Copyright © 1975 American Telephone and Telegraph Company
Tue Beun SysTEM TECHNICAL JOURNAL
SAFEGUARD SUPPLEMENT
Printed in U.S.A.

SAFEGUARD Data-Processing System:

An Experiment in Software Development

By R. D. FREEMAN

(Manuscript received January 3, 1975)

This paper describes a type of flowchart review used as a program-
development technique in which each programmer is required to give a
box-by-box explanation of a detailed flowchart of his program to a small
group of critical colleagues. Such reviews appear to have caught all the
major software design errors before the code was written. It also cut the
software-development time by at least 25 percent, representing a return of
at least 10:1 in terms of software-development lime saved as a result of
the week of the group’s time spent in the flowchart review sessions.

I. INTRODUCTION

This paper deseribes a program-development technique used in the
programming of the sensor (i.e., radar) control portion of the early-1973
release of the software used in the Meck test system. For this release,
the sensor control was completely redesigned and reprogrammed. Re-
programming provided an opportunity to experiment with techniques
in program development. Of the techniques that were tried, ‘“flowchart
reviews’’ had the largest effect on the development effort.

Il. BACKGROUND

Sensor control serves as the software interface between the Central
Logic and Control computer and the phased-array Missile Site Radar
(Msr) at the Meck Island test site of Kwajalein Atoll in the central
Pacific. The most complex job done by sensor control is to resolve
conflicting requests for radar usage, e.g., target search and target track.
This is accomplished by changing the time at which one of the requested
Msk transmit/receive order pairs is executed by an amount small
enough not to degrade the validity of the resulting data. Since it is
naturally desirable to obtain the maximum amount of data from the
radar, the rules for performing this radar-order-conflict resolution are
inherently complex. The memorandum analyzing these rules is about

$199

100 pages and demonstrates that the resulting radar-order-conflict-
resolution algorithm meets all the system requirements.

As the test missions at Meck Island became more complex, they
began to strain the original version of sensor control. There were
problems in program execution time and also in the limitations of the
radar-order-conflict-resolution algorithm designed into the original
version. It was therefore decided that sensor control would be re-
written, essentially from scratch, using a new data structure and an
improved conflict-resolution algorithm.

The development of the new sensor control required about six man-
years of work, including algorithm design and analysis but excluding
any detailed documentation that might be written in the future. For
reasons that are mainly historical and beyond the control of the
sensor control group, the programming was done in assembly language.
Every few tenths of a millisecond of execution time was important.
The new sensor control requires about 5000 lines of assembly language
code (plus a somewhat larger number of comment lines) and executes
in about half the processor time (about 1.5 to 2 ms) of the old sensor
control.

IIl. THE PROCESS OF FLOWCHART REVIEW

During the reprogramming of sensor control, flowchart reviews were
used to find software-design errors or possible improvements before
the code was written. As a sensor eontrol group policy, before coding
was started, the programmer wrote very detailed flowcharts and data-
set layouts.* The flowcharts were to be sufficiently detailed that, given
the flowchart, coding the routines would be almost a mechanical
process. In particular, every decision point and all possible branches of
control were to be shown. On the average, there were fewer than a half-
dozen lines of code per flowehart box. The data-set layouts were in
complete detail, i.e., down to the level of the bit. Given these layouts,
coding the data sets was strictly mechanical. There were no specific
format requirements for the flowcharts and data-set layouts except
that they be easy to read.

As soon as the flowchart and data-set layouts for an area were com-
plete, a review meeting was held. These review meetings were always
attended by the group supervisor and several group members. Those
group members specially knowledgeable in the area covered in a par-
ticular flowchart review were specifically asked to attend. Other mem-

* A “data-set layout’ is a pictorial representation of the structure of a data area.
Fields within memory locations are shown left to right across the page and con-
secutive memory locations are shown top to bottom down the page.

S200 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

bers of the group were encouraged to attend. Flowchart reviews were
also open to anyone else who was interested but, in practice, no one
outside the group chose to attend. Except for the supervisor, people
attending had either given flowchart reviews themselves or were
scheduled to give them. The programmer whose flowchart was being
reviewed, therefore, had a technically ecritical, but sympathetic,
audience. Although the discussion of technical alternatives sometimes
grew quite spirited, criticism of a programmer’s design was never
sarcastic and there was no gloating when an error was discovered.

