Copyright © 1975 American Telephone and Telegraph Company
Tue BELL SysTEM TECHNICAL JOURNAL
SAFEGUARD SUPPLEMENT
Printed in U.S.A.

SAFEGUARD Data-Processing System:

Process-System Testing and the
System Exerciser

By B. P. DONOHUE Ill and J. F. McDONALD
(Manuscript received January 3, 1975)

T'his paper considers two problems: how to build the SAFEGUARD soft-
ware so that it is testable and how lo test it as realistically as possible.
The first is solved by an tterative process of adding software capabilities,
testing them, then adding more. The second problem is solved by driving
SAFEGUARD with computer-generated radar echoes.

I. INTRODUCTION

Testing activities play a crucial role in the development of all
hardware/software systems. These activities are described in terms of
two phases, system integration and system testing. The system integra-
tion phase is carried out through tests which determine that all com-
ponents of the system have been properly connected and are perform-
ing their specific function correctly. During the system test phase, the
performance of the overall system is determined through analysis of
the results obtained from some finite set of tests. The tests must reflect,
as well as possible, the environment and full range of permissible data
and control inputs. Although these phases overlap extensively, much
system integration occurs before the system test phase.

It is well known that very difficult problems may be encountered in
the system integration and test phases of complex system development
programs. The plans and some of the significant techniques used to
minimize these difficulties for the SarecuarDp development are
discussed.

Plans for the full SAFEGUARD system tests required large-scale
analysis and simulation of the complete system. Since it is not possible
to describe all the considerations that went into this planning, discus-
sion is limited to a general description of overall system test planning.
However, the relationship between the overall system tests and the

S111



data-processing effort are described specifically. Particular attention
is given to the system exerciser because of the important role it plays.

Il. SYSTEM INTEGRATION AND TEST PLAN

For several reasons, it is vital to prepare a detailed system integra-
tion and test plan. First, the time allocated for conducting the integra-
tion and test phases is usually not sufficient to demonstrate system
performance under all conditions. This is simply an empirical observa-
tion. It could be attributed to the lack of detailed understanding of the
objectives at the time the overall system development schedules are
being formulated. It is always possible to conceive of an infinite number
of tests of any complex system. No matter how carefully planned, the
number of necessary tests will still be very large and, therefore, require
a significant amount of calendar time to conduct. Since the system
integration and test phases are the last activities before making the
system available to the user, there is always pressure to make these
periods as short as possible. The early existence of a detailed test plan
is important because it provides strong support in arguing for reason-
able system integration and test intervals and allows optimal use to be
made of the allotted time.

Second, the system integration and test phases can overlap and,
therefore, interact extensively. The tests that are conducted during the
integration phase are designed to verify that system components per-
form as specified. Results from these tests can serve to increase con-
fidence in overall system performance. The scope of future testing can
be significantly influenced by this increased confidence. As a result,
the testing activities in these two phases should be well coordinated.

Third, there are always schedule difficulties during the system in-
tegration and test phases if planning for test tools, techniques, and
procedures does not begin long before the actual test period. Develop-
ment of the hardware/software products can be influenced by test
considerations. The test tools can often be developed more economi-
cally, and will better serve needs if identified early. Preparation of a
detailed plan is the best way to recognize required lead times and
avoid such scheduling difficulties.

Fourth, monitoring of progress is particularly difficult during these
phases of the development. It is not uncommon to find that progress
has been negative (and unknown) during parts of these intervals. A
detailed test plan can serve as a very good measuring guide to monitor
this progress.

Some general characteristies of a good system integration and test
plan are reasonably clear. It identifies the means to achieve a specific
set of objectives in a speecifie time, it recognizes the availability and

§112 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD



capability of other tests carried out during the development, and it
reflects all appropriate constraints on the use of resources. In SAFE-
GUARD, certain features of the plan were more significant than others.
Four have been selected for more detailed discussion.

2.1 The incremental approach

Everyone recognizes that a complex system cannot be integrated in
one step, so an “incremental approach” must be used; i.e., the com-
plexity of the hardware environment, the software, and the test cases
must be built up incrementally.

Several factors were considered in arriving at the specific incre-
mental approach for SArEGUARD. These led to a series of steps of in-
creasing complexity, where each step included a given level of hardware,
software, and functional tests. The principal steps were :

(7) Integrate all the ‘“‘control” software; i.e., demonstrate the
basic operating control necessary to perform initialization and
cycling,

(77) Integrate those software units that are part of eritical timing
chains.

