Copyright © 1975 American Telephone and Telegraph Company
Tae BerL SysTEM TECHNICAL JOURNAL
SAFEGUARD SUPPLEMENT
Printed in U.S.A.

SAFEGUARD Data-Processing System:

The Dictionary Approach to
Digital Maintenance

By C. J. RIFENBERG
(Manuscript received January 3, 1975)

This paper provides an overview of one aspect of the SAFEGUARD
approach to digital maintenance—the Maintenance and Diagnostic (M&D)
program-fault dictionary. The M&D program detects the presence of faults.
The associated fault dictionary provides fault lists for automatic fault
tsolation; it is generated by executing the maintenance program in an
environment simulating the action of hardware in the presence of faults.
The paper also provides some detailed discussion of simulator-performance
improvements.

I. INTRODUCTION

A SAFEGUARD data-processing system consists of racks of equipment
for three functional areas: a large real-time central computer facility,
a large peripheral subsystem, and a Maintenance and Diagnostic
Subsystem (M&pss).!? This paper describes an essential aspect of the
SAFEGUARD maintenance plan, the Maintenance and Diagnostic
program-fault dictionary.*

Fault-isolation dictionaries are available for most maintenance
programs. Dictionaries provide a correspondence between fault-
diagnostic-test failures and possible hardware faults (or faults of
replaceable units) which could cause the failures. They have been
used successfully in the No. 1 Electronic Switching System (Ess)?4;
however, Ess and SAFEGUARrD dictionaries differ in their format,
generation, and use. Both Armstrong® and Godoy® have described a
method for efficiently simulating the action of hardware in the presence
of faults. Their technique is used in the generation of SAFEGUARD
fault-isolation dictionaries.

* Maintenance and Diagnostic programs are described by Hahn and Slojkowski.!
In addition, supplemental maintenance programs are used to test hardware, which
cannot be exercised by these programs, or to provide increased fault detection.

§73

A test-control program accesses the dictionaries to isolate detected
faults. After receiving results of test failure, the test-control program
performs set union and intersection operations on the sets of fault
lists in the dictionary entries associated with failed and passed tests
to isolate them to an acceptable number of replaceable units (chassis).*
If a maintenance program is completed without failure, the test-
control program can either consider the rack fault free, schedule
additional maintenance programs for execution within the mM&p con-
troller, or schedule supplemental maintenance programs.

Il. CONSTRUCTION OF SAFEGUARD DICTIONARIES
2.1 Approach

The dictionary approach to fault isolation was chosen early in the
design cycle primarily to satisfy a requirement that eraftspeople with
moderate skill, working at a large number of installations, be able to
quickly accomplish fault isolation. Simulation was considered as the
only feasible method for generating dictionaries since there was no
hardware time available for fault insertion, and the logic was too
complex for manual dictionary generation.

Figure 1 is a block diagram of the Logic Simulation Facility (Ls¥).
For simulation purposes, each rack is divided into several, often
overlapping, logic blocks, none of which exceeds 20,000 gates. This
maximum gate count is a serious design limitation which occasionally
causes functionally integral logic blocks to be subdivided. Had time
permitted, this design limitation would have been eliminated. Each
SAFEGUARD data-processing system has over 300 maintenance pro-
grams designed to detect faults in the logic blocks. The tests within
the program are designed manually. Most of these programs have
associated fault-isolation dictionaries generated through simulation. A
few programs (mostly for rack interface blocks) were not simulated
since they were only testing a small portion of a block functionally
much larger than 20,000 gates. Before programs are run on the simu-
lator, they are debugged on the hardware to verify that predetermined
logic values within compare instructions are correct. By debugging
on the hardware rather than the simulator, the possibility that the
simulated logic block is incorrectly constructed or initialized is
eliminated.

Circuit interconnections and other pertinent wiring information for
the computer units are described in manufacturing tape files. The data
in these files are used by an automatic wire-wrap machine to wire the

_* These chassis (500 to 800 logic gates) are, in turn, repaired by replacing integrated-
circuit packages.

§74 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

M&D SUPPLEMENTAL
PROGRAM INST

\

CONSTRUCTION
OF MODEL TRUE-VALUE FAULT DICTIONARY
OF LOGIC [] SIMULATION [~"]SIMULATION[™| GENERATION
BLOCK

MANU- DICTIONARY
FACTURING TAPE
FILES
DIAGNOSTICS FAULT-
AND DETECTION
DEBUGGING STATISTICS
AIDS

N~ e

Fig. 1—Logic simulation facility.

chassis and racks. These files are used to construct a simulation data
base and to simulate the hardware at the logic-gate level.

In addition to the manufacturing files, there are two primary inputs
to simulation : the maintenance program discussed above and a set of
supplemental instructions. These supplemental instructions enable the
test designer to set any gate in the simulated logic to any logic state.
They are particularly useful in initializing gates on the boundary of
the logic block which are driven from logic not being simulated. It is
through these instructions that the simulated logic block goes from an
unknown state to a state representing the hardware at the start of
testing.

The true logic value simulation, pictured in Fig. 1, is a simulated
execution of the maintenance program in the absence of faults. Since
the program has ‘“run clean’” on the hardware (i.e., all compare in-
structions are correct in predicted true logic value), the true logic
value simulation is used to find diserepancies between simulation and
hardware execution of the maintenance program. Discrepancies are
usually caused by erroneous supplemental instructions or by de-
ficiencies in the logic-block data base. These differences are usually
resolved through changes to the instructions or data base. Standard
aids are provided to assist in identifying causes for discrepancies (e.g.,
gate timing traces of change from known to unknown logic value).

The 1sF fault simulator is a deductive simulator (see Ref. 3). At
any given simulation time, each gate in the circuit has a true logic
value (possibly unknown) and a fault list (possibly null) associated
with it. A gate’s fault list contains all faults in the circuit which, if
present singly, would complement the true logic value of the gate.
Every fault present in a gate’s fault list is said to be detectable at the

PROGRAM-FAULT DICTIONARY S75

gate. The simulator assumes that only single, hard faults occur in the
hardware. Transient failures, most timing faults, and marginal faults
are not considered. Unit gate delay is assumed. At each interval of
simulation time, the fault-free logic value and the fault list for a gate
are computed if either the logic value or fault list of any of the gate’s
inputs has changed in the preceding time period. When a compare
instruction of the maintenance program is simulated, the instruction
number and all faults associated with the compared register (i.e., all
the faults which, if present singly, would cause a bit to be comple-
mented from its true logic value) are output to a fault tape for later
dictionary generation. Thus, for each compare instruction, there exists
a list of faults which are detected by that compare instruction due to
their causing an incorreet logic value in the compared register.

Statistical programs provide the maintenance programmer with
both summary and detailed information on the faults detected and
faults simulated but not detected. This output from the simulator, in
many cases, is more important than the dictionary (deseribed in
Section III) and is a significant advantage of the simulation approach
to dictionary generation. The statistical information is used locally to
improve the detection quality of a given program. It is used globally
in directing efforts to improve detection in certain areas (e.g., to design
a supplemental maintenance program) or conversely, to suspend effort
in an area already achieving good detection.

2.2 Simulation performance improvements

The initial version of the simulation facility required extensive
computer usage for dictionary generation. Estimates indicated full
utilization of an HIS 635 computer for a period of about two years.
Even this large cost was an underestimate since many programs would
have to be simulated more than once either because the corresponding
hardware was significantly changed or because the program was sig-
nificantly modified to improve detection. Therefore, considerable effort
was devoted to reducing computing requirements. Some resource-use
reduction resulted from internal algorithm and code modification. The
four major items below, however, have most significantly reduced
resource requirements, with a cumulative effect of approximately a
ten-fold reduction.

2.2.1 Fault list paging

Core storage requirements for fault lists can become excessive. This
necessitates partitioning of the simulation into n fault runs, each simu-
lating faults in only 1/n of the total number of gates. Results for
partitions are merged into a single dictionary. Since the entire M&D

S76 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

Table | — Computer time savings due to software paging

Block Partitions Total Elapsed Hours

¢ No Paging Paging No Paging Paging
1 100 13 210.0 110.0
2 50 12 19.4 10.0
3 20 6 11.1 3.5
4 6 1 7.3 2.2
5 4 1 5.1 1.9
6 4 1 4.0 1.3

program must be simulated for each partition, the time required for
calculating the true logic values is multiplied by the number of par-
titions. When n becomes large this introduces a very significant
overhead. However, it was determined by experimentation that core
requirements for fault lists during simulation peak sharply after a few
tests and then fall off quickly (particularly after implementation of
other performance improvements to be described). An objective of
reducing the number of partitions and total elapsed time was then met
by a fault-list paging algorithm which minimized the time required
during the absence of paging at the expense of time required during
demand paging. The number of partitions for very large blocks is not
always reduced to one in order to prevent the paging overhead from
exceeding the overhead inherent in dividing the block into a few
partitions. On the average, the number of partitions required is reduced
by about 75 percent while elapsed computer time is reduced by 40 to
75 percent. Table I provides some sample computer time savings due
to demand paging of fault lists.

2.2.2 No simulation of conditionals

In simulation, unknown logic values appearing on the output of
gates can be due to either one or more uninitialized boundary-access
terminals or to a race condition in a flip-flop. The fault list associated
with a node whose state is unknown is not unique, since detection of a
fault is dependent upon the particular logic value present. Armstrong®
provides a method for nonexact treatment of fault lists in the presence
of unknowns in order to reduce simulation time. The method was
successful because the majority of unknowns appear only transiently
and are replaced by known states before monitoring is performed.
This method flags faults as “conditional” if their detection is con-
ditioned on the logic value actually existing at an unknown input. It
provides a more accurate simulator than one which ignores conditionals.

Experimentation was performed on the trade-off involved between
computer time required for simulation of conditionals versus decrease

PROGRAM-FAULT DICTIONARY S§77

in fault isolation by nonsimulation of conditionals. Simulation of
conditionals required from four to ten times as much computer time
as did nonsimulation of conditionals. An additional 3 to 5 percent of
the faults in the test bloeks had no chassis isolation or wrong chassis
isolation when dictionaries were generated without simulating con-
ditional faults. It was concluded that conditionals should not be
simulated so that computer time could be more profitably used.

2.2.3 Fault elimination

Fault isolation is essentially a process of applying tests and observing
passes and failures (i.e., a fault signature) until only faults on an
acceptably small number of replaceable units have the same signature.
For example, Table II illustrates fault signatures for three faults.
Faults a and b are indistinguishable in signature while Fault ¢ is
distinguished from a and b at Tests 5 and 9.

The effect upon isolation of not simulating all faults for all tests
was investigated; e.g., one could stop simulating a fault after it is
detected once or twice (ie., fails one or two tests). In the example
in Table I, if a fault were no longer simulated after one detection,
Faults a, b, and ¢ would now be indistinguishable since they have the
same signature through the first detection (i.e., Test 4). On the other
hand, if the fault were no longer simulated after two detections,
Faults a, b, and ¢ would have the same isolation as simulating all
faults for all tests, since Fault c is still distinguished from a and b at
Test 5.

Several blocks were simulated varying the number of detections
required before a fault was eliminated from simulation. Results showed
that eliminating a fault after two detections provided dictionaries with
essentially the same isolation as eliminating a fault at three or more
detections; yet simulation time (all other factors being equal) was
reduced by 80 percent compared with no fault elimination. Table 111
provides some representative statistics. The net simulation time sav-
ings is even greater since eliminating faults after two detections

Table 1|l — Sample fault signatures

Tests
Faults 1 2 3 5 7 8 9 10
a P P P ¥ F F F P P P
b P P P F F F F P P P
c P P P F P F F P F P

Note: P = Test passes in presence of fault. F = Test fails in presence of fault
(detects fault).

§78 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

Table Il — Computer time savings due to fault elimination

Eliminations* Savings' ’ 1# a4 3!
] 92 | 83 97 100
2 88 . 90 98 100
3 83 91 98 100
No Elim. = ' 92 99 100

* Number of detections prior to elimination.
Percent simulation time savings vs no elimination.
Percent detected faults isolated to 1, 2, 3 chassis.

contributes to the sharp peaking of core requirements for fault lists
and, therefore, is partially responsible for making fault-list paging
possible.

2.2.4 Fault collapsing

Another attempt at reducing simulation time was “fault collapsing,”
Le., merging two faults if detection of one guarantees detection of the
other. For example, consider the string of invertor gates shown in
Fig. 2. The effect of the output of C being stuck in logic value one is
indistinguishable at the monitorable output from the effect of the
output of A being stuck in logic value one. Therefore, a test will either
detect both faults or neither fault. If both faults are located on the
same replaceable unit, there is no loss in isolation by “collapsing” one
onto the other and simulating only one of the faults. In order not to
reduce replaceable unit isolation, strong restrictions are placed on
candidates for collapsing. Only faults on strings of gates located on a
single chassis are considered for fault collapse. Thus, a fault might be
isolated to the wrong integrated-circuit package but not the wrong
chassis. Typically, 15 percent of the faults in a logic block are col-
lapsed resulting in computer savings of about 10 percent. One problem
experienced with this limited fault collapse is that additional time is
required to evaluate the accuracy of the simulator, and to repair
chassis based on the ambiguous integrated-circuit-package isolation
information in the dictionary. Table IV summarizes the results of the
parameter trade-offs.

2.3 Other methods tried and their limitations

A study of a technique for building dictionaries, called Reachability
List Dictionaries (r-L1sT), was conducted. Figure 3 is a diagram of

INPUT DI ![A\ I[B\ |[C\ v QUTPUT

Fig. 2—Sample logic string.