At the beginning of each review meeting, copies of the flowchart and
data-set layouts were passed out to all participants. Copies were not
passed out ahead of time, nor were they later given to anyone who
missed the review, primarily because it was unlikely that they would
be read.

Usually the programmer began the flowchart review by giving a
brief overview of how his code was structured. No high-level flowcharts
were used. However, it proved quite easy for a programmer to point
out what sections of his detailed flowchart represented what major
functions and, in effect, to create a high-level flowchart in the course
of the discussion. If the data-set structure used by his program was at
all complex, the programmer usually gave a summary of the data
structure at this point, leaving the definition of the specific fields for
later. Occasionally, there was some discussion of alternative data
structures at this point. Usually, however, any alternatives to the data
structure designed by the programmer were suggested during the de-
tailed discussion of the flowchart. This was probably because the fune-
tional structure of the data base had been one of the earliest decisions
made and was a basis for an improved radar-order-conflict-resolution
algorithm.

After this overview had been completed, the programmer explained
his flowchart in detail. This explanation consisted simply of starting
at the beginning and going through it box by box in the same order as
the code they represented would be executed. If the deseriptive phrase
enclosed by a box was not self-explanatory, the programmer gave a
brief explanation of what the code would do. For a few more complex
algorithms, the programmer set up an example on the blackboard and
carried it through during the discussion of the flowchart. The flow-
charts were sufficiently detailed so that it was not necessary to describe
how the code represented by a box in the flowchart would do the
specified function; this was self-evident. However, it was often neces-
sary to stop after reviewing all the individual boxes associated with a
particular major function and to discuss whether the design represented
by the flowchart would in fact carry out the desired function for any

SOFTWARE DEVELOPMENT S201

valid input and retain sanity for all possible inputs passed to sensor
control. Also, the participants in the flowchart review interrupted the
programmer with a question or comment on the average of once for
every two to three boxes in the flowchart.

The participants in the flowchart review, although sympathetic,
were expected to take an aggressive “I'm from Missouri and you have
to prove it to me”’ attitude toward every assertion that the programmer
made. If the programmer said that a data field began at a particular
bit in a particular word, more than half the participants would turn
to their data-set layouts to verify that. If the programmer said that
the various inputs to a given internal subroutine could be divided into
three classes, the other participants would try to think of a fourth.
If the programmer said that the inputs from another module were in a
particular format, the person responsible for that module would be
asked to verify this. If it could not be verified on the spot, e.g., be-
cause the module owner was not present, it would be checked later.
This aggressive questioning of the programmer’s every assumption by
his colleagues was undoubtedly the key to the success of these flow-
chart reviews. The programmer would sometimes catch a minor error,
e.g., branch conditions reversed for a decision point, as he explained his
flowchart to the group. However, the more significant problems were
almost invariably found by the other participants.

Discovery of many more significant problems found during these
flowchart reviews often resembled the way a lawyer sometimes (at
least, on television) finds a major flaw in a witness’s story during cross-
examination. Instead of anyone at first noticing the basic problem with
the design, someone would notice a minor problem. Two or three
people, including the programmer responsible for the code, would then
propose obvious patches to the design to handle this special case. The
discussion of this minor problem would, however, have focused the
group’s attention on that particular area of the design. During the
discussion of the best way to patch the design to handle this minor
problem, someone would notice a second problem. Now that the group
had seen two problems related to the same aspect of the design, com-
ments would come thick and fast, with interruptions every few sen-
tences. In a few minutes, this whole area of the design would be
thoroughly explored and any problems would be obvious. Often, the
person who noticed the second minor problem, and hence triggered
the discussion leading to the discovery of the basic problem, was neither
the person who noticed the first problem nor the programmer respon-
sible for the code.

