Copyright © 1975 American Telephone and Telegraph Company
The Bern SysTem TECHNICAL JOURNAL
SAFEGUARD SUPPLEMENT
Printed in U.8.A.

SAFEGUARD Data-Processing System:

Debugging a Real-Time
Multiprocessor System

By A. K. PHILLIPS
(Manuscript received January 3, 1975)

The debugging of SAFEGUARD software was performed in phases, each
with a unique environment, problems, and debugging tools. The unique
aspects of each phase are described here with special emphasis on the
debugging tools used. Although the multiprocessor configuration introduced
new kinds of software “bugs” and complicated the debugging problem, the
real-time character of the system had a greater overall impact.

I. INTRODUCTION

This paper desecribes the debugging approach used on SAFEGUARD.
The debugging effort is presented in terms of three testing phases:
(7) unit and module, (i) software integration, and (i77) system level.
The tools and techniques required for each phase receive special
emphasis. Although the multiprocessor configuration introduced new
kinds of software ‘“‘bugs” and complicated the debugging problem, the
real-time character of the system had a greater overall impact. The
debugging experience gained from SaFEGUARD is applicable to other
large, real-time systems, whether multiprocessor or not.

1.1 The debugging problem

The basic steps for debugging a large, real-time multiprocessor
system are essentially the same as for other software: detect the
error, isolate the cause, and provide a fix. Underlying this sequence
are two fundamental prerequisites: the ability to make an error
repeatable and to be able to collect the data required to isolate the
problem. Repeatability and data gathering, while taken for granted in
simpler environments, are severely affected by real-time and multi-
processor system characteristics. Real-time execution limits the ways
in which data may be collected. In fact, the very mechanism used to

5133

capture data may perturb the timing enough to cause other problems
or to make the original error disappear. The multiprocessor attribute
introduces further complexities. Active system components not in-
volved in the error may destroy critical debugging data before it can
be collected. Certain problems may manifest themselves in extremely
complex interactions requiring closely timed, coordinated, and parallel
occurrences of events. New classes of errors are introduced: timing
changes due to memory queuing effects on processor speed; shared-
data accessing conflicts ; and intermittent, phantom “clobbers” of data.
Although the great majority of errors found (e.g., incorrect register
usage, destroyed data, and bad interfaces between programs) are
similar to those encountered in simpler systems, those errors unique
to this special environment are among the hardest to find and correct.
Two other factors compounded the Sarecuarp debugging problem.
One was the parallel development of both hardware and software.
The other was the amount of software involved, of which the real-time
portion alone contained approximately three-quarters of a million
instructions.

Il. PHASE |—UNIT AND MODULE TESTING

The purpose of this phase is to test all logic paths in each program
and to test the interfaces between programs. In many instances, hard-
ware simulators extend the testing domain to encompass hardware
interfaces as well.

2.1 Environment

Most of the unit and module testing occurred on an IBM support
computer. A simulator called sracs (Sarecuarp Tactical Simulator)
provided the primary testing vehicle.! Various special-purpose test
drivers and hardware simulators interfaced with sracs and enhanced
its value. By eliminating the real-time and multiprocessor factors,
stacs reduced the testing effort to a more common situation: program
developers systematically testing their programs in a batch-oriented
environment.

As soon as the cLc became available, the operating system was
transferred to it for unit testing. This transition was greatly facilitated
through the use of support programs that executed on the Maintenance
Data Processor (Mpp). Prior to entering the software-integration phase
of testing, it was necessary that operating-system support capabilities
be thoroughly tested and verified on the cLe. This requirement necessi-
tated the early development of a basic set of debugging aids called
DEBUG.