(ziz) Integrate additional software, which allows a simple, but con-
sistent, stream of functional processing.
(2v) Interface this software with hardware; e.g., radars.
(v) Integrate remaining software to provide complete capability.

These principal tests were supplemented with additional parallel
testing of various parts of software. Following is a brief description of
how these steps were applied to the Missile Direction Center (Mpc)
application software.

First, the basic control programs were merged with the operating
system, and the ability to load, initialize, and cyecle was established.
Then software dealing with the radar loop was added; i.e., radar
management, search, and track programs. Ability to search and track
was then established at low traffic levels, while the radar hardware
was simulated with software. After sanity was established in the soft-
ware, the radar hardware was introduced into the testing loop. In
parallel with this activity, application programs supporting intersite
communications and command and control were tested in a separate
test bed. Similarly, both battle planning and missile guidance software
were tested in separate software environments. Ultimately, these pro-
grams were merged into a single process, and the complexity of the test
cases was systematically increased.

The incremental approach can create difficulties. It is obvious that
some mechanism must be provided to represent interfaces of programs

PROCESS-SYSTEM TESTING S113



that are not yet a part of the process. Dummy programs, called “‘stubs,”
were provided. The requirements for stubs depend on the nature of the
programs they represent and the sequence in which programs are added
and tested. If this aspect of the incremental approach is not carefully
considered during test planning, the stubs may become nearly as com-
plex as the programs themselves, thus defeating the incremental
strategy.

The selection of test cases can affect the efficiency of a test plan in
a major way. SAFEGUARD has literally hundreds of individual capabili-
ties and operates over a continuum of threat environments. Each test
was carefully designed, using a design-of-experiments approach, so that
all capabilities covering the full range of operation could be verified
with the smallest number of tests. The test design was also approached
from an incremental viewpoint, and was found to require an iterative
effort.

The sequence used in identifying the test cases for full system testing
of the SAFEGUARD Mpc is briefly described here.

(1) The peak traffic level to be verified in full system testing was
selected.

(i) The types of threats to be countered, and allowable combina-
tions, were delineated.

(177) A sequence of tests starting with a single target and building
up to peak traffic was identified. The ‘“‘single target” was
common to all test cases, as were other targets added later.
Keeping pieces of the threat environment common provided
a basis of test result comparisons—peg points along the way.

(&) A set of high-traffic test cases was defined and all capabilities
tested were identified. This exercise was performed iteratively
with the goal of identifying a minimum set of high-traffic tests
that, as a collection, test all system capabilities and cover all
necessary threat mixes.

2.2 Success criteria

The system integration and test phases are intended to demonstrate
that the various components and the system operate as intended.
Tests are designed to subject the system to various stresses and con-
ditions. The erux of test design is the clear specification of criteria that
can be used to measure successful operation. It is obvious that this has
to be done, but it is not always recognized that the success criteria will
affect a test program in so many ways. For example, the efficiency of
the test activities is vastly improved if the success criteria, that s,
expected results, are available before the execution of the test. The

§114 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD



criteria can also affect the data recording and reduction efforts. Since
the specification of suceess eriteria is a form of testing, it is not un-
common to uncover problems in either requirements or implementation.
All these factors recommend that success criteria be identified early
in the development sequence.

This effort was both difficult and large. On the SAFEGUARD project,
sources of information that provided a basis for establishing success
eriteria included results of the test program conducted at Meck Island,
desk analysis, and simulations. The greatest amount of data came from
the simulations of the system. Various portions of SAFEGUARD were
simulated in varying degrees of detail. These simulations were in turn
calibrated using analytical and field data results. Where possible, the
simulations were then used to predict system performance for each test
case. The success of a test was measured by comparing data recorded
during the test to predicted values. The simulations were large,
initiated early, and served as a basis for system evaluation activities.

2.3 Data recording and reduction

One critical step in testing a system is measuring the system’s per-
formance. The basic measurement tool in the SAFEGUARD project was
the recording and reduction of test data. Because of the complexity of
the software processes and the tightness of schedules and on-line com-
puter time, the ability to process recorded data off-line was essential.
Recording and data reduction were not treated as two problems, but
rather as two aspects of the same problem.! A coordinated approach
to recording and data reduction was taken to achieve an efficient
solution.

Tn “high-traffic’’ testing, or in any mode of testing, in fact, recording
should be minimized (e.g., so that the off-line data reduction system is
not overwhelmed with data). To meet this goal and still preserve the
necessary error isolation eapabilities, a ‘‘hierarchy” of recording select-
ability was defined.

