Copyright © 1975 American Telephone and Telegraph Company
THE BELL SYBTEM TECHNICAL JOURNAL
SAFEGUARD SUPPLEMENT
Printed in U.S.A.

SAFEGUARD Data-Processing System:

The Data-Processing System Performance
Requirements in Retrospect

By D. W. MESEKE
(Manuscript received January 3, 1975)

The Data-Processing System Performance Requirements (DPSPRs)
specify the required performance to be provided by the SAFEGUARD system
software. They were developed primarily by one systems engineering
depariment at Bell Laboratories. Their objective was to specify the required
functional performance in sufficient detail to permit software development.
The DPSPRs evolved from similar documentation that was developed for
systems prior to SAFEGUARD. Their history, development, use, and
document control system are described. Suggested improvements are also
discussed.

I. INTRODUCTION

The Data-Processing System Performance Requirements (ppsprs)
are a set of documents that specify the required system performance
to be provided by the tactical real-time software. A separate set of
requirements exists for each site: one for the Missile Direction Center
(Mpc) site, one for the Perimeter Acquisition Radar (pAR) site, and
one for the Ballistic Missile Defense Center (8mpc). The DPSPRs
include requirements for such functions as site communications, dis-
plays and controls, radar control, interceptor response planning, and
missile guidance. Since the SAFEGUARD system must operate con-
tinuously in real time with minimum down time, the pPsPrs also
include requirements for exercise and fault detection to verify total
system performance. The ppsprs do not include requirements for
installation and checkout software, software error control, or process
initialization.

The primary objective of the ppsers is to specify the required
functional performance in sufficient detail to permit the development
of the software by the designers, yet not in such detail as to overly
limit design freedom. A second objective is to state functionally how
the system is to operate in its different defense modes. Thus, the ppPsPRs

formalize for the customer—the Army Sarecuarp System Command
(saFscom)—the required system functions, their interactions, and the
expected system performance.

The ppsprs contain detailed requirements for each identified system
function. They are not part of the high-level contractual documenta-
tion, and they do not contain the detail required to subcontract soft-
ware development. They are written at an intermediate level along
functional lines, but they do not dictate the organization of the soft-
ware. For example, one section, Target Selection, provides require-
ments for calculating a set of parameters from quantities specified in
another section, Track. When the software was designed, it was found
more efficient to have the track software calculate the parameters and
pass them to the target selection software. Because the ppsprs did
not specify software organization, it was possible to choose the more
efficient software implementation.

This paper provides a retrospective view of the ppsprs, identifying
different aspects of their development that either worked well or should
have been done differently. The history of the ppsprs is given first,
followed by a description of how they were developed. A short descrip-
tion of how they were used is given next, followed by a section on
document control. The conclusion summarizes recommendations that
may be useful for the generation of future data-processing performance
requirements.

Il. HISTORY

Prior to SAFEGUARD, considerable experience had been gained from
the design of the Nixe-Zeus, Nike-X, and SENTINEL ABM systems.
As part of N1kE-X research and development, a series of documents
was developed to specify how various system functions would be
performed. They described, for example, how the radars were to
gather target trajectory data required to launch and guide a missile
to intercept a target. These documents were the forerunner of the
DPSPRs.

In January 1967, system studies were initiated to determine the
feasibility of deploying a thin area-defense system, later defined as
SENTINEL, using components (radars, data processors, missiles, etc.)
developed for N1ke-X. The first Data Processing System Performance
Requirements documents were written for the SENTINEL system.

In April 1969, Bell Laboratories was redirected by the Department
of Defense to develop the SaFEGUARD aBM system. The initial issue of
the ppspRrs for SAFEGUARD was completed in July 1969 in accordance
with this redirection. The time interval was short because many of the
pPsPR concepts and functions that had been developed for SENTINEL

$30 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

were applicable to SAFEGUARD and because this first issue contained
mainly qualitative requirements; i.e., many parameter values were
still to be determined. The purpose of this first issue was to disseminate
as much information as soon as possible to the software designers, who
had already organized to develop the SENTINEL system. This issue was
succeeded by a second, more quantitative issue in May 1970, which
was placed under internal document control.