S134 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

2.2 Debugging tools
2.2.1 The STACS simulator

sTacs fully simulates the cLc processor and most of the conventional
cLc peripheral units such as tapes, dises, consoles, and Trvs. It also
simulates many of the cLc operating-system capabilities; in some cases,
it uses the actual operating-system programs. A number of special-
purpose test drivers simulate the hardware, extending the stacs
testing capability. In some cases, these drivers are written in high-level
languages such as FORTRAN or PL/1. These languages have the ad-
vantage of being stable, already known to many programmers, and
well suited to the problem at hand. The ability to link to user-written
drivers of this kind is an important consideration in designing a
simulator. A good example of what can be done under stacs was the
testing of the 1/0 manager of the cLc operating system. Although the
module contained complex and widely distributed hardware inter-
faces, sTacs allowed thorough debugging to occur on the support
computer. The transition to the cLc produced few problems.

sTacs provides a variety of debugging aids including register
initialization, execution traces, conditional register and data snaps,
and post-execution dumps. An interrupt generation capability permits
error interrupt occurrences to be simulated at any specified location
in a program. Coupled with the sTacs simulation of the cLc operating
system interrupt handling, this allows exhaustive testing of program
interrupt response code. Special commands to simulate manual inputs
enable man/machine interactions, which are normally asynehronous
and not exactly reproducible, to be reduced to a single repeatable form
for testing purposes. Run-time statistics accumulated by stacs (e.g.,
the number of instructions executed and the number of memory
accesses) assist programmers in estimating program execution times
and memory queuing loads.

The ability to temporarily patch programs and data sets proved
extremely valuable. sTacs supports a simple, instruction-level patch
capability. To modify a program, the programmer specifies the in-
struction to be inserted and its offset within the program. Patching
frees the program tester from time-consuming source recompilations
and provides a great deal of flexibility. For example, one sTAcs run
might contain many test cases, each created by using patches to change
test data between program executions. The patch capability also per-
mits verification of the correctness of the instructions or data being
changed. Such verification eliminates two common problems: patching
the wrong location and patch conflicts due to more than one patch
at the same location.

DEBUGGING METHODS $135

2.2.2 MDP support program

Support programs executing on the mpp played an important role
in the transition of the operating system’s support capabilities to the
crc. These programs utilize the independent access paths of the
Maintenance and Diagnostic Subsystem (M&Dss)? to interface with
various cLc units. Along with the capability to load and execute
bound code, they provide a set of single-processor, nonreal-time de-
bugging aids including traces, snaps, and dumps, as well as a temporary
program and data set patch capability. Attempting to debug the
operating system’s support capabilities without such a set of basic
tools, which are provided by a separate support computer, would
represent a formidable task. Later, these programs provided a capa-
bility that allowed a complete and uncorrupted snapshot dump of the
system to be taken in the event of a system ‘“‘crash.”

2.2.3 DEBUG—a single-processor, nonreal-time tool

DEBUG represents the crc operating system’s first package of de-
bugging aids. Although it includes some multiprocessor capabilities,
which will be discussed under phase II testing, its design is more
oriented toward a single-processor, nonreal-time environment. Its
programs are not reentrant, its 1/o0 is not concurrent with processor
execution, and some of its capabilities require overlays from disc.
DEBUG output may be directed either to printer or tape.

DEBUG capabilities include many of those provided by sracs and
the Mpp support programs. They include register initialization, traces
of jump instructions or subroutine calls, conditional register and data
snaps, dumps after termination, and program or data set verification
and patching. A TTY interrupt capability allows an operator to inter-
rupt program execution, request debugging actions, and then cause
execution to resume. Using the breakpoint hardware of the crc
processor, pEBUG provides a breakpoint capability, which allows a
trace of all accesses to a specific variable store memory location. Its
patching capability became the standard approach across SAFEGUARD
for fixing problems, thus eliminating the need for source-code re-
delivery and rebinding except at widely spaced intervals. Consistent
with this philosophy, DEBUG capabilities require no special compile-
time changes. For example, to cause a snap or program breakpoint,
DEBUG temporarily inserts an illegal instruction into the program.
When a processor encounters the illegal instruetion, it interrupts, and
DEBUG gains control, performs the requested debugging service, and
then executes the instruction which has been replaced. The debugging
“hook” exists only for the duration of the run.

S$136 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

2.3 Lessons learned from phase |

Phase I testing would have benefitted from better compatibility
between sTacs and the cLc operating system, and more complete
hardware simulation by sTacs. Ideally, the transition from the support
to the target machine should be transparent. However, except for the
patech commands, the command languages as they exist are completely
different. Programmers must become familiar with a new command
language prior to beginning testing on the crc. In addition, due to
the way it simulates cLc memory, sTAcs requires programs and data
sets to have a memory allocation different from their eventual cLc
mapping. Thus, rebinding was required before the transition to the cLc.