The basie approach to recording and data reduction for SAFEGUARD
was to construet each process so that the ability to select the desired
mix of recording per run or per test could be accomplished with ease.
Each process has the necessary capability for all possible recording
permanently embedded in the on-line code. Data reduction program
activities of sorting and formatting are minimized by the real-time
association of sort “handles” with the recorded data. The key to the
approach lies in a hierarchical structure in which multiple levels of
recording are established. In general, three levels (high, intermediate,
and low) are sufficient, although additional levels could be used in
special instances.

PROCESS-SYSTEM TESTING S115



The basic three levels can be described as follows. A process is divided
into process funetions. The recording necessary to isolate a test failure
to a process function or to a peripheral is the highest level of recording.
In general, these highest level data should consist of “counts’ or sta-
tistics usable to determine logic flow, basic time sequencing, ete. The
lowest level of recording consists of a detailed record of the processing
of an input by a process function on a single logical pass. The inter-
mediate level of recording is designed to aid the tester in selecting the
proper low-level recording options.

A quick-look on-line computer eapability was embedded in the soft-
ware to allow off-line data reduction to be bypassed on oceasion. This
allows eritical data to be “recorded” in on-line memory and output on
a printer immediately following test completion. The test teams used
quick-look and operating-system debugging aids* to support integra-
tion. Using quicl--look, they determined when and in what portion of
the process detailed recording should be performed. In the case of
system tests, the system test specification specifies success criteria and
prescribes the data to be recorded.

In testing the Meck prototype system, there were several examples
of missions in which millions of words of data were recorded. In con-
ducting a test involving missile launches, it is necessary to record all
data of any possible interest, for the cost of repeating such tests is
extremely high. However, the cost of repeating a test is reasonably
economical in the mscs (Tactical Software Control Site) since no
launches are involved. Although tests are not absolutely repeatable,
they are essentially repeatable in a functional sense. This means that a
hierarchy of recording can be utilized to minimize the data recorded
in real time, minimizing the off-line data reduction required. If a test
fails, it can be repeated with selective recording performed in the sus-
pect areas of the system. Although this approach forfeits some capa-
bility to isolate transient errors, it allows trade-offs to be made in the
use of on-line computer time vs off-line data reduction time. With
hierarchical recording, better test turnaround and lower overall in-
tegration costs were achieved without any serious problem in isolating
transient errors.

2.4 Test tools

The need to provide test signals and data to “drive” any system is
clear. As the complexity of the system and its operating environment
increases, so does the complexity of the driver. It was considered vital
to devote considerable resources to the development of a driver, and
the effort was started early.

$116 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD



Few ground rules were available to guide its development. As it
evolved, both special-purpose hardware and software were required.
Because this effort was viewed as one of the more significant ones, the
driver, or the SAFEGUARD system exerciser, is discussed in detail in the
following section.

lll. THE SYSTEM EXERCISER

The primary role of the system exerciser is to support test and in-
tegration of SAFEGUARD applications software in the hardware environ-
ment in which it was designed to operate. But testing SAFEGUARD
against a simulator is difficult for two reasons. First, SAFEGUARD is a
complex system involving radars, missiles, and interacting sites; the
number of combinations of inputs is immense. Second, in actual opera-
tion, some inputs, such as radar noise, are random variables: these
inputs should be random during testing as well.

Because of its complexity, it was not feasible to simply assemble the
entire system and drive it utilizing the system exerciser. The system was
assembled in an incremental sequence. The development of the system
exerciser was, likewise, modular in nature. At each building stage,
portions of the system exerciser’s capability were used to drive that
portion of the system included in the test bed. By relating the sequence
of capability buildup in testing to the modularity of the system, an
efficient development plan was evolved.

During the early stages of SAFEGUARD development, several goals
for the system exerciser were established consistent with the primary
role. The five most important goals are :

(7) As much of the system, hardware and software, should be
exercised as is cost-effective. The software heavily interacts
with the hardware; hence, confidence in the software/hardware
combination can only be established through successful
demonstration of their interactions.

(i7) The impact of system exerciser implementation on the ap-
plication-system implementation should be kept to a minimum.

(7i7) The system exerciser’s simulation of the environment should be
as realistic as is feasible.

(i) The traffic capacity of the system exerciser should exceed the
design level of the application system.

(v) The system exerciser should provide the capability to record
the outputs of the application system.

During the development, every effort was made to retain sufficient
flexibility to allow the system exerciser to be used in other ways, e.g.,

PROCESS-SYSTEM TESTING $117



determining in part the system readiness and verification in an opera-
tional time period.

