Copyright © 1975 American Telephone and Telegraph Company
TrE BELL SysTEM TECHNICAL JOURNAL
SAFEGUARD SUPPLEMENT
Printed in U.S.A.

SAFEGUARD Data-Processing System:

Architecture of the Central Logic and Control

By J. W. OLSON
(Manuscript received January 3, 1975)

The Central Logic and Conlrol (CLC) unit ts the digital computer that
controls SAFEGUARD. Its development represents the first reduction to
practice of large-scale multiprocessing in a computer system. This paper
describes the CLC and explains some of the decisions behind tts design.

I. INTRODUCTION

The Central Logie and Control (cLc) represents the first practical
application of the multiprocessing concept to a large-scale computing
system. A modular design is employed in which as many as ten proe-
essors and two Input/Output Controllers (10cs) share as many as 32
memory racks. The units are interconnected by a flexible switching
network that allows the system to be partitioned into two independent
computers. Partitioning can be controlled by software, and complete
reconfiguration may be accomplished in less than one second.

This paper focuses on the architecture of the cLc, and on how system
requirements influenced the decisions behind its design.

Il. DESIGN PHILOSOPHY
2.1 System requirements

Availability, reliability, and performance requirements are placed
on the cLc because of its importance to SAFEGUARD. The data-process-
ing system is required to be fault-tolerant. This means that the system
must be able to perform its workload in the presence of any single
malfunction. In addition, the crc is allowed only a limited amount
of down time. High-reliability specifications are placed on each of the
components from which the cLc is fabricated to increase the mean-
time-to-failure. High cLc performance requirements are dictated by
the nature of its primary job, controlling a radar tracking system in
real time and the launch/guidance of missile interceptors. Sufficient

sS4

MAINTENANCE DATA PATHS

’_ _________________ T———— — === =
| { !
l l MAINTENANCE
__| PROGRAM PROGRAM | _ _| AND
F “ e N S — -
STORE STORE 1 DIAGNOSTIC | |
| |
|] SYSTEM I
| ! |
| TIME—AND— |
| SWITCHING STATUS |
I UNIT |
! |
| | |
I HAN
| _lerocessor| _ |processor ____: o /O CHANNELS |
I' UNIT UNIT | 1 |
I I ' !
| | .
| o RADAR
| SWITCHING comnfzo LER
l - MISSILE AREA
|
: | COMMUNICATIONS
L__| VARIABLE | , , ., | VARIABLE [_ |
STORE STORE RECORDING
SUBSYSTEM
COMMAND &
CONTROL
= SYSTEM EXERCISE
. /s T 7
CENTRAL LOGIC AND CONTROL PERIPHERAL EQUIPMENT

Fig. 1—Central Logic and Control unit.

reserve power must be available to handle peak loads. A block diagram
of the crc is shown in Fig. 1.

2.2 Resulting architecture decisions

2.2.1 Modularity

The cLc is composed of five types of elements: up to ten processors,
sixteen racks of program store, sixteen racks of variable store, two
10cs, and two time-and-status units. This system is capable of opera-
tion with only one element of each type and may grow in a modular
fashion. The 10c provides peripheral-world access to the computer
while the time-and-status unit provides a number of special functions
which include real-time clocking, monitoring system status, and con-
trolling the configuration of the hardware resources in the system. The
multiple elements communicate via well-defined interfaces and are
interconnected by a flexible switching network.

The method of interconnecting elements within the multiunit com-
puting system must permit ease of growth and be consistent with the
availability and reliability requirements. The switching method chosen
for the cLc is based upon a distributed implementation of the switching
network such that a portion of the switch is included with each unique

S42 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

system element. Both economic and availability considerations favor
a distributed switch in which each added processor and storage ele-
ment comes with its own portion of the switching system to allow
smooth system growth. System availability is enhanced because a
failure of a portion of the distributed switching system affects only
the unique element to which it is attached.

All communication among elements of these five types is handled
asynchronously on a request-and-acknowledge signaling basis. The
collection of processors is capable of asynchronously accessing any of
the collection of memory elements. The switching network is such that
if each processor makes an access to a different memory element, then
all may receive service simultaneously. Priority ecircuits at each
memory element resolve conflicting requests sequentially.