The status unit is a good example of a device which should have
been simulated but was not. The status unit is a special-purpose hard-
ware unit used to collect status information from the crc and its
peripherals.? Both the operating system and the application software
contain numerous references to this device, and the effort required to
simulate it would certainly have been worthwhile.

The ideal situation would be to leave phase I testing with only
timing, multiprocessor, and some interface errors remaining in the
software.

IIl. PHASE I1—SOFTWARE INTEGRATION TESTING

The purpose of phase II testing is to integrate the software, starting
with a simple nucleus of tested code and adding increments until all
of the various software components are included. Testing is at an
external interface level, which may involve the complex interaction
of many programs and hardware units.

3.1 Environment

Phase II testing was performed on the cLc, primarily in a “‘hands-on”
environment. There were efforts to move toward batch operations, but
the complexity of the system and its unstable character during this
phase limited this approach. Independent test-and-integration groups
performed the bulk of the testing. For example, in the operating sys-
tem area, eight to ten people were engaged full time in the debugging
effort. The peBuG patch capability allowed quick fixes to problems
until the next source code update was made. During this phase,
single-processor, nonreal-time testing gave way to testing in a multi-
processor, real-time environment. At regular intervals, operating-
system releases provided new capabilities to the application software.
Special drivers were used to simulate the missiles and radar, later to
be replaced by the system exerciser! when it became available. During

DEBUGGING METHODS §137

this period, test-and-integration personnel, using the pEBUG patch
capability, “invented” many debugging tools as they were needed.
As the debugging environment became more constrained, the de-
bugging approaches attempted to minimize timing impact. Consistent
with this evolution, the debugging tools will be presented in order of
decreasing timing perturbation.

3.2 Debugging tools
3.2.1 Time suspension

As mentioned earlier, although DEBUG’s basic design is not intended
for a real-time, multiprocessor environment, it does include a few
capabilities for dealing with both of these complicating factors. Not
surprisingly, its approach, a form of time suspension, attempts to
collapse the system to the simpler, single-processor environment for
which it is designed.

The time-suspension strategy involves stopping the system, per-
forming a debugging operation, and then restarting the system. To
stop the system, DEBUG first stops the timing generator and then causes
each processor, except the one controlling the time suspension, to be
interrupted and to enter an idle loop. At this point, the controlling
processor performs the requested debugging operation, e.g., a memory
dump to the printer, which may consume many seconds or even
minutes. To restart the system, pEsuG first restarts the timing gener-
ator and then the processors. Each processor restores its previously
saved registers prior to resuming execution.

Time suspension suffers from several serious drawbacks. Using
interrupts to stop processors is a serial operation, requiring 10 to 20 ps
per processor. This permits scores of instructions to be executed, and
proves particularly unsatisfactory in a “stop-on-error’ situation. The
fact that all processors cannot be stopped instantly leads to several
difficulties. For example, some processors may be stopped with critical
data sets locked, causing lock recovery code to be erroneously triggered
on one of the processors still running. An even more serious difficulty
is that time suspension does not work with synchronous peripherals
such as the radar. DEBUG cannot correctly stop and restart the radar’s
internal clock and, therefore, cannot preserve its timing relationship
with the data-processing system. Early in phase II testing, when
synchronous peripherals and large processor configurations were not
used, time suspension proved helpful.

3.2.2 System image save

The ‘“‘system image save”’ is one of the most important data-
gathering tools, providing a complete snapshot of the system. Preceding

§138 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

the save, the system is collapsed to a single-processor, nonreal-time
state. Following the operation, the software must be reloaded prior
to restarting the system. The system image includes the entire data
base, all processor registers, the contents of the status unit, and the
contents of internal hardware registers. The information is written to
tape or dise, the entire operation requiring only a few seconds. Test-
and-integration personnel invoke this capability manually when they
suspect the occurrence of a serious error. During phase II testing, the
automatic invocation of it by pEBUG in response to an error interrupt
was important. In phase IIT testing, a system-image-save automati-
cally oceurs as a first step during system-error-recovery operations.