The discussions that follow apply to the Mmpc and PAR system ex-
ercisers. The approach taken for the BuMDC exercise was different
because of its distinct processing function (control and display) and
relatively small size. The Mpc system exerciser is the most complex.

3.1 Structure of the MDC system exerciser

Figure 1 shows the normal connections between equipment at an
Mpe site. During a system exercise, these connections are rearranged
under software control as shown in Iig. 2. Data sent by the application
data processor to the radar, the missile ground equipment, and other
sites are directed instead to the exercise data processor. The system
exerciser generates plausible radar returns, missile responses, and
messages from other sites, and returns these to the application data
processor. The exerciser is separated from the system being tested ; it
operates in a separate data processor connected to the application data
processor through a special digital hardware unit, the Exercise Control
Unit (Ecu).

Tapes containing target and some environmental data to be used in
the simulation are prepared off-line in nonreal time by a program called
the SaFecuarp Threat Action Generator (srac). The design of srac
and the real-time processes was closely coordinated.

Several decisions were made in the design of the Mpc system exer-
ciser. First and foremost, the exerciser software was executed in a data
processor distinet from the application data processor. The execution
of exerciser programs in no way interferes with the execution of appli-
cation programs. The alternative of executing the exerciser programs
in real time on the applieation eomputer had been taken in the pro-

MISSILE FARMS

MISSILE MISSILE
GROUND SITE
EQUIPMENT RADAR
RADAR
REPLIES RADAR

INSTRUCTIONS

APPLICATIONS

DPS COMMUNICATIONS OTHER
(APPLICATIONS TERMINAL SITES
SOFTWARE]

Fig. 1-—SAFEGUARD MDC sile equipment configuration.

S118 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD



APPLICATIONS EXERCISE
DP: COMMUNICATIONS CONTROL »/COMMUNICATIONS
(APPLICATIONS TERMINAL .'i TERMINAL
|

SIMULATED TARGETS
/ INJECTED AT ILF.
/

MISSILE | RADAR
ggsosdh% SITE RADAR ¥ RETURN
ohouND Pt GENERATOR
) g (RRG)
rd £~
RADAR

SIMULATEDY, NEPLIES RADAR
MISSILE INSTRUCTIONS
RESPONSES
S

SOFTWARE) UNIT (ECU)

/
/"I ‘ I
SIMULATED -
MESSAGES EXERCISE DPS
(EXERCISER
SOFTWARE)

STAG RECORDED
INPUTS OUTPUTS

Fig. 2—SarFrcuarp Ms site configured for a local exercise.

totype system. Separation of the application and exerciser program
systems also allows the development of the exerciser to remain as
independent of the applieation system as possible. The potential for
the exerciser programs to corrupt the application programs while
operating in a combined form was demonstrated on oceasion with the
Meck test system.

Experience with the separated application and exercise systems has
been favorable. No interference or identifiable differences in queuing
or timing between the exercise and application modes was found. For
instance, exercises were conducted that involved the tracking of
“simulated” satellites. The performance of the application process
was comparable when similar “live’ satellites were tracked.

At one stage of the design, it was recognized that requirements for
exerciser data processing throughput could be reduced by about 40
percent if the exerciser’s load could be made more uniform. All that
this required was to have the application program distribute in time
the data which the application data processor sends to the radar (see
Fig. 2). Changes were made to accomplish this without affecting the
capability of the application system. Other examples include the setting
of “flags” by the application program in data that it sends to the radar.
When the exercise intercepts the data, it uses the flags to help expedite

PROCESS-SYSTEM TESTING S119



processing. This was accomplished without compromising either the
applications or exerciser roles.

A second decision made in the design of the exerciser was to utilize
as much of the hardware in an exercise as possible. Clearly, the real
defensive missiles ecould not be included, but we note that the exerciser
interfaces with the system of missile ground equipment, not just at
the software/hardware interface. The full radar could not be included
because a real target environment is not available to be viewed and
because the cost of injecting simulated signals at the radar face is pro-
hibitive. As shown in Fig. 2, the £cu injects simulated signals into the
radar at the 1¥ strip. This has allowed the applications software to be
tested with major portions of the radar. This proved to be an effective
approach from several points of view. It provided a mechanism to
identify numerous problems in the hardware and software at the Tscs
(the test bed). These problems included radar instruction sequencing
errors, tracking bias errors, miswiring, ete. Corrections were made to
both Tscs and site hardware. Software was corrected before it was
shipped to the site. As a result of the prior testing at the Tscs, relatively
few problems were found with the testing at site. Problems that were
found were largely attributed to the detailed characteristics of the
hardware not included in the exercise. The number of problems was
lower than originally expected.