2.2.2 Multiple processors

Although it would have been possible to design a single processor
system with sufficient performance, the cLc is a multiprocessor machine
for three reasons. First, a single processor sufficiently powerful would
have been a complex machine, difficult to design and difficult to get
working. Second, a single-processor system would not have been
expandable; if a more powerful machine were later found necessary
and none were available, major software changes would have been
required. Also, multiple processors satisfy a wide range of processing
requirements including smaller applications. Finally, the multipro-
cessor design increases availability because processing can continue
even if some processors have failed.

2.2.3 Two memory types

A multiprocessor design hinges around its storage design. A number
of possible strategies are available to handle the necessary references
of the multiple processors to main storage. The first strategy used in
the design is the splitting of main storage into two independent portions
called program (or instruction) store and variable (or operand) store.
This organization doubles the data flow rate to each processor at the
expense of independent instruction and operand fetch circuitry within
each processor. One of the reasons for this architecture is to physically
separate programs and data sets for reliability purposes. Thus, program
store is a read-only memory, while variable store is a read-write
memory which holds real-time 1/0 data and provides storage for the
results of caleulations.* To optimize memory utilization of the cLc

* Program store is read-only in the sense that processors have no instructions that
write data into it. Software can alter program store via the store transfer unit which
is described in a later section.

CENTRAL LOGIC AND CONTROL S43

during the software development phase, additional switching paths
are provided from variable store to each processor to allow instructions
as well as operands to be stored in variable store.

2.24 “n+ 1" redundancy

To achieve nearly continuous operation as economically as possible,
the cLc employs n + 1 redundancy. Each of the five types of elements
has at least a single replacement that is not required for running the
application software and is therefore redundant. For example, if the
application software requires 15 racks of program store for execution,
then at least 16 are provided. The n + 1 element may be switched
in to replace a failed element.

2.2.5 Partitioning

The cLc can be partitioned into two independently operating comput-
ers, each capable of executing its own job stream. By convention, these
two partitions have been differentiated by the terms green and amber,
with green usually the larger of the two fractions. However, since the
computer is composed of a number of modular elements, the boundary
defining which are green and which are amber is almost completely
flexible, as illustrated in Fig. 2. In fact, all elements may be brought
into the green partition to operate as a very large multiprocessor com-
puter with as many as ten processors sharing the job load. As a further
degree of flexibility, some elements, such as memory elements, may be
placed into a shared green/amber state where they are available to
both partitions simultaneously. Finally, an element may be defined

AMBER GREEN
PARTITION I PARTITION
PU PU : PU PU PU
_
r
PS I PS PS PS PS
L——
]
Vs Vs ' Vs vs Vs
L— 1
T&S 1oc | T&S 10C

Fig. 2—FElement partitioning within the cLc.

S44 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

to be neither green nor amber and is said to be isolated. This state
1s necessary to remove malfunctioning elements without shutting down
the entire system.

It is even more significant that partitioning is under program control.
Further, the control logic for effecting partitioning is redundant. There
is a fundamental asymmetry to the control of partitioning which allows
the green partition to have priority over the amber partition. The
partitioning logic may be placed into a state whereby a master/slave
relationship exists between the green and amber partitions. Control
software residing on the green partition may alter the partitioning of
the system at any time. The amber or slave partition can in no way
alter the partition boundaries. This will be deseribed in more detail
in Section 3.4.1.

lll. DETAILED DESCRIPTION

3.1 The processors

The processor is the most important element in establishing the
real-time computing capacity of the cLc, so the design of a high-speed
processor has been a primary goal. Each processor contains three
control units that operate asynchronously with respect to each other.
Timing within each control unit is overlapped to some degree so that
more than one instruction may be in execution. High-speed arithmetic
algorithms and associated logical implementations have been exploited
advantageously to increase the flow of operands through the arithmetic
sections. The resulting processor design can execute successive fixed-
point add operations on full-word 32-bit operands at an average rate
of 4.15 million per second.

The processor organization, as shown in Fig. 3, is best explained
by considering a typical arithmetic operation. Three functions must
be performed : instruction fetch, operand fetch, and arithmetic execu-
tion. Three control units allow these functions to be overlapped,
thus avoiding simple concatenation of the functions for successive
instructions.

The Program Control Unit (pcu) prefetches instruction words from
program store into an instruction word buffer. The pcu then extracts
instructions from the buffer and determines which of the control units
will participate in executing the instructions. For those instructions
involving operand access, the operand control unit will address vari-
able store to fetch or store all operands to be used internal to the
processor. For those instructions involving arithmetic operations, the
arithmetic control unit will perform all fixed-point and floating-point
arithmetic.