3.2.3 Real-time simulation

Real-time simulation on the crc is another useful technique for
reducing the debugging effects of a time-constrained environment. Two
SAFEGUARD approaches deserve mention: one employs the timing
generator and the other eliminates it entirely. The operating system
manages processors by dividing time into diserete units, called phases.
The length of a phase is determined by the timing generator and can
be increased by simply programming the timing generator such that
the phase length is longer than it normally would be. This approach
does not eliminate the timing generator’s time constraint, but does
provide a continuum of execution rates from nonreal time to real time.

The other approach used on SArEGUARD employs a software mech-
anism instead of the timing generator to control software execution
and phase length. In order that 1/0 jobs may terminate properly, a
minimum time between phases is enforced. This approach eliminates
the timing generator's time constraint completely, allowing a task’s
execution time to extend as long as necessary, e.g., for many seconds
or minutes in the case of a dump of processor registers on the printer.
An additional benefit is greater repeatability since the elimination of
the hardware clock reduces many of the run-to-run variations which
normally occur. However, because real-time simulation precludes
synchronous peripheral interfacing, its use was confined to the early
portion of phase II testing.

3.2.4 DARTS—a low-perturbation tool

The intent of Debugging Aids for Real-Time Systems (parTS) is
to provide debugging capabilities in a multiprocessor, real-time en-
vironment with a minimum of timing perturbation. This environment
includes normal timing-generator and radar operation. The underlying
assumption is that debugging actions can be performed during normal

DEBUGGING METHODS S139

processor idle time. The design of DARTs resembles in many respects
that of the real-time portion of the operating system: reentrant pro-
grams that are permanently resident during execution; a real-time
component driven by tables constructed in nonreal time; and service
times low enough to be measured in microseconds.

DARTS permits the establishment of program breakpoints at which
desired debugging actions can occur. These actions include both data-
collection and data-manipulation services. Actions can be conditional,
depending on register contents, data values, the operating system
phase, the arrival of a specified point in time, or the completion of a
specified time delay. Breakpoints can be enabled or disabled during
execution, providing added flexibility. A manual input simulation
capability permits complex man/machine interactions to be reduced
to a list of pARTs commands. This feature offers a number of significant
benefits. First, repeatability is increased since the simulated inputs
can be timed precisely. In addition, the number of operators required
is reduced, the possibility of operator error is virtually eliminated, and
run times are shortened considerably. pARTs also provides an interrupt-
simulation capability which proved extremely useful in debugging the
extensive interrupt-response code within the operating system.

Instead of dumping captured data to the printer, pArTs either
accumulates it in circular buffers or writes it on tape using the operating
system’s recording capability. At termination, information in the cir-
cular buffers can be dumped in chronological order.

parTs provides a flexible, easy-to-use, high-level language with
which test-and-integration programmers can create their own de-
bugging tools. It incorporates many of the ideas and techniques
learned during the early SaArEGuarD debugging experience.

3.2.5 Event traces and error logs

The operating system provides a number of historical traces and
logs of key system events, including both normal occurrences and
errors. These data-collection capabilities are extremely valuable in
debugging and performance analysis. The normal path traces include
task executions, status-unit bit changes, and manual inputs. For
each error occurrence, the operating system generates a four-word
entry containing the time of the error, its category, and two data
words that are dependent on the particular kind of error. The event-
trace and error-log information is accumulated in memory and,
periodically, is written to tape using the operating system’s recording
capability. The information remaining in memory becomes an im-
portant portion of any system image save which may be made. It
reflects the key system events leading up to a serious error occurrence.

S140 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

3.2.6 Data recording

The operating system provides a flexible and powerful data-recording
capability which permits continuous data collection onto tape with
a capacity of one hundred thousand 32-bit words per second. Numerous
recording calls are permanently embedded both in the operating system
and the application software. These calls may be easily augmented
using pARTS. Both software and manual controls permit individual
recording categories to be turned on or off. Thus, the recording stream
can easily be adjusted to meet the needs of particular test situations
or suspected errors.