Another interesting feature of these flowchart reviews is the way two
or three people, usually including the programmer responsible for the

§202 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

code, would occasionally seize the conversational initiative and draw
the group down a side path. These side paths would often explore an
alternative design in a manner not unlike a chess player exploring the
consequences of a particular move. One person would suggest a modifi-
cation to the original design; a second person might suggest that if you
were going to make the first change, the design could then be improved
by changing another feature. Another person might then suggest a
third change, or might suggest that if you were already going far
enough to make the first two changes, you could go all the way, make a
certain change in one of the basic design assumptions and redo a
portion of the design. These side paths were particularly useful in
finding simplifications to the original design. In at least some cases, a
few minutes of discussion saved a few weeks of programming and unit
testing. In one area, the code used to recover from machine interrupts,
the side path led to a spirited technical argument extending through
several flowchart reviews and ultimately resulting in a design with
more capabilities than any initial proposal.

As a conclusion to this description of the process of flowchart review,
it is worth reemphasizing the importance of maintaining a matter-of-
fact and unemotional atmosphere. This is essential so that the program-
mer can accept his colleagues’ aggressive questioning as just the rules
of the game. Viewed in that light, a flowchart review is just a form of
professional review that is part of the programmer’s job as a technical
professional. A group of programmers meeting for a flowchart review
is then not unlike M.D.s holding a seminar to discuss a particular
patient’s history and the treatment that is or was being given to him.
However, if a matter-of-fact atmosphere were not maintained, the
aggressive questioning in a flowechart review would be an intolerable
insult to the programmer’s pride as a technical professional.

IV. RESULTS OF UTILIZING FLOWCHART REVIEW

About two dozen flowchart reviews, including repeats, were required
for all sensor control. Although the length of the flowchart reviews
varied considerably, they averaged about two hours. Since the entire
group often did not attend a flowchart review, two dozen two-hour
reviews amounted to slightly less than a week of the group’s time. As
one would expect, the number of problems uncovered at the flowchart
reviews varied considerably. However, the average two-hour flowchart
review led to the discovery of about a dozen problems, varying in im-
portance from trivial to major. As a result of the reviews, several areas
of the new sensor control were redesigned essentially from scratch,
several areas were changed significantly, and no area was left un-
changed. Perhaps the best indication of the number of changes that

SOFTWARE DEVELOPMENT S203

resulted is the number of times that it was worthwhile to repeat the
review. In roughly half the cases, the first flowchart review led to
sufficiently extensive changes that a second review was held after the
design had been modified. Had all the errors uncovered in the flow-
chart reviews been found a few at a time as the code was written and
tested, it would easily have required at least several more months of
the entire group’s time (equal to roughly one-third of the time actually
required) to complete the development of the new sensor control. Thus,
assuming that the programmers would write detailed flowcharts or do
some other form of detailed design for their own use, there was a return
of over 10:1 on the week’s worth of the group’s time spent in the
flowchart reviews. These calculations exclude the time saved in system
testing by delivering higher quality software, which probably exceeds
that saved during program development. The group responsible for
programming the target search and target track algorithms used in the
Meck test system has also used flowchart reviews like those used by
the sensor control group, with similar results.

Perhaps the most striking result of using flowchart reviews was that
all the major software design errors appear to have been caught during
the reviews, before the code was written. Excluding a few cases where
changes in the system requirements or the discovery of errors in engi-
neering assumptions used by the sensor control group forced some
redesign, the design was very stable after the completion of the flow-
chart review. This illustrates both one of the successful results of
flowehart reviews and one of the chief limitations found. If the fune-
tional requirements and engineering algorithms remained stable, then
the software design remained stable after the flowchart review. How-
ever, the flowchart reviews were not very useful in protecting against
unexpected changes in system requirements or errors in clearly
articulated—but wrong—engineering assumptions made by the entire
group. Fortunately, there was only one case where this problem caused
a large amount of redesign, and in that case the redesign occurred
before any code had been written.

The use of flowchart reviews led to the discovery of two disad-
vantages that seem inherent in any such highly detailed review pro-
cedure. The first is that it involves too much detail to be useful during
the preliminary design stage. Sensor control was a modestly sized set
of programs designed by a small group whose desks were only a few
steps from each other. Thus, the lack of a formal review process during
the early stages of the design was not a real problem. However, looking
back, it seems that some effort might have been saved if a more formal
top-down design approach, with design reviews at intermediate points,

§204 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

had been adopted after the basics of the data structure and radar-
order-conflict-resolution algorithm had been determined.