CENTRAL LOGIC AND CONTROL S45

PROGRAM VARIABLE TIME-AND - 1/0

STORE STORE STATUS UNIT CONTROLLER

‘ SWITCHING ————-' SWITCHING I
l OPERAND CONTROL UNIT |
| 2 : |
| BUFFER BUFFER REGISTERS| |REGISTERS l
| INSTRUCTIONS INSTRUCTIONS l |
| BUFFER | OPERANDS I
| PROGRAM l 1 |
| CONTROL UNIT |

. ARITHMETIC a
BUFFER [=—w{ CONTROL I
‘ REGISTERS INSTRUCTIONS UNIT REGISTERS I

Fig. 3—Processor unit.

3.1.1 Program contirol unit

The pcu supplies instructions to the operand and arithmetic control
units. Reference to program store is by absolute address from a location
specified by a program address counter. A change from sequential
operation can be effected either by interrupt or by executing a jump.
Instruction sequencing is optimized by use of four double-word buffer
registers that form an instruction stack. Whenever branches in the
instruction sequence are encountered, alternate path fetching is em-
ployed to fetch both the normal path word and the jump path word.
Both of these words are placed in the instruction stack to await a jump
decision. Since many jumps are conditional to an arithmetic test
within the processor, having both paths available will in general
reduce the time needed to proceed regardless of which jump decision
is made. In addition to the above optimizing, short instruction loops
may be entirely contained within the instruction stack and executed
without further access to program store. To smooth and optimize
instruction flow to the other control units, instruction list buffers exist
at the interface between the program control unit and the other control
units.

S46 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

3.1.2 Arithmetic control unit

The arithmetic control unit contains fifteen addressable A-registers
for temporary storage of operands. All arithmetic operations are per-
formed on operands from the A-registers with results returned to
these registers. The registers make data currently in use immediately
available to the processor. Within the arithmetie control unit, A, is
defined to be a fixed accumulator for all arithmetic operations. The
Ag-register functions alone as a single-length accumulator or in con-
junction with an extension register to form a double-length accumu-
lator. The double-length accumulator will handle the double-length
results obtained for multiply operations and will hold the quotient
and remainder for divide operations. The two-address arithmetic
instructions will always place the result in Ay and have the option to
overwrite the second named register. This method allows some of the
generality of a three-address format without the need for a third
address.

3.1.3 Operand control unit

The operand control unit fetches operands from variable store;
it performs any required operand fetching address arithmetic itself.
Fifteen addressable B-registers provide temporary storage of addresses
or index values. The operand control unit can perform shifts and edits
on data contained in the B-registers. (Edits are instructions that access
only a selected portion of a register.) Data can be exchanged between
B-registers and A-registers.

The operand control unit provides a set of 15 addressable Z-registers
which are used to control the operation of the entire processor. Inter-
rupt jump and return addresses are found in the Z-registers. Memory
protection is controlled by these registers; the appropriate bit in a
Z-register must be set to allow the processor write access to a particular
segment of variable store. One of the Z-registers is a delta clock which
acts as an alarm clock. The delta clock will generate an interrupt if it
is not reset before a selected primary countdown interval is exceeded.

3.2 The memories

To further increase the data-flow rate between processors and main
storage, program and variable store are further subdivided into
modular groupings, as shown in Fig. 4. Variable store is organized as
16 independent racks, with an independent data path from each rack
to each of the processors. Since queuing is heavier at program store
than at variable store, program store is organized as 32 independent
modules with an independent data path from each module to each of

CENTRAL LOGIC AND CONTROL $47

PROGRAM STORE RACK VARIABLE STORE RACK

i_ INTERLEAVED MEMORY d—i l l
MODULE A MODULE B MODULE I
| 8K x 68 BITS 8K x 68 BITS | | 16K x 68 BITS |
\ CYCLE TIME: 500 NS CYCLE TIME : 500 NS | | CYCLE TIME: 500 NS l
| PRIORITY AND PRIORITY AND PRIORITY AND
I SWITCHING SWITCHING l I SWITCHING |
L N 1 |
| |swiTcHing SWITCHING !
| INSTRUCTION 1| OPERAND |
| ACCESS 1 access |

| ARITHMETIC OPERATIONS

PROCESSOR RACK

Fig. 4—Processor main-storage organization.

the processors. Processor addressing is interleaved between two
modules; that is, the address structure is arranged so that adjacent
program store words reside in two separate modules.