In addition to recording the various event traces and error logs
described earlier, the operating system supports special recording
capabilities relating to processor interrupts and crr displays. Specifi-
cally, on a processor interrupt, the operating system records the
processor registers and stack information. The stack contains tem-
porary data variables and information sufficient to recreate the chain
of programs leading up to the interrupted program. These interrupt-
related data become inecreasingly useful in phase III testing when
continuous operation in the presence of errors, including interrupts,
becomes commonplace. The operating system provides the capability
to record crr displays. This output can be reduced using special pro-
grams on the support computer, producing a “hard” copy of displays.
Verifying the correctness of displays in this manner is more convenient
than taking photographs.

3.3 Lessons learned in phase Il

The most obvious lesson from phase II testing is that debugging
approaches suitable for nonreal-time, single-processor systems are not
adequate for a system like SArEGUARD. Specifically, the philosophy of
minimum perturbation as exemplified in pARTS is far superior to the
time-suspension technique used by pEBuG. For time suspension to be
feasible, hardware mechanisms to allow abrupt stopping and restarting
of all active system elements (e.g., processors and clocks) must exist.

The second lesson is that debugging aids must be developed early,
well ahead of the software which will use them. Waiting for experience
to provide feedback on what tools are needed does not allow sufficient
time for their development. A solution to this dilemma is to provide
the test-and-integration personnel with the tools to construct de-
bugging aids as the need arises. The patch capability is the simplest
example of this approach while DARTS represents its easy-to-use
culmination. An analogous problem occurred in developing individual
operating-system tests. Often the test team would identify new areas
requiring testing. However, the amount of time required ruled out the

DEBUGGING METHODS S141

normal test-development cyele. The solution was a software facility
that allowed quick test generation using a simple, high-level command
language.

IV. PHASE lII—SYSTEM TESTING

The purpose of phase III testing is to verify that the software and
hardware work together as a system in an environment that resembles
as closely as possible the expected operating conditions.

4.1 Environment

During phase III, “hands-on” testing continued, primarily in a
real-time, multiprocessor environment. The completed system exer-
ciser became the test driver for the process. The duration of test runs
increased and, in some instances, testing extended for periods of many
hours. As confidence in the extensive error-recovery code in the system
increased, “stop-on-error’” modes of testing declined. Errors provided
unexpected opportunities to verify the software error response. Load
testing and process tuning became important. Netted tests which
involve multiple site interactions occurred frequently. Across SAFE-
GUARD the number of official patches grew into the thousands, re-
quiring extensive control- and quality-assurance measures. The
debugging tools developed in phases I and IT remained available, per-
mitting changes to the software to reach the test groups in a well-
tested state. Although most of the debugging aids described previously
continued to be used, the tools that were permanently part of the
applications software and that normally caused the least timing
perturbation were the most important. These included the event traces,
error logs, data recording, and the system image save. Data recording
and reduction were the tools that had the most widespread use during
this phase of debugging.

4.2 Additional debugging tools
4.2.1 CLC hardware monitor

The cLc monitor is an external hardware monitor which includes
its own memory, extensive logic to count and filter data, and two
tape units. Although its primary use has been to gather system per-
formance measurements, it has proven valuable in debugging two
areas. One is the kernel of the cLc operating system, where normal
debugging tools cannot be used. The other includes extremely time-
critical portions of the system where the insertion of debugging
“hooks”’ eauses an unacceptable perturbation. The mechanism for
transferring the software event information to the monitor is a single
store instruction, which increases task execution time by approximately

S142 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

1 us. A number of these monitor instructions are permanently embedded
in the software.

4.2.2 Operating system testing during phase lll—the system test “cycler”

A special test process called the system test cycler tested the operat-
ing system in an environment quite different from that of phase II
testing. It exemplifies the kind of testing done in phase II1. The cycler
allows continuous testing of the operating system over periods of many
hours. Special logic within the cycler exercises many of the conven-
tional data-processing peripherals (e.g., tape and disc) and the operat-
ing system software which manages them under extremely heavy
loads. Using a 7Ty command, test personnel can insert simulated
hardware faults into memory units and processors, verifying that
the operating system can detect and recover from the errors. Most of
the error-recovery mechanisms provided by the operating system can
be exercised using the cycler, either manually or automatically.
Besides uncovering numerous software and hardware problems, the
cycler provided a test-bed for verifying many of the changes made to
the operating system during phase II1I.