PROGRAM-FAULT DICTIONARY S79

Table IV — Summary of computer time savings
vs dictionary degradation

P P Dictionary"
Parameter Time Saivmgb Degradation
¢ (%)
Paging 40-75 0
No simulation of conditionals 60-90 3-5
Fault elimination 80-90 1
Fault collapse 10-12 0

* HIS 635 elapsed computer time vs full simulation.
t Percent of faults with no or incorrect chassis isolation compared with a dictionary
created without using the parameter.

a simple logic block. An R-LIST is associated with each output gate
(e.g., 4, 5, and 6).

The r-LIST contains all gates (or faults) that lie on paths which
feed the gate. The R-LIsTs may be derived from the total connectivity
matrix for the complete block. The r-L1sTs may also be obtained by
performing a reverse trace to all input (or boundary) gates to the
logic block (e.g., gates 1, 2, and 3 of Fig. 3). The R-LIsT can be
created from the logic block description alone, without any dynamic
simulation. Therefore, there was promise of providing a very economi-
cal method of generating dictionaries providing the isolation was
good. Experiments were performed to determine the isolation capa-
bility of dictionaries constructed using these techniques. They showed
poor isolation capability because:

() Lists were much longer than expected and embraced many
chassis. Each list contained over 50 percent of all possible fault-
producing gates.

(#) Lists overlapped; that is, many of the gates in any one list
appeared in all lists.*

Problems associated with automatically generating tests for large,
asynchronous, sequential logic are well known.” It is difficult to adapt
known test-generation algorithms to such circuits. SAFEGUARD de-
signers were successful, however, in supplementing manually generated
tests with automatic addition of compare instructions to outputs not
already monitored. Usually, outputs were not monitored because the
complexity of the circuit was such that the programmer did not
realize the full effect of establishing correct logic configurations on
control lines. The simulator was modified to “look” at all output points

*The r-LisT technique was further refined and met with somewhat greater
success when applied to Bss 1-A.

S80 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

INPUTS
TO BLOCK OUTPUTS R-LISTS FOR
| I EACH OUTPUT

' Dol

=>1,abc 2 d

|

=3, g h j kf2de

Fig. 3—Sample block with output gate r-LIsTs.

for additional propagated faults. This simple technique is being used
to increase detection by 3 to 10 percent (an increase which typically
required several programmer months).

lIl. EXPERIENCE WITH DICTIONARIES

Dictionary entries are associated with test compares which could
detect a fault. Functionally, a dictionary entry appears in the form
shown in Fig. 4. For example, if Test N failed (i.e., observed output
was not 101,) with observed error pattern 110,, Faults F, G, C, D, and
E are candidates for having caused the failure. The test-controller
program on the CDC 1700 computer processes dictionary entries corre-
sponding to both matched and mismatched test compares in order to
compute a list of faults that have fault signatures consistent with ob-
served test results. The test controller then prints out a list of suspect
chassis (with suspect integrated-circuit packages) ordered by chassis
with the greatest number of faults on the computed list.

A sample of 31 dictionaries was examined to determine the number
of suspect chassis associated with each compare and with each error

TEST COMPARE N
TRUE LOGIC VALUE 101,

THREE POSSIBLE ERROR PATTERNS

(1) 000, WITH POSSIBLE FAULTS
AB CHASSIS 1
C.D.E CHASSIS 2

(2) 110 WITH POSSIBLE FAULTS
F.G CHASSIS 1
C.D.E CHASSIS 2

(3) 111, WITH POSSIBLE FAULTS
A,B CHASSIS 1
H CHASSIS 3

Fig. 4—Functional dictionary entry.

PROGRAM-FAULT DICTIONARY S81

pattern within the compare. For example, in Fig. 4, test compare N
shows that faults from three different chassis could cause the test to
fail. Figure 4 also shows that faults on only two different chassis could
cause any of the three possible error patterns.

These results show that chassis lists are usually short (on the
average, 95 percent of the error patterns for a dictionary had three or
fewer suspect chassis). Figure 5 indicates that both the tests and the
logic are functionally designed; i.e., groups of tests are usually exercis-
ing logic that has been reasonably arranged on a small number of
chassis. This fact contributes to making the dictionary useful even
when there is no exact match between an error pattern in the dictionary
and the one occurring during the running of the maintenance program,
as is shown below. It also contributes to the success of the above-
mentioned performance improvement studies.

Additional testing was performed to determine the accuracy of the
simulator and the degree of dictionary isolation. Test approaches
included limited hardware fault insertion, comparison with another
independent simulator, off-line analysis of dictionaries, and vigorous
program testing of simulator versions. The results confirm that the
simulator accurately generates dictionaries for hard faults, and diction-
aries usually isolate detected hard faults to three chassis more than
90 percent of the time (i.e., if one can detect the hard fault, one can
isolate it).

Table V summarizes three different ways of evaluating how well the
dictionary approach isolates faults. The first column shows the ex-
perimental results from actually