The memory module eycle time of 500 ns and the double-word size
of 64 bits are selected to provide a memory bandwidth in excess of
that required for maximum performance of a single processor. Each
program-store and variable-store rack holds 16,384 64-bit words. There
are four parity bits associated with each memory word.

In a multiprocessor system, the need frequently arises to prevent
one processor from modifying data that another processor is accessing.
A lock mechanism is also needed to avoid 10c and processor interfer-
ence at variable store. To allow resolution of these problems, a special
memory instruction called biased fetch is included. A biased fetch
reads a word from variable store and, in one memory cycle, restores
the word with the upper two bits set to binary ones. (Two bits are
chosen because the parity of the memory word is not regenerated
during the read/modify/write cycle.) The original word, before modifi-
cation, is returned to the processor or 10c. The processor or 10C can
test the upper two bits of this word to determine whether access to
the data has been granted. If these bits are zeroes, the data are avail-
able; if they are ones, the data are not available.

S48 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

3.3 The input/output controllers

In any computing system, input/output is of paramount importance
and frequently determines throughput. The 1/0 Controller (10c), which
is shown in Fig. 5, directs the flow of information between variable
store and the peripheral devices. Processors are thus relieved from
communicating directly with the peripherals. Processors and 10cs can
operate simultaneously. The 1/0 subsystem, which consists of the 10c
and its associated peripherals, is duplicated to achieve system avail-
ability requirements.

A basic feature of the 10c is its ability to simultaneously and con-
tinuously service several peripheral devices. The fastest way to service
any individual peripheral device is to transfer its entire block of data
by preempting all of the transfer facilities. Since this violates the rule
of simultaneous service to several peripheral devices, it is necessary
to time-share the 10c facilities among all devices.

Each 10c contains 16 channels; each channel contains independent
input and output cables, thereby allowing full-duplex operation.
Priority circuits are utilized to allow time-multiplexed operation of the
channels.

VARIABLE TIME-AND -
STORE PROCESSOR STATUS UNIT
11— —————t— 1
| PRIORITY AND ,
| SWITCHING SWITCHING SWITCHING |
| COMMANDS |
OPERANDS
I QUTPUT %c;ggi::&s MASTER INPUT I
l CONTROL CONTROL COMMANDS CONTROL
UNIT UNIT UNIT |
I R \ P |
l COMMAND l
WORD
STORE [
I N R NV B
16 CHANNELS 16 CHANNELS
QUTPUT INPUT

Fig. 5—Input/Output Controller,

CENTRAL LOGIC AND CONTROL S49

Each peripheral is assigned a priority order which takes into con-
sideration the allowable latency of a peripheral device requiring access
to variable store. High-speed, synchronous devices usually are assigned
higher priority channels than buffered, asynchronous devices.

The 10c is a programmable device. Its operations are controlled by
commands it reads from variable store. The instruction repertoire
includes jump commands and simple data operation commands. An
10c program can be initiated by a processor or by a peripheral device.
The 10C accesses 1/0 programs by indirect addressing.

3.4 Associated equipment

Although the processors, the memories, and the 10cs are the principal
components of the cLc, three other devices deserve mention: the status
unit, the timing generator, and the store transfer unit. A block diagram
of the time-and-status unit, which includes the above functions, is
shown in Fig. 6.

3.4.1 Status unit

The status unit is essentially a register memory that may be read
or written by all processors in a given partition. By reading from the
status unit, processors obtain information about the condition of the
data-processing system: parity errors, time-outs, power on-off, etc.
By writing into the status unit, processors control the data-processing
system.

Partitioning is controlled by signals from the status unit. Software
can specify whether each component of the data-processing system is

10C PROCESSORS

r SWITCHING I
i_—_"_ T e Y e R
STORE | | TIME- TIME- |
TRANSFER | PN ;th"%fv“ | OF—DAY (—= OF-DAY | |

uNIT | | COUNTER| |cOMPARATOR
I MANUAL wanvaL| | |
| CONTROL CONTROL [l

CONTROL STATUS 5 MHz REAL-TIME
P;‘ES:E'ZM | SIGNALS REPORTS | PULSES |
TO ALL DPS UNITS | | |

|_STATUS UNIT | |TIMING GENERATOR

Fig. 6—Time-and-status unit.

