial tone. Figure 1 presents some computed
values of the pTs for various values of p* and A with p held constant

at three different values. It is seen that pTs is also a monotone de-
creasing function of p*, for a fixed pT™ occupancy.

and so

XIV. A MODEL FOR TWO TYPES OF CALLS

Consider now the case of a system having dial-pulse and Touch-Tone
calls; this is the usual situation in No. 5 crossbar offices today. Let
the arrival rates from each LLF be A; and A:, and let the probabilities
of finding available registers be p] and p; for dial-pulse and T'ouch-Tone
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al
w
w
o
w
w
z
o
T
4 0.32
z I~
o
0.24
p=093
A =0.248p"
0.16—
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p* (AVAILABILITY OF REGISTERS)

Fig. 1—pTs as a function of p* and A for constant DT™ occupancy p (queuing model).
calls, respectively. The loads on the pT™ due to the two types of calls
are
MNT ANNT

pi p:

To approximate the delays of this system, we consider a system with

p1= and pz = .
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one type of call, for which A = Xy 4+ X\; and p = p; + p2. The appro-
priate p* of this system satisfies

p* = ﬁ_
A/pi + Ne/D2

Now the state probabilities can be computed by the approximate
method; however, it is necessary to modify the formulas for the
computation of the delay distributions to obtain those distributions
conditional on the type of call.

Let fi:(m, M, n, k) be the probability that a call of type ¢ (i = 1, 2)
arriving at LLF No. 1 will wait k£ service periods before leaving the
system, given that on its arrival the system went into the state
(m, M, n). The recursive formulas of Theorem 2 have to be modified to

*
Jitm, Myn, 1) = B Qy_n (D)

and
film, M, n, k + 1) = o1 + 02
m =1, M =0, 1=n=N, k=1,

where ¢, is as in Section IX except that f is replaced by f; and

g2 = Z AM'—MQN+1—n(M)[

m'=M m'=m—1

m—1

a‘m'—m+1p*

m—1 . q e
tawen (Pt g+ L) oo, a1, 02,
The proof of the validity of the modified formulas is along the same
lines as the proof of Theorem 2.

XV. NUMERICAL RESULTS

Several computer runs were made for a typical large system with
60 LuFs, 4 pr™Ms (N = 15), 100 dial-pulse ors and 50 Touch-Tone oRs,
with both dial-pulse ors and Touch-Tone ors having a mean holding
time of 13 seconds. T was taken to be 0.25 second in all runs. The
parameters varied were A = A\ + )., the total input rate per LLF, and
a = Ai/A: (the ratio of the rates of the two types of calls).

Figures 2 and 3 describe the results for & = 2, that is, when the
ratio of the loads is the same as that of the oms. Figure 2 describes the
behavior of the occupancies of the ors and the prm, while in Fig. 3
the prs is plotted as a function of A. Figures 4 and 5 present the cor-
responding results for @« = 3. The values of A were chosen to be near
the point of saturation, i.e., where the occupancy of the prm ap-
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Fig. 2—Occupancies of the pT™ and oRs as a function of A (queuing model).

proaches 1. In this range, the pTs is sensitive to small perturbations
in A

Figure 6 shows the dependence of the pTs on « for a fixed A (A =
0.158 per second). It can be seen that the quality of service deteriorates
as a diverges from the neighborhood of the ratio of the number of
dial-pulse ors/number of Touch-Tone ors (which equals 2 in our case).
This is consistent with the observation that Touch-Tone delays are
significantly influenced by the dial-pulse or load for a constant offered
load to the pTM.

The results were compared with those of a simulation model which
we constructed for the system desecribed in Section XI. Tables I and
IT present a comparison between the results of the queuing model and
the simulation. We compare the intensities of input for which levels
of the prs are reached between 0.05 and 0.25 for a balanced system
and between 0.05 and 0.15 for an unbalanced system. Examining those
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ARRIVALS PER FRAME (A}
Fig. 3—no1s as functions of A (queuing model).
Table | — Values of A for which given levels of DTS are reached,
for A.I/A.z =2
(a) Dial-Pulse Calls
DTS Queuing Model Simulation
0.05 0.1680 0.1695
0.10 0.1705 0.1735
0.15 0.1720 0.1760
0.20 0.1730 0.1775
0.25 0.1735 0.1790
(b) Touch-Tone Calls
DTS Queuing Model Simulation
0.10 0.1690 0.1690
0.15 0.1705 0.1720
0.20 0.1720 0.1740
0.25 0.1725 0.1760
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Fig. 4—Occupancies of the b and ors as a function of A (queuing model).

Table Il — Values of A for which given levels of DTS are reached,

for /\1/A2 = 3

(a) Dial-Pulse Calls

DTS Queuing Model Simulation
0.05 0.1540 0.1550
0.10 0.1565 0.1590
0.15 0.1580 0.1610
0.20 0.1585 0.1620
(b) T'ouch-Tone Calls
DTS Queuing Model Simulation
0.05 0.1575 0.1600
0.10 0.1590 0.1625
0.15 0.1600 0.1640
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Fig. 5—prts as functions of A (queuing model).

tables, we observe that the differences in the corresponding figures
for the two models in these regions are less than 4 percent of the total
input. Also, it can be observed that the computed pTs grows faster
in the queuing model than in the simulation. The reason is that the
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Fig. 6—pTs and pT™™ occupancy as functions of A;/A; for a fixed A, A = (.158.

assumption made in Section XII, that the probability of finding all
registers busy can be computed by the Erlang C formula, is incorrect
in this region. Figure 7 compares the pTs as computed by the two
models. Again we conclude that the fit is fair in the “critical”’ region.
It would have been desirable to validate the results by performing a
field trial. Such a trial should consist of measuring the pTs for a No. 5
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Fig. 7—pTs as function of A (queuing model and simulation).

crossbar machine with high constant loads. However, observing Fig. 8,
where the cumulative distributions of the hourly pTs from the simu-
lation were plotted, one sees that these distributions have long tails.
This implies that, to get a reasonably accurate estimate for the prs,
say, with a standard error of 1 percent, we would have to run the
trials for around 25 hours while keeping the load constant. This seems
to be a difficult task.

XVI. SUMMARY AND CONCLUSICNS

We presented a method for modifying the original model, as pre-
sented in Section II, to a model which has a much smaller state space.
Methods were described for calculating the steady-state distributions
of the states and of the delays in the modified model. The model was
applied to the problem of calculating dial-tone delays in the No. 5
crossbar switching machine. This was accomplished by making some
simplifying assumptions about the order of service of the waiting calls
by the markers. The numerizal results were compared to those of a
simulation, and found to be close on an important range of the pTs.
This gives us a certain amount of confidence that both models are
valid, which is especially important because of the difficulty in validat-
ing the models by experimental data, as discussed in Section XV.
However, the reader should be aware that several features of the No.
5 crossbar machine, which may have an influence on the pTs, were
excluded.
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Fig. 8—Cumulative distributions of the hourly dial-tone speed (simulation).

A major effect not covered by the present model is the effect of
horizontal group blocking on dial-tone speed and on dial-tone marker
waste usage. Recently obtained field data and theoretical studies re-
ported in a subsequent paper by H. A. Guess® have shown that dial-
tone speed and dial-tone marker occupancy can be appreciably in-
creased by horizontal group blocking caused by high average line link
frame loads and also by poor load balance. Consequently, the dial-tone
speeds associated with a given call origination rate in an actual No.
5 crossbar office may be higher than would be predicted by our model.
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