On March 31, 1971, the ppsprs were submitted to the customer for
baselining. Baselining the pesprs consisted of a detailed document
review and preparation of changes, after which both the customer and
Bell Laboratories agreed to accept the documents. This process was
completed on May 31, 1972. The baselined ppsprs were then submitted
for formal configuration control procedures under which all changes
had to be (and must still be) approved by the SaFEcuarp Local
Configuration Control Board.

1ll. HOW THE DPSPRs WERE DEVELOPED

Development of the prsprs was the function of the system design
department, which initially consisted of about thirty engineers and
programmers. Their first step was to write an “operational concept”
paper for Sarecuarp. The concept paper identified the defense objec-
tives, the command and control configuration, and the general oper-
ation of the radars and missiles in their defense roles.

Based on the concept paper, the ppsprs were organized according
to the operational functions required at each site. The organization of
a typical ppspr is shown in Table I. The ppsprs were arranged so
that each section addresses a major system function. The ordering of
the sections within a ppsPR was primarily based on the sequence in
which the functions must be performed. Each section includes three
main subsections : objective, operational description, and requirements.

Table | — MDC DPSPR organization

. General

. Mpc Site Management
Radar Management
Surveillance

Track

. Target Selection

. SparTaN Interceptor Response
. SprINT Interceptor Response
. SparRTaN Guidance

. SpriNT Guidance

. Equipment Tests

. Exercise Subsystem

. System Constraints

. Displays and Controls

—
O D00 NI T Wb

Pt ot ok ot
W 00 B =

PERFORMANCE REQUIREMENTS 8§31

The operational description includes, in most sections, a general de-
scription of how that function is to operate in different system-defense
modes. It has been suggested that the ppsprs should have had one
section devoted to a complete operational description of the system
rather than appearing throughout the documents. Since the level of
detail varies from section to section, this suggested reorganization
could probably have provided a more consistent description of the
functional operation of the entire system. The concept paper did not
provide the detailed descriptive information that was later felt to be
lacking on the project.

Original plans called for each pespr section to have an inputs/
outputs subsection that would define the interfaces among functions.
These subsections were never included in the ppspRs, primarily be-
cause there was insufficient time. Since the requirements for each
function either specified or implied its inputs/outputs, it was felt that
these subsections could be omitted. In retrospect, this probably was
a mistake. For instance, an implied output of one function was missed
by the software designers in a specific case in which one function was
required to stop or inhibit an action previously started by another
funetion. This mission output was not discovered until later during
functional integration testing of the designed software. Then, many
questions were raised:

(2) Is it really necessary to stop the action?
(i) What happens if the action is not stopped?
(747) Can the missing output be implemented without jeopardizing
schedules?
(iv) How much retesting is required if a modification is made?

Clearly, a perturbation in the software development effort occurred
that might have been avoided if the inputs and outputs had been
explicitly stated.

The general policy for writing requirements for a function was to
state the requirements without descriptions of how the function should
be implemented. In many cases, this was difficult to do; it was often
easier to say how a function should be done rather than to state a
performance requirement for the function. This led to two problems.
First, when a requirement specifies how something is to be done, the
software designer feels constrained. He may know a better way to
implement the requirement or he may want to try other ways. Second,
if a performance requirement does not exist for a function and only the
technique is specified, then the test designer must generate his own
performance requirement, or his tests will check only to see that the
proper technique has been implemented. For this reason, it has been

§32 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

suggested to both system designers and software designers that the
ppsPRs should have included only system performance requirements
with no mention of implementation or algorithms. This is a philosophi-
cally ““pure” notion which might or might not work. The method of
specifying requirements depends largely on the project organization
and the talent of the people involved. For example, before writing a
ppsPR function, the systems engineer discussed the particular function
with his counterpart, the software designer. In some instances, pri-
marily those in which there was a lack of specific experience, the de-
signer requested that complete design details be supplied. In other
cases, the designer wanted only an overall performance requirement
because he felt he knew how to produce the design. Requirements were
written both ways, but experience suggests that it is probably best
to state the performance requirement and then provide a recommended
technique to be used at the designer’s option. In summary, the system
designers tried to reason out the level of detail to be included and took
the pragmatic approach of “getting the job done” and trying to satisfy
both the software designer and the customer.

IV. HOW THE DPSPRs WERE USED

In software design, the pDpsprs were used in three phases: setting
up the software structure, establishing the internal organization of
each basic function, and functional testing.

In setting up the software structure, the routines and subroutines
needed to perform the functions were based on the requirements in
the ppsprs. In software design, primary emphasis was placed on
definition of the inputs required to perform the functions and the
outputs required by other functions.

Next, the internal organization of the defined routines and sub-
routines was established. At this time, emphasis was placed on defining
both the particular algorithms required within a function and the
interfaces between routines.

As the design of the routines approached completion, the DPsPRs
were continually consulted to determine if the designs met require-
ments. DpsPRs were then used to determine the functional testing
required for the completed design.

In system evaluation, the ppsPRs were used primarily as a reference
document. The first stage of system evaluation was to verify that the
DPSPR specifications would meet system objectives. The evaluation
program then determined if the implementation met the pPsPr re-
quirements. The system evaluation effort led to development of new
system functions, changes to existing ones to provide better perform-
ance, and sometimes modification of the requirements themselves.

PERFORMANCE REQUIREMENTS 833

The pesprs were used by the customer as the documents that speci-
fied performance of the system they were buying. The customer
coordinated with the design engineers in the formulation of all pre-
baseline versions of the ppsprs. After baselining, the customer was
deeply involved in the evaluation and discussion of each change
proposed for the ppsprs. In addition, the ppsprs were used by the
customer for his independent evaluation of the system design.

V. DOCUMENT CONTROL

After the first issue of the npsprs was published and distributed, an
intensive review was held with software designers and system evalu-
ators. This resulted in changes to add new requirements, to expand
upon old ones, and to correct errors. No formal accounting of the
agreed-upon changes was kept, and some systems and software de-
signers were not made aware of these changes until they received their
copies of the next issue. Clearly, there was a need for a better method
of keeping track of problems and their solutions and a need for timely
revisions.

To solve this, a document control system was established in which
all ppspr-related problems were identified by a Trouble Report (TRr)
and the solution to each problem was described by a Correction Report
(cr). TRs could be written by anyone uncovering a problem, but had
to be approved by the writer’s immediate supervisor. Once approved,
the TR was given a number, recorded in the log book, and sent to the
supervisor responsible for the affected ppspr. After his approval for
action, the TrRs were assigned to the persons responsible for the par-
ticular sections that were related to the problem. Each solution was
described in a cr to be approved by the Tr originator. So both the Tr
originator and cr originator had to agree upon the solution. When
agreement was reached, the cr had to be approved by the supervisor
responsible for the applicable prspr.

Since changes to the ppspr generally implied corresponding changes
in the software design, all crs were reviewed and approved by all
affected software design departments, with final approval delegated to
higher levels of management as the software delivery date was ap-
proached. After final approval, the cr was sent to publications for
preparation and distribution of the revision pages for the cr.

Three different methods of achieving this approval were tried before
an adequate approval sequence was found. Figure 1 shows a flowchart
of each of these methods. First (Method 1), after the ppspr coordinator
approved the cr, a copy was sent to each affected software design
supervisor for an assessment of the software impact of the change in
terms of cost and schedules. When all assessments were received by

§34 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

DESIGN
GROUPS

DESIGN
TR CR DPSPR FOR DPSPR . DEPT. . FINAL

COORD. IMPACT COORD. APPROVAL
ASSESS— APPROVAL

MENT

METHOD 1

DESIGN
GROUPS
FOR

F st
ey

DESIGN
DPSPR FINAL
TR [CR DEPARTMENTS
COORD. APPROVAL APPROVAL

METHOD 2

DESIGN
GROUPS
FOR

IMPACT
ASSESSMENT

Py

DESIGN
DEPARTMENTS
APPROVAL

!