8§50 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

to be partitioned green, partitioned amber, or is to be isolated. The
status unit enables communieation between elements in the same par-
tition and disables communication between elements in different par-
titions or to elements which are isolated.

Since there are two status units, subtle logic-design problems exist.
For example, status information from peripheral devices partitioned
amber must affect only the amber status unit and not the green. One
status unit must be designated the master and the other the slave in
such a way that partitioning signals from the master status unit take
precedence. Transients caused by powering up a status unit must not
disturb this relationship.

The status unit also interacts with the 1oc. If certain status unit
bits change, the status unit presents a command request to the 1oc.
The 10c program thus initiated informs software of the event.

3.4.2 The timing generator

The timing generator performs two basic funetions that are essential
within a real-time system. The first is that of initiating activities at
points in time that can be specified by program means. The second
is that of providing an accurate time value which can be used in record-
ing the time of occurrence of specific events during operation of the
SAFEGUARD system. This is accomplished in the cLc by providing a
time-of-day binary counter which is driven from a precise 5-MHz
generator. As with other system components, for availability reasons
the timing generator is duplicated. The timing generator is syn-
chronized with a time-of-day standard. In addition, there is a pro-
cedure to synchronize the timing generator in the amber partition to
the timing generator in the green partition. This is necessary whenever
the amber timing generator is shut down for maintenance.

To fulfill the function of initiating activities at specified times, the
timing generator performs time-notice comparisons of the time-of-day
clock to a time-arranged list of orders stored within variable store.
This activity is analogous to that of an alarm clock set to turn on
various software processes. This function is handled via an 1/0 channel
to relieve the processor from the housekeeping function of presenting
time-notice orders to the clock. As long as the time-notice list has been
prepared in advance, the 1oc will methodically transfer a new order
from the list maintained in variable store. In addition, the 10c will
interact with the global data sets maintained in variable store to
trigger various software events without necessarily providing a direct
processor interrupt.

The second function of providing an accurate time value is accom-
plished by allowing all processors within the same partition to directly

CENTRAL LOGIC AND CONTROL 51

access the clock and fetch time of day as a binary word. Access to the
timing generator is designed so that, regardless of the number of
processors in queue, each processor may obtain time of day in less
than a microsecond. The time-of-day value can be used to attach a
time tag to various recorded events or to determine whether certain
system deadlines have been missed.

The timing-generator and status units may be thought of as hybrid
devices within the cLc from the viewpoint that they may be accessed
directly by a processor using the internal switching network within
the computer or they may be accessed as a peripheral device using an
1/0 channel. As these devices either provide control information or
report status, they are not accessed frequently during normal opera-
tions and so they share the same switching port and 1/0 channel. To
take advantage of the economy of sharing interfaces, they are grouped
together in the same equipment rack which is designated the time-
and-status unit.

For partitioning purposes, the time-and-status units are paired with
the 1ocs to which they are attached. Thus, time-and-status unit
number one is always configured in the same partition as 1/0 con-
troller number one. The same philosophy holds true for many of the
peripheral devices connected to the 10c in the SAFEGUARD system.

3.4.3 Store transfer unit

The time-and-status unit also includes a third function called the
Store Transfer Unit (stu). The stu is the only device that can write
into the program store elements. For reasons of economy, it shares the
same direct switching interfaces with the timing-generator and status
units. New program segments flow from either tape or disc through the
10¢ to the sTu and into the appropriate rack of program store via the
internal switching network within the computing system. During re-
covery of the cLc, the sTU associated with the 10c that is on-line at the
time handles the reloading of the tactical software process into program
store.

3.5 Instruction repertoire

The instruction repertoire for the cLc processor has been specified
to accommodate the addressing structure of the computer. The pro-
cessor can address program and variable store. A 20-bit internal
address is used which, when mapped into actual memory addresses,
allows addressing the maximum of 256 K double-words for both pro-
gram and variable store. In addition, the processor contains internal
register areas for temporary storage of operands. All arithmetic opera-
tions are performed on operands from the registers. The use of this

§52 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

type of memory hierarchy separates the two functions of operand fetch
from main storage and arithmetic execution. The instruction repertoire
takes this into account so that the access of operands from variable
store is distinet from arithmetic operations.

The addressing structure of the cLc will accomodate dynamic re-
location of data sets. This requires that the processor have the cap-
ability to store and modify addresses locally within its registers. A
method of double indexing is employed, using the contents of as
many as two B-registers and a 12-bit displacement value contained
within the instruction itself, to form an address value.

There are two different instruction lengths, 16 bits or 32 bits. Most
instruetions work with operands contained in the fast internal registers.
The method of addressing operands from these registers is charac-
terized by the use of two-address instructions with register addresses
in the range of 0 to 15. These instructions use the half-word (16-bit)
length which contains an 8-bit operation code and two register ad-
dresses. Instructions which access variable store utilize the longer 32-bit
instruction length. In addition to the operation code and address dis-
placement value, the memory access instructions also specify two
B-registers used in address generation and the source or destination
register in either the A, B, or Z register areas. There is also an instrue-
tion which references variable-store operands in absolute fashion using
a full 20-bit address field contained within the instruction. In addition,
a subset of instructions, designated ‘‘true” instructions, permit con-
stants to be stored within the instruction itself. These constants may
be directly loaded into the internal registers of the processor.

The processor can handle both fixed-point and floating-point data
represented in fractional two’s complement notation. All arithmetic
operations are normally performed on 32-bit operands for both fixed-
and floating-point data. Exceptions include a half-multiply instruction,
the ability to manipulate exponents, and the ability to perform address
arithmetic on 20-bit values. Floating-point numbers are usually
normalized. There is no hardware capability to perform double-pre-
cision arithmetic.

3.6 Hardware concept

The SAFEGUARD hardware coneept permits fabrication of the data-
processing system from a standard stock of racks, chassis, and inte-
grated-circuit packages. The design is based upon integrated-circuit
technology using a modified direct-coupled-transistor-logic circuit hav-
ing circuit delays in the 5- to 6-ns range. The hardware provides a
flexible system for interconnecting groups of integrated-circuit pack-
ages on chassis, and chassis into racks as shown in Fig. 7. To enhance

CENTRAL LOGIC AND CONTROL S53

’_,———COAXIAL TERMINAL FIELD
- SYSTEM ACCESS

WIRING FIELD— ——

CHASSIS ——— _

r\\\

-~ ~
~——> WIRING FIELD

CONNECTOR ~_ ;
MODULES ~

CARRIER—="
PLATE

Fig. 7—SAFEGUARD rack.

reliability, the integrated-circuit packages are wire-wrapped to achieve
connections on the chassis. Each chassis can accommodate 275 inte-
grated-circuit packages and, therefore, more than 600 logic circuits.
The chassis are housed in a water-cooled rack with two chassis mounted
side by side on a chassis carrier plate which locates, supports, and
cools the chassis. The chassis carrier plates are mounted on a l-inch
vertical piteh within the rack. There are a maximum of 59 levels in
the rack housing 118 chassis.

It was recognized that a large multiprocessor would present a need
for a large number of access connections. In fact, there is a need for
more access connections to the chassis than could be provided with
rear access only. Therefore, the chassis also uses both sides for addi-
tional access terminals. The rear contacts to the chassis are made in a
conventional plug-in manner. The side contacts use a linear-actuated
cam arrangement to engage the side contacts after the chassis has
been situated properly in the rack. This arrangement results in wiring
fields on three sides of the rack. In addition, internal connections are
provided at the interface between the chassis, which are situated side
by side on the carrier plate, to provide near-neighbor connections be-
tween groups of chassis. In total, the rack provides for more than
40,000 possible signal connections. It should be noted that having
rack wiring on three sides has resulted in a diamond orientation of
racks on a floor plan to allow physical access to all four sides of a rack.
Rack-to-rack interconnections are provided by plug-in coaxial ter-

S54 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

minal fields at the top of the rack which allow as many as 11,520
connections in this area.

To preserve the integrity of the high-speed pulse transmission be-
tween the various units that make up the multiprocessor, a charac-
teristic impedance of 100 ohms is maintained for the transmission
of all signals. Coaxial cables are used for all connections between racks
and for all rack wiring runs in excess of five feet. Twisted pair is pre-
dominantly used to wire the rack. The chassis connector maintains a
fixed impedance across the connection by providing both a signal and
a ground path using a highly reliable double-contact arrangement to
gain entry to a chassis.

The memory racks include a 16-K by 68-bit-per-word core memory
unit and the associated interface logic switching circuits which pro-
vide interconnection to the multiple units in the system. The core
memory units are air-cooled and operate at a cycle time of 500 ns
and have an access time of 300 ns.

