Caopyright @ 1975 American Telephone and Telegraph Company
Tie BELL SYSTEM TECHNICAL JOURNAL
SAFEGUARD SUPPLEMENT
Printed in U.S.A.

SAFEGUARD Data-Processing System:

Systems Programming in PL/1

By P. A. VAN SCIVER
(Manuscript received January 3, 1975)

This paper deals with the development of a large systems program in a
high-level language. The reasons for selecting a high-level language, the
most extensively used features, the benefits derived, and the significant
problems encountered are described.

I. INTRODUCTION

This paper highlights the important aspects of developing a large
systems program in a high-level language. The Execution Preparation
IPacility (xpr) performs the linkage editor function on the SAFEGUARD
project. When xp¥ was originally designed, the decision was made to
develop it in rr/1. The paper examines the most extensively used
features of rr/1, describes the problems encountered during develop-
ment, points out the lessons learned, and discusses the benefits derived
from the use of a high-level language. An appendix provides xpr de-
velopment productivity data and comparisons.

1l. FUNCTIONAL DESCRIPTION

XPF is the last major step through which software must pass on its
way to execution on the crc. Some funetions performed by xpF can
be compared to those of the operating-system linkage editor in that
XPF prepares the output of the language processor for execution, sets
up the overlay environment, and produces memory maps and cross-
reference listings.

The output of xpF, called a thread, is a collection of programs and
data sets and their associated control tables bound to absolute ad-
dresses. The thread also contains installation, debugging, and data
reduction information. Inputs to xXPF are user-supplied commands,
execution time parameters, assembler or compiler output, a partitioned
data set called the system file that describes the cLc operating system,
and, in an update mode, the results of previous XpF runs.

$173

The major functions of XPF are construction of control vector tables
(cvrs) for interthread linkage, allocation of crc resources, primary
memory and dise storage, binding of thread units, and construction of
operating-system control tables (pcts). In addition, XPF produces a
series of printed listings describing memory configuration, process
structure, forward and back referencing among units, pct construection,
and thread summary data.

lll. PHYSICAL DESCRIPTION

XPF consists of 246 subroutines, 95 percent of which are written in
pL/1. The internal structure is modular. Functions are performed by
24 independent modules that overlay each other. The xpF load module
consists of 130 overlay segments and requires 2.5 megabytes of disc
storage. The access method used to retrieve object code, while not
actually a part of XpF, is also included in the xpr load module.

XPF operates in a 400-K region, of which 260 K is occupied by the
overlaid load module. During execution, 12 internal files are used for
work space and intermodule communication. Since the disc space
needed for these files varies with the input, space allocation is con-
trolled by catalogued procedure parameters. The actual execution of
XPF is controlled by the execution time parameter field on the user’s
JeL execute card. Most modules execute at the option of the user and
are controlled through this field. The mode of execution (regular, de-
bug, or update) is also directed by execution time parameters.

IV. DESIGN DECISIONS

Since most systems software is written in assembly language, one
question arises: Why was a high-level language used for this facility?
Three major factors eontributed to this decision.

(i) Development time was short. It was felt that the antieipated
ease of writing in a high-level language, coupled with extensive
utilization of compiler-provided debugging capabilities, would
help provide the desired results within the allocated time.
This proved to be the case, and each of ten xPr releases was
produced on schedule.

(#7) A high degree of flexibility was required. XPF, the operating
systems, and the applications processes were to be developed
coneurrently. Since XPF is the software that links the operating
systems and the applications processes, responsiveness to the
design requirements of both groups was a necessity. A high-
level language was judged to be best equipped to provide the
required flexibility. This approach proved valid. In practice,

8174 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

when a SAFEGUARD design problem could have been solved by
changing the cLc operating system, the applications processes,
or the XpF, XPF was usually chosen.

(7227) The execution of xrr was expected to be 1/0 limited. Therefore,
potential compiler-generated cpu inefficiency was not a major
consideration.

Since xpF was to be developed and executed under 0s/360, the con-
tenders for a high-level language were PL/1, FORTRAN, coBOL, and
ALGOL. PL/1 was an easy choice. The bit-handling eapabilities of the
language were well known, and many members of the development
group had pL/1 experience.

V. HOW PL/1 WAS USED

This section records those features of pL/1 used most extensively in
the development of xpr.

External variables were used to store relatively small amounts of
data needed throughout xpr execution. Since the external variables
were located primarily in the root segment of the load module, their
use in intermodule communieation aided in segmentation and structur-
ing of the overlay tree.

Static storage was used extensively to take advantage of what would
have been dead space in the short legs of the overlay tree. The judicious
use of static storage minimized the amount of memory required for
execution. Static variables require special attention in an overlay en-
vironment. Every time a segment is brought into memory, each static
variable is reinitialized, but in subsequent calls to the segment that
do not require overlay, the variables retain their current values.

Three types of 1/0 were utilized. Stream-oriented 1/0 was used for
printed listings and debugging output. Sequential-record-oriented 1/0
was used for intermediate files for communicating between, at most,
two modules. The TiTLE option was used with these files to allow
many modules to utilize the same disc area, thereby reducing overall
resource requirements. Regional I update files were used to satisfy
global communiecation requirements, e.g., paging of data and storage
of object and bound units.

Area variables were utilized by many modules. Each record entered
into the update files consisted of a single area variable. Individual data
entries were allocated within the area and entry addresses assigned.
The use of areas avoided excessive 1/0 by allowing large amounts of
data to be stored on a single record. The utilization of pL/1 area
management greatly reduced the amount of user-supplied code neces-
sary for record formatting and control mechanisms.

SYSTEMS PROGRAMMING IN PL/1 §175

In the shorter legs of the overlay tree, area variables declared with
the static attribute were employed, realizing the advantages deseribed
earlier.

Based variables were used extensively, especially in the areas of 1/0.
Based structures were declared in the calling programs, and file
managers returned pointers to the requested items.

List processing was a major requirement in xpF design. Frequent
sorts of these lists were required. The use of linked lists prevented
excessive data movement during sorts, since only the pointers needed
to be modified to change the order of the tables.

The bit handling features of rL/1, an important aspect of the decision
to use this language, were used extensively. Since the cLc uses asci
character representation, characters had to be interpreted as bit strings.

Label arrays were utilized in command processing. Since many
commands contained common keywords and fields, processing was
broken down to that level. Keywords and fields were interpreted and
assigned number values that were used as indices into label arrays for
keyword processing.

The pL/1 preprocessor played an important role in xpr development.
Preprocessor statements and procedures were placed on a file that
was accessed via “7% iNcLUDE” by all procedures. Four key functions
were performed by the preprocessor:

(i) Declarations of global data such as external variables and
based variables used in 1/0 were stored on the file and brought
into each procedure that utilized them. This assured identical
variable declarations throughout xp¥.

(ii) Declarations of utility and file manager entry points and their
associated parameter attributes were also placed on the file.
This helped assure the consistency of parameters passed to
these subroutines.

(i47) Certain constants such as area sizes, array dimensions, and
conversion constants were subject to frequent change while
optimal values were being ascertained. Programs referencing
these constants did so via preprocessor variables. When modifi-
cations were necessary, the values of the preprocessor variables
were changed on the file and the referencing programs were
recompiled.

(iv) Preprocessor procedures were provided for frequently used
in-line code.

VI. HOW ASSEMBLY LANGUAGE WAS USED

While 5 percent of the subroutines in xpF are written in assembly
language, these amount to less than 0.2 percent of the total number

S§176 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

of machine instructions. Assembly language subroutines fell into two
categories: data conversion subroutines originally written in pL/1 and
recoded in assembly language for reasons of storage economy or effici-
ency, and subroutines written in assembly language to provide facilities
not directly available in pL/1.

An example of the first is a TRANSLATE function that converts ascii
to EBcpIc, and vice versa. This function was not supported in pL/1
Version 4. By recoding in assembly language, a 20-K-byte subroutine
was reduced to 500 bytes and made much faster.

An example of the second is a routine to aeccess a partitioned data
set of twenty or so members. Had this routine been written in pL/1,
one pp eard for each member of the data set would have been required.

Vil. MAJOR PROBLEMS ENCOUNTERED

The most serious problem encountered during development was an
obscure but critical bug in object code generated by pr/1 Version 4
that became important when a new computer with a larger memory
was installed. xpF would ABEND if loaded in the upper third of memory
because of bad code generated for bit-string operations. This made it
necessary to convert Xpr to Version 5 of pr/1. Incompatibility between
these versions required complete recompilation and some recoding. Six
weeks of effort were required to complete the conversion.

Another major problem was directly related to this conversion.
Half-word storage, implemented in Version 5, caused structure align-
ments to be altered. Since boundary alignments were not required on
the development computer, some problems were not detected. It was
later discovered that xpr would not work on certain models of the
IBM System 360. The most expedient method of correcting the prob-
lem was to declare the offending structures unaligned. Portability of
xpF could probably have been ensured in advance by constantly being
aware of the consequences of pr/1 defaults.

The xpF execution problem causing the most impact was excessive
1/0 usage generated by the os overlay manager and not by pL/I.
Dramatic reduction in load module aceesses was accomplished by
overlay restructuring.

Vill. LESSONS LEARNED

In addition to the initial decision to use pL/1, throughout the develop-
ment of XPF many design and implementation deecisions concerning
the use of pL/1 were made. Some of these proved to be sound, and
others had unfortunate results. This section deals with the results of
these decisions.

The extensive use of the pL/1 preprocessor proved to be an excellent
control mechanism. The inclusion of macros, entry point declarations,

SYSTEMS PROGRAMMING IN PL/1 S177

and global variable declarations via preprocessor procedures greatly
facilitated intermodule communication. This standardization guar-
anteed the integrity of interfaces.

As originally expected, the liberal use of pL/1 debugging aids was an
invaluable development tool. The large number of logic errors de-
tected through ox conditions such as SUBSCRIPTRANGE and STRING-
rANGE underlines the value of their use.

PL/1 provides no debugging aids for pointer variables, used ex-
tensively in XPF, so it was frequently necessary to examine a dump to
ascertain the exact nature of a problem. Since no error control phi-
losophy within xpF had been established, dumps could not be produced
at will. A global error control mechanism was instituted. By placing a
single oN ERROR block in the main procedure and removing them from
lower-level subroutines, the problem of inappropriate or inadequate
response by these subroutines was eliminated.

No global coding econventions were established at the beginning of
the project. This resulted in various methods of implementation of the
same basic requirements, some of which were more efficient than
others. A subset of pL/1 should be extracted that is most efficient for the
particular application. Programmers should be warned to avoid certain
implementation methods and encouraged to use other more efficient
ones.

Since xPF was required to execute in a 400-K region (the maximum
size for an express run), the use of small independent subroutines that
could be overlaid was encouraged. In the longer legs of the overlay
tree, this philosophy proved valid. However, in the shorter legs of the
tree, this introduced unnecessary inefficiencies because of operating
system overhead. The increased use of static storage in the shorter
legs decreased the effect, but the use of fewer subroutines would have
been more efficient.

The use of assembly language subroutines, though dictated by
reasons of efficiency and necessity, presents some disadvantages. Since
parameter definition is compiler-dependent, assembly language sub-
routines must be coded to meet the parameter passing standards and
conventions of a specific compiler. In pL/1 these proved even more
limiting since assembly language subroutines must be coded for a
specific version of the compiler. When such subroutines are utilized,
this dependency on a particular version of a compiler should be ex-
plicitly documented.

The assembly language complications are the most obvious of the
compiler dependency problems. However, as noted previously, incom-
patible compiler versions, the resulting recompilations required, and
possible machine-dependent errors are also problems. Unless a private,

§178 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

unchanging compiler is used, time must be reserved in the develop-
ment schedule for this type of updating activity.

IX. DISCUSSION

Flexibility was one key factor in the decision to use a high-level
language, and it proved to be one of the primary assets of the develop-
ment technique. Since XPF was written in pL/1, it could be fine-tuned
with less effort than if it were written in assembly language. Sections
of code could be rewritten in a relatively short period of time. This
made it feasible to experiment with implementation methods until
optimal code was produced.

One benefit of development in pL/1 that was not considered in the
original decision was the ease with which transfer of responsibility is
accomplished. Partial turnover of personnel oceurred throughout the
project. The transfer of code responsibility to new personnel was ac-
complished very smoothly with no apparent decrease in productivity.
Since PL/1 can be largely self-documenting through the use of mean-
ingful variable names and standard operation symbols, it is easy to
read and understand. This ease of understanding was the primary
reason for the smooth personnel transitions.

Perhaps the most important advantage of developing a system in
a high-level language is that the compiler provides area management,
storage allocation, error control, data access, and 1/0 interfaces. The
programmers can devote their time to acquiring expertise in the unique
requirements of the system.

APPENDIX
Over a period of two years (by Release S), xpF grew to approximately
32,000 prL/1 plus assembly-language statements. Almost all the

Table | — Comparative productivity, Release 9
sNX Assembler | cLc Simulator XPF

Total no. of subroutines 72 90 231
Total no. of source statements 69,788 63,737 34,344
No. of subroutines added or

changed 40 30 84
Percent of total subroutines 55.5 37.7 36.3
No. of source statements added

or changed 3,286 2,336 7,342
Percent of total source

statements 4.7 3.6 21.3
Man-months programmer,

management, librarian 23.5 10.5 37.0
Statements per man-month 140 222 198
Man-months, programmers only 18.4 9.0 30.0
Statements per man-month 177 259 244

SYSTEMS PROGRAMMING IN PL/1 S179

changes for each release were planned increases in capability, although
some, of course, were fixes for bugs. The total effort to produce the
first eight releases, debugged and tested, was 222 man-months. The
average productivity over this time is therefore about 140 statements
per man-month.

Table I compares Release 9 of xPr to the corresponding releases of
the snx assembler and the crLc simulator, both written in assembly
language. The simulator was a considerably easier task than xer for
this release because the simulator was only receiving maintenance,
while 21.3 percent of xpF was rewritten to add major new capabilities.
Nevertheless, the total number of machine instructions produced (per
man-month) by the XPF group was greater because they were coding
in pL/1, whereas the assembler and simulator groups were coding in
pssembly language.

§180 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