4.2.3 Visual error-detection aids

During phase III, visual error-detection aids became increasingly
important. In a system such as SAFEGUArD, where no observable
activity normally occurs, visual signs are needed to inform the operator
as to system ‘‘health.” Error indicators may prompt him to enable
recording, or they may serve as clues as to which portion of the total
recording output should be reduced. In addition to error messages,
wall display boards, and various error light indicators, the operating
system provides a cRT memory dump display. This allows areas of
memory or the status unit to be viewed. In this same category is a
printer trace* of key events which was extensively used during the
phase II testing of the application software. It provided a window
through which the system tester could observe the continuous func-
tioning of the process. Although an important testing capability, it
was never made a permanent part of the system.

4.3 Lessons learned in phase Il

The most important deficiency uncovered during phase III testing
was the absence of sufficient visual indications to determine what was
really happening inside the computer. One solution proposed, but
never implemented due to lack of available memory space, was a
“vital signs” crr display. Such a display might show the accumulated

DEBUGGING METHODS $143

errors on various units, the amount of 1/0 and processor activity, or
key radar and missile information.

V. RECOMMENDATIONS

Table I lists the capabilities discussed in this paper. If one capability
could be singled out as the key to the SaArEGUARD debugging success,
it would be the ability to patech programs. It eliminated the need,
except at widely spaced intervals, for time-consuming source-code
redeliveries and system reverification. In addition, patching provided
a flexible, easy-to-use tool through which new debugging aids and test
tools could be created.

The importance of unit and module testing cannot be overempha-
sized. A high percentage of the bugs found in the later phases could
have been eliminated in phase I. Therefore, it is highly cost effective
to provide extensive unit and module test facilities. Programs which
bypassed phase I testing, either because of extensive hardware inter-
faces or schedule constraints, generally became long-term problems
during later phases of testing.

The early consideration of three vital areas is mandatory: error
logging, data recording, and other special debugging aids. On SAFE-
GuaRD, error logging and data recording could have simplified debug-
ging if they had been available earlier. The tendency to postpone
consideration of these areas because they are not critical capabilities

Table | — Use of debugging tools by testing phases

Testing Phases

Debugging Tools
I

—
L]

IIT

cLc simulation on support computer (sTacs)
Unit debugging aids
Dump capability
Unit debugging aids on cLc

DEBUG

}MDP programs

<2 2 <

Program patching
Time suspension
Real-time simulation

Low-perturbation aids
Manual input simulation DARTS
Error-interrupt simulation

System image save

Event traces and error logs
Data recording

crT memory display
Printer trace of key events
cLc hardware monitor
System test cyecler

<. £ £ L L 2L 2 LLL < <

L L 2 L 2 2 2

S144 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

should be avoided. In the case of other specialized debugging aids,
it is clear that waiting for actual testing experience to reveal what
tools are needed is unsatisfactory.

Although it may seem obvious, the availability of an experienced
nucleus of people may be the best guarantee of success. The Meck
test system prototype effort which preceded SaFEGUARD provided a
sizeable pool of real-time, multiprocessor experience, which proved
invaluable in testing the SAFEGUARD system.

REFERENCES

1. R. R. Conners, “Sarecuarp Data-Processing S'vlst.em: Support Software and
Support Computers: An Overview,” B.S.T.J,, this issue, pp. S149-5160.

2. J. R. Hahn, Jr. and F. E. Slojkowski, ‘“Sarecuarp Data-Processing System:
Maintenance and Diagnostic Subsystem,” B.S.T.J., this issue, pp. S63-572.

3. J. W. Olson, “SareGuarp Data-Processing System: Architecture of the Central
Logic and Control,” B.S.T.J., this issue, pp. S41-S61.

4. B. P. Donohue IIT and J. F. McDonald, “Sarecuarp Data-Processing System:
grocmﬂ-System Testing and the System Exerciser,”” B.S.T.J.,, this issue, pp.
S111-S122.

DEBUGGING METHODS §145