DESIGN CHANGE
TR =i CR [= c?g:g COORDINATION AP?FI:JOA\.I'.AL
: DEPARTMENT

T

METHOD 3

Fig. 1—Tr/cR approval sequence.

the ppspr coordinator, the assessments were attached to the cr and
the cr was then routed in turn to the head of the system design depart-
ment, to the head of the software design department affected by the
change, to the heads of all other software design departments, and
finally to the director of software design. This procedure resulted in
significant delays in the return of impact assessments and in depart-
ment-head routing. It only worked efficiently when the ppspr co-
ordinator hand-carried the cr through the approval sequence.

PERFORMANCE REQUIREMENTS S35

The procedure was then changed (Method 2) to one in which the cr
was immediately routed to department heads and, at the same time,
information copies were sent to all software design supervisors whose
design would be affected by the change. When each department head
received the cr for approval, he requested software impact estimates
from his supervisors. This procedure was more effective than the
previous one; however, cRs tended to become backlogged in the de-
partment-head routing process. This resulted primarily because no one
representative of the design organization had the responsibility to
ensure that each cr received appropriate and timely action.

The final procedure (Method 3) was quite similar to the previous
one except that one department head was designated as the change
coordinator with the responsibility of ensuring that each cr received
the appropriate attention and that all software changes were properly
coordinated.

The ppsprs were submitted to the customer for baselining on March
31, 1971. From that time until the ppsprs were finally baselined in
May 1972, changes were allowed in the ppsprs by means of the pro-
cedure described above. This allowed the ppsprs to be reasonably
current during this period; however, additional effort was required by
the customer to review the TR/cr changes as well as the submitted
ppsPRs. After baselining, the only change to the TrR/cr procedures
described above was that approved crs were incorporated into an
Engineering Change Proposal (Ecp) which required customer approval
before the crs associated with the Ecp were forwarded to publications
for generation and distribution of revision pages. There were instances,
of course, where software design changes had to be made to make the
system work before customer approval could be obtained. The control
procedures allowed for this as a “management risk.”

The control procedure enabled the project to keep track of all
problems and their solutions and to control the changes in system
design. However, after the document control procedures had been
prepared, a few suggestions were made that might have improved the
process.

First, in addition to detailing the specific change to the prspr, the
cr should have included the rationale and/or study that led to the
change. In cases where significant changes were made, they were
generally documented in a memorandum ; however, little or no rationale
accompanied many small changes. Including the rationale would prob-
ably have reduced duplication of studies that were conducted by the
system designer and the software designer to evaluate changes.

Second, the software design organization always should have been
a party to the initial approval of a correction report. This was done

§36 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

when the TR was originated by software design, but was not done
when a TR was initiated by system design or by system evaluation.
By coordinating all correction reports through the software designer,
there probably would have been fewer unapproved crs to rework.
This would also have made the software designer aware earlier that
a change in his design was being proposed.

Third, the TrR/cr approval sequence and publication of the change
should have been streamlined as much as possible. Even though the
designers knew of the change, most other ppsPR users were not aware
of it until the revision pages were issued. One change to the approval
sequence that might have shortened the approval cycle time would
have been to establish a formal calendar date for final review and
approval at the highest necessary management level when the cr
began its approval sequence. Each cr would be reviewed on that date
and rescheduled if a final approval decision could not be reached. This
approach would have forced timely attention to each cr in the ap-
proval cycle.

VI. CONCLUSIONS

One of the most fundamental needs in a software development
project is a clear statement of requirements. The prspPrs were designed
to meet this need and were successful in doing so. They have also
provided valuable insight into the design of testing and evaluation
procedures. The most notable deficiency in the ppsprs was a lack of
explicit definition of interfaces among the various functions. More
concentrated effort in specifying exact definitions of these interfaces
would have greatly helped the software designers. The most important
lesson learned in setting and maintaining requirements is that changes
to the system design must be carefully controlled. It is essential that
software designers be made fully aware of the content and implications
of each system change.

PERFORMANCE REQUIREMENTS 8§37