3.7 CLC performance

One of the primary reasons for the development of a parallel and
modular computing system for SAFEGUARD is the potential for high
performance. In addition to the properties this architecture possesses
for high availability, a multiprocessor organization possesses a great
deal of reserve power which, when applied to a problem with the
appropriate degree of parallelism, can yield high performance. This is
the type of problem which is associated with a radar tracking system
and which must be solved in real time.

In a multiprocessor system, the processors gain access to main
storage according to a priority rule. The rate at which each processor
executes instructions depends, therefore, on the severity of this queuing
at main storage. Throughput will be defined as the number of in-
structions of a particular instruction mix executed per second by n
Processors.

Adequate performance, or throughput, of a parallel processing sys-
tem depends upon a number of hardware factors, which include the
speed of the processor, the speed of program store including its priority
circuit, the total number of processors relative to the total number
of independently addressable program stores, and the number of in-
structions executed per memory word fetched. From a software view-
point, the distribution of programs and data sets within the modular
memory and the instruction mix of the particular programs in execu-
tion are also important factors which directly affect throughput.

Since variable store queuing will, in general, be less than that at
program store, its effect has been eliminated in the throughput data

CENTRAL LOGIC AND CONTROL 855

presented here. This has been done by dedicating a separate variable
store rack to each processor for experimental studies.

Throughput data have been gathered using multiprocessor hardware
with configurations containing as many as ten processors. Benchmark
programs have been used which provide varying instruction mixes.
Four instruction mixes were selected for testing. The Nop mix, con-
sisting of no-operation instructions, defines an upper bound on through-
put. The LoGICAL mix is a representative mix that is similar to cLc
operating system code that might be executed during real-time opera-
tions. The MATH mix is also a representative mix, being a portion of
the cosine subroutine from the cLc operating system. The Jjump mix
consists exclusively of jumps and represents a kind of lower bound on
throughput.

Figure 8 shows the effect of requiring all processors to execute out
of one program store. The number of instructions executed per second
increases with the number of processors until the program store is
returning instructions as fast as it can. Throughput levels off when
this point is reached, and a further increase in the number of processors
does not increase throughput.

APPROXIMATE MAXIMUM CAPACITY OF A SINGLE PROGRAM STORE

LOGICAL

o O o

MATH

MILLIONS OF INSTRUCTIONS EXECUTED PER SECOND

P I (N N (N NN NN NN RN N B—
T 2 3 4 &5 & 7 8 98 10

NUMBER OF PROCESSORS

Fig. 8—N processors executing from one program store.

856 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

24
2+ /
_ 201]
wv
a LOGICAL
2
18
[a]
s -]
Q
[&]
w
g L /
= 2
a
ey
= / MATH
|
(3]
=
w 12 /
w
2
=]
[
1 —
g 0 / —
[+
MIp @
g §/ s
Z g =
w
° / C S
v rd
g 6 r w
=3 -
= 3
= 7]
i L1
mip
L 3
0 | | | | | | | | | |
2 3 4 5 6 7 8 9 10

NUMBER OF PROCESSORS

Fig. 9—N processors executing from N program stores.

Figure 9 shows the effect of providing an equal number of processors
and program stores. For this case, the number of processors and pro-
gram stores is incrementally increased from one to ten. The program
stores are not dedicated to a processor on a one-for-one basis, but
their access by the processors is randomized such that several proces-
sors may be attempting to read from the same program store at once.
Hence, some reduction in throughput due to queuing is expected. The
effect of queuing is small for one to ten processors. Figure 9 shows that
throughput increases linearly with the number of processors. Data are
shown for the LoGicAL and MATH mix only.

The data presented in Fig. 9 are for the case of an even distribution
of memory access over all program stores. It is interesting to deter-
mine what happens to throughput for the case of an unequal work-load

CENTRAL LOGIC AND CONTROL S57

distribution. A series of runs were made for both the rnocicaL and
MATH mixes where the number of processors was kept equal to the
number of program stores with one important difference. One of the
program stores was selected as a “favored” program store and its
fraction of total instructions executed was varied from 0 to 100 percent
while the remaining program stores shared the remaining work load
equally. Figures 10 and 11 show the results for the six to ten processor
cases. The curves represent throughput as a function of the ‘“favored”
program store. Zero percent means ten processors are executing out of
nine program stores. Note that throughput is a maximum when the
“favored” program store shares equally in the work load.

The eurves of Figs. 10 and 11 are useful in that they show the sen-
sitivity of throughput to an unequal distribution of the work load
in memory. For instance, if one considers a 10-percent reduction in
throughput to be serious, the above curves show for the seven-processor
case that a single program store can have almost 40 percent of the
work load without a serious reduction in throughput. For the ten-
processor case, the corresponding number is approximately 25 percent.

| N=10 PROCESSORS

MILLIONS OF INSTRUCTIONS EXECUTED PER SECOND

0 | |]] | | B]
0 10 20 30 40 50 6 70 B8O 90 100
PERCENT INSTRUCTIONS EXECUTED FROM FAVORED PROGRAM STORE

Fig. 10—Unequal program-store loading—MATH mix.

§58 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

24

N =10 PROCESSORS
'\

MILLIONS OF INSTRUCTIONS EXECUTED PER SECOND

0 l | | | l | | l]
0 W 20 30 40 5 B0 70 8O0 90 100

PERCENT INSTRUCTIONS EXECUTED FROM FAVORED PROGRAM STORE

Fig. 11—Unequal program-store loading—LogIcAL mix.

Therefore, as long as the work load is not too unequally distributed,
the dependence of throughput on work load distribution should not be
critical. Throughput dependence on more than one program store
having more than an equal share of the work load has not been
investigated.

IV. CONCLUSIONS
4.1 Success of the modular design

The use of the well-defined interfaces and modular hardware building
blocks capable of communication within the framework of a distributed
switching system provides the basis for a dynamic computing com-
plex—a structure that is capable of incorporating new functional units

CENTRAL LOGIC AND CONTROL S59

offering unique economic or performance advantages.® This structure
has been very useful in satisfying the wide range of computing applica-
tions within the SAFEGUARD system. These range from a single proces-
sor, nonredundant installation to a ten-processor, maximum-sized
system. Not only does this structure handle the wide variations in
system sizing, but it can easily accommodate changes that may result
from new or revised system requirements.

4.2 Reduced cost for “n + 1" philosophy

Historically, early fault-tolerant systems, such as Ess-1, employed
100-percent redundancy through use of a complete standby system.!
That is, the system required to support the full work load is duplicated,
with data processing proceeding in parallel on each system. This
organization is conceptually simple and upon detection of a failure in
either system, the other system can carry on the data-processing
work load.

The multiunit system approach to gaining high performance can
provide high system availability without the need for costly, complete
duplication. The n + 1 redundancy approach has reduced the amount
of equipment added for redundancy and for system exercise to a frac-
tion of that required for a complete standby system.

4.3 Instruction repertoire

The cLc instruction repertoire was designed long before crc soft-
ware was written. As a result, programmers seldom use certain instruc-
tions and often wish for others. For example, character manipulation
instructions are lacking, as is one instruction that will store all proces-
sor registers.

4.4 Status-unit performance

The status unit, as implemented in the cLc design, represents a
comprehensive method of gathering system status and providing con-
figuration control information to the various parts of the data process-
ing system. The use of the status unit to control the configuration of a
partitionable machine is unique and has been proven successful during
the SAFEGUARD project.

* This structure, for example, will very easily accomodate the addition of an array
processor, such as the Parallel Element Processor Ensemble (PLpE), or it will easily
allow direct connection of a high data rate peripheral subsystem to the modular
variable stores. Although not a part of the present SAFEGUARD system, extensions
to the multiunit architecture, as described above, have been seriously considered and
are entirely feasible.

860 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

4.5 CLC performance

The performance of a multiprocessor system depends upon a number
of factors including the speed of the processor, the speed of the memory
element and the speed of its priority circuit, the total number of
processors relative to the total number of independently addressable
memory elements, and the number of instructions executed per memory
word fetched. The distribution of programs and data memory and the
instruction mix of the particular program being executed are also
important. cLc performance as a function of the number of Processors
and the number of independent program-store data paths has been
measured by D. B. Knudsen, and the information presented in Section
3.7 is a result of that effort.

V. SUMMARY

The requirement that a computer function properly even though
some of its components fail has been a primary goal in the development
of the SAFEGUARD computer. The multiprocessor approach was chosen
to achieve high performance and availability. The multiunit architec-
ture has provided a system which satisfies a wide range of computing
requirements on the project through the use of a single design.

REFERENCE

1. R. W. Downing et al, “No. 1 ESS Maintenance Plan,”” B.8.T.J., 43, No. 5,
Part 1 (September 1964), pp. 1961-2020.

CENTRAL LOGIC AND CONTROL S61