The second disadvantage is the level of boredom that must be
tolerated. Interest drops off rapidly if no serious questions have been
raised for 15 to 20 minutes, and the discussion becomes very boring.
During the sensor control flowehart reviews, periods of intense bore-
dom sometimes lasted over half an hour. Also, the policy of aggressively
questioning every assertion sometimes leads to three- to five-minute
discussions to resolve trivial points. Despite the boredom involved in
this nit-picking, such discussions should not be dropped. Discovery of
many major problems resulted from unsuccessful attempts to satis-
factorily resolve what seemed at first to be trivial questions.

Concerning the amount of boredom that has to be tolerated during
a flowchart review, experience throughout the flowchart review has
been that if the leader does not care enough to personally take part in
the flowchart reviews, they will not be held. If the leader of a group
lets boredom take the edge off his personal aggressiveness, then the
whole group loses its aggressiveness. Although it is hoped that the
leader would be a key technical contributor to the review process, his
chief responsibility is to maintain the group’s aggressiveness despite
the inevitable boredom—and the leader’s personal example is critical
in carrying out this responsibility.

To be sure, it is difficult for a supervisor to allocate the several hours
required to take part in a flowchart review. However, if a fair-sized
piece of software is being built, then the quality of the software design
is an important factor in determining the quality of the supervisory
group’s output. Thus, ensuring the quality of the software design—by
one method or another—is an important part of the supervisor’s job.

Besides the group leader’s personal example, motivating the group
members to participate actively requires convincing them that the
reviews are productive. Because of the number of problems found
during the sensor control flowchart reviews, their usefulness was ob-
vious to the participants, although no one—especially not the group
supervisor—pretended that they were fun. As mentioned above, only
those group members who had the knowledge to make a meaningful
contribution to a particular flowchart review or who could learn from
it were specifically asked to attend the review. No one was ever asked
to participate in a flowchart review just because of arbitrary group
rules. Those group members who were asked to attend, especially the
lead programmers who were asked to participate in most of the reviews,
were told frankly that the supervisor realized that this was not one of
the more enjoyable parts of their job, but that they were being invited

SOFTWARE DEVELOPMENT S205

because their participation was important. In practice, there was no
problem motivating the lead programmers to participate in so many
flowchart reviews. The same personality traits that made a person into
a lead programmer in the first place also made that person willing to
put up with some boredom to obtain the satisfaction of having had a
strong personal impact on the quality of the group’s work.

V. COMPARISON WITH OTHER FORMS OF PROFESSIONAL REVIEW

It is worthwhile to compare the formal group-meeting style of flow-
chart review used in the development of the new sensor control with
other forms of professional review that have been discussed in the
literature. Flowchart reviews are very similar in spirit to Weinberg’s
concept of “egoless programming,” in which programmers are trained
to encourage other members of their programming team to contribute
to their work; e.g., by reading their programs. The intent of egoless
programming is for each program to be—as much as is practical—the
product of the collective efforts of a programming team rather than
the product of an individual programmer working in isolation (hence
the term “egoless”). The group members are encouraged to be tech-
nically aggressive in reviewing each other’s work. Also, as with flow-
chart reviews, group members are encouraged to be as matter-of-fact
and unemotional as possible in pointing out errors or making sugges-
tions. As Weinberg has reported, egoless programming has worked
extremely well in some programming groups. One advantage of flow-
chart reviews compared with egoless programming is that flowchart
reviews are a formal group meeting in which the supervisor takes part.
Thus, their success is less dependent upon personalities and it is con-
siderably easier for the supervisor to ensure that the reviews maintain
a uniform standard of thoroughness.

Mills>~* has made several very innovative proposals [e.g., chief
programmer teams, programmer librarians, top-down design/struc-
tured programming, PIDGIN (roughly similar to outlines)] as alterna-
tives to flowcharts for organizing software development. See also the
papers by Donaldson,® Miller,® Baker,”® and Nichols.® Chief pro-
grammer teams, especially when combined with top-down design, pro-
vide an opportunity for a great deal of professional review.

Another technique similar to flowchart review is a “‘walk-through” ;*®
Mauceri!! has used group meetings to walk through the actual code in
a manner similar to the way that detailed flowcharts were reviewed in
the development of the new sensor control. One difference between the
work reported by Mauceri and the flowchart reviews used in the de-
velopment of sensor control is the handling of problems discovered
during the course of a review session. Mauceri reported that the

§206 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

procedure his groups used was to resolve questions and problems
“off-line””; i.e., they were put on a list to be settled later. During the
sensor control flowchart reviews, the questions and problems could be
said to have been resolved “on-line”; that is, resolved immediately as
they came up during the review if this were at all possible. As men-
tioned above, many major problems found during the flowchart re-
views were discovered as a result of repeatedly unsuccessful attempts
to resolve what first seemed to be trivial problems. Another difference
between the sensor control flowchart reviews and the reviews reported
by Mauceri is the inclusion of unit and module test cases in the reviews
reported by Mauceri. This was not done in the development of the new
sensor control. Instead, professional review of unit test cases was ob-
tained by a technique suggested by the various experiments on code
reading. Based on the detailed flowcharts used in the flowchart reviews,
one senior person in the group did the functional design of the unit test
cases for all of sensor control. The individual programmers were still
responsible for unit testing of their own code. Thus, they had to review
the proposed unit test cases for completeness and possible redundancy.
In this way, unit test cases were examined in detail by two people.

It is interesting to compare the group-meeting-style flowchart re-
views with the widely practiced technique of “‘code reading,” in which
a programmer’s code is read line by line by either his manager or a
senior programmer. In code reading, ideally the reviewer and the
programmer read through the code together, although sometimes the
programmer merely gives the reviewer a copy of his program listing.
For code written in assembly language, the flowechart review has the
advantage that it can be done earlier in the development cycle. How-
ever, if the code is to be written in one of the better high-level languages,
it is not obvious that the professional review procedure should be
based on flowcharts. Even if one were to use a formal group-meeting
style of review, it might be better to skip writing highly detailed flow-
charts and to base the review on the actual code as Mauceri and his
colleagues did. One disadvantage of flowchart review compared with
code reading is that a flowchart review will not detect minor coding
errors; e.g., misnamed variables.

The fact that a flowchart review involves a much larger number of
people than a typically two-person code-reading session is both an
advantage and a disadvantage. As a disadvantage, the more people
involved in a given review session, the more of the group’s time is con-
sumed. As an advantage, a group review appears to be able to detect
many more errors, especially errors of omission (e.g., simply forgetting
a given situation or a given class of inputs) than would be found if the
design were reviewed by any single person. One of the more interesting

SOFTWARE DEVELOPMENT S207

features of the flowchart reviews was the fact that no one participant
noticed half the errors that were found. This illustrates the advantage
of flowchart reviews by a group of a programmer’s colleagues, as com-
pared with the more traditional managerial practice in which a pro-
grammer reviews his design, probably briefly, only with his manager.
The traditional managerial review procedure is probably inferior to
almost any reasonable procedure that involves the detailed review of
a programmer’s work by a group of his colleagues.

This is not to say that a formal group-meeting-style flowchart review
is always to be preferred to code reading. Flowchart reviews are not
very useful for small changes to existing code corresponding to less
than several dozen lines of assembly language code and to flowcharts
with fewer than a half-dozen boxes. Unless it is possible to review
several such changes in one session, the flowchart review will probably
be finished—accompanied by much grumbling by the participants
whose work was interrupted—in about as much time as the people
could be brought together. In fact, some months after the original
version of sensor control was delivered to the system-integration team,
code reading was introduced into the sensor control group to help
tighten coding and testing of the minor changes being added to the
original design. How this came to pass is a story with a useful moral.

Some months after the new sensor control was delivered to the sys-
tem-integration team, minor additions had to be made to the code to
provide for some new capabilities. These additions went beyond the
software design that had been covered in the flowchart reviews. In the
time since the new sensor control had been turned over to the system-
integration team, the group, or at least the supervisor (the author),
had grown too cocky. The code had run well during the several months
of system-integration testing, and a series of minor changes had al-
ready been introduced with few problems. Probably significantly, the
design for this first series of minor changes had been included in the
original flowchart reviews; the implementation of these changes had
been delayed. The new changes that went beyond the original design
seemed at the time to be just more minor changes; no special review
seemed needed. The programmers individually tested their code and
released it after they felt that the changes had been thoroughly tested.
Suddenly, during one week, the system-integration team found bugs
in minor changes submitted by more than half the group. As a result
of this, the supervisor got a useful lesson in humility and a certain
amount of cheerful harassment from the system-integration team. To
deal with this minor fiasco, a referee system was set up for minor
changes. Each programmer submitting a minor change was required
to select a referee from among the senior members of the group. The

S208 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

programmer would discuss both his proposed change and the procedure
to be used in testing the change with the referee. The change could not
be released until the referee was satisfied with the testing as well as
with the code itself. After the referee system was introduced, the prob-
lem of bugs in minor changes came to a very satisfying end.

VI. LESSONS LEARNED

One lesson that was learned from the experiments described above is
the extent of the increase in quality and productivity that can be
obtained from the diseciplined use of professional review. The use of
flowehart reviews in the development of the new sensor control:

(1) Improved and simplified the software design.
(17) Appears to have caught all the major software design errors
before code was written.
(777) Reduced the software development time by at least 25 percent.
(iv) Improved the quality of the software delivered.

The use of a referee procedure brought an end to the errors in minor
changes turned over to the system-integration team. Other forms of
professional review have led to similar results.

A second significant lesson can be learned by comparing professional
review with some other techniques that have also led to improvements
in program quality and programmer productivity ; e.g., programming
teams, modular and top-down design, and structured programming. A
common denominator to these techniques is the increased structure
and discipline placed on the process of writing software. Although what
we now know about writing software is undoubtedly much less than
what remains to be learned, it is already clear that designing and
writing software needs to be a much more structured process than it is
today.

REFERENCES

1. G. M. Weinberg, The Psychology of Computer Programming, New York: Van
Nostrand Reinhold, 1971, pp. 56—64.

2. H. D. Mills, “Chief Programmer Teams: Principles and Procedures,” Report N.
TSC 71-5108, IBM Federal Systems Division, Gaithersburg, Maryland, 1971.

3. H. D. Mills, “Top-Down Programming in Large Systems,”” Debugging Techniques
in Large Systems, R. Rustin, ed., Englewood Cliffs, New Jersey : Prentice-Hall,
1971, pp. 41-55.

4. F. T. Baker and H. D. Mills, “Chief Programmer Teams,’’ Datamation, 19, No.
12 (December 1973), pp. 58-61.

5. J. R. Donaldson, “Structured Programming,’’ Datamation, 19, No. 12 (December
1973), pp. H2-54.

6. E. F. Miller, Jr. and G. E. Lindamood, “Structured Programming Top-down
Approach,” Datamation, 19, No. 12 (December 1973), pp. 55-57.

7. F. T. Baker, “‘Chief Programmer Team Management of Production Program-
ming,”” IBM Systems Journal, 17, No. 1 (January 1972), pp. 56-73.

SOFTWARE DEVELOPMENT S209

8. F. T. Baker, “System Quality Through Structured Programming,” Proe. AFIPS
FJICC, 41, Part I (1972), pp. 339-343.

9. B. C. Nichols, “SareGuard Data-Processing System: Structured Programming
and Programming Production Librarians,” B.8.T.J., this issue, pp. S211-S219.

10. A. L. Scherr, “Developing and Testing a Large Programming System, 08/360
Time-Sharing Option,”’ Program Test Methods, Englewood Cliffs: Prentice-
Hall, 1973, pp. 165-180.

11. R. Mauceri, “Increasing Quality and Productivity Through the Development
Process,”’ speech given at Bell Laboratories, Madison, N.J., July 14, 1973.

§210 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