A third decision in building the system exerciser was to perform
as much of the calculation required for simulation as possible before
conducting the real-time exercise. Calculations for targets, defensive
missile farms, and other sites and of hardware was done off-line, in
the sTac facility ; and results were placed on tape. The real-time soft-
ware modified these data as appropriate for the real-time condition.
This approach minimized the size and complexity of the real-time
exerciser on a nonreal-time, pre-exercise basis. It also allowed programs
such as trajectory generators to be used to support exercises for differ-
ent radars; i.e., both the AR and the msgr. This reduced the total size
of the effort.

Fourth, in designing the exerciser, a number of decisions were made
relative to the realism of the various exercise simulations. The ap-
proach was usually, but not always, to simulate the effect of a particu-
lar phenomenon, rather than the phenomenon itself. For example, in
simulating the stream of intersite messages the MDc receives from the
PAR, there were several options. The highest degree of realism would
be a detailed simulation of the PAR system interacting with the threat
environment. A much cheaper option would be to generate a represen-
tative sequence of intersite messages per threat. These threat messages

$120 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD



would then be combined with a set of PAR status messages and modified
in real time as appropriate. For SAFEGUARD, the latter approach was
taken because it was economical, yet sufficient.

3.2 Exercising the exerciser

The system exerciser is a complex system, although considerably
smaller than the applications system. As the principal tool in integrat-
ing the applications software, it had to be stable and reasonably de-
bugged. There were at least two alternatives to test it. On one hand,
the testing of the exerciser could be performed in conjunction with the
testing of the applications system. On the other hand, the system
exerciser could be tested as a stand-alone system. The latter approach
was taken for SArEGUARD, because it allowed greater control and
easier isolation of problems.

Testing the exerciser was conceptually simple. We can view the
applications software as outputting radar instructions, missile instrue-
tions via the missile ground equipment, and intersite messages. Those
three classes of outputs represent the stimuli to which the exerciser
responds. To test the exerciser, a simple software package called the
Exercise Standard Test Process (Bstp), which resided in the applica-
tion data processor and output these stimuli, was generated.

In simplest terms, EsTP obtains time-tagged data blocks containing
radar instructions, missile instructions, and intersite messages from a
driver tape. EsTP outputs each data block at the appropriate time.
The key part of all this, of course, is the generation of the driver tape.

The most critical output from the applications software to the real-
time exerciser is the stream of radar instructions. The real-time exer-
ciser must determine whether or not any tactically ordered radar
operations will cause the simulated radar to view any simulated
targets. To test this portion of the exerciser, a stream of radar in-
structions that cause the exereiser to perform its simulation ealeula-
tions is required. The target trajectories are known, and the expected
response of the applications system is known. With this information,
the radar instructions to be generated by the applications system are
computed. EsTP assumes a ‘“perfect’”’ tracker but does not simulate
the application system tracker. With respect to the missile loops and
the intersite loops, similar deterministic test methods were used to
exercise the exerciser.

Because of the testing done with Este, relatively few problems were
experienced with the exerciser when it was interfaced with the appli-
cations software. Just as importantly, estp provided a vehicle for
further isolation and debugging of problems that did occur.

PROCESS-SYSTEM TESTING S121



IV. CONCLUSIONS

Some lessons learned from SAFEGUARD system integration and test
activities can possibly be applied to other projects. They are sum-
marized as follows:

(@

(i7)

(#11)

(i)

Prepare a test plan early; even though it cannot be complete
initially, it should address those items that could affect design,
or require long lead time.

Consider an incremental approach to testing. Several iterations
will be required to decide what form the incremental buildup
should take. Details will affect the program development
schedules.

Start the identification of tests early. Don’t delay the specifi-
cation of success criteria. This specification requires lead time
and coordination with other activities and can go a long way
toward getting design problems resolved early. Make every
attempt to minimize the total number of test cases. The
expense of doing the necessary analysis, test specification
preparation, ete., is large and often underestimated.

Make adequate provisions for an exerciser. Consider separating
but not isolating the exerciser from the applieations system.
Try to incorporate as much of the hardware in the exercise
configuration us possible. Test the exerciser to create a stable
base for system testing.

REFERENCES

1. E. 8. Hoover and . A. Jacoby, “Sariauarp Data-Processing System : The Data
Reduction System,” B.S.T.J., this issue, pp. S181-S189.

2. A. K. Phillips, “Sareauarp Data-Processing System: Debugging a Real-Time
Multiprocessor System,”” B.S.T.J., this issue, pp. S133-5145.

S122

THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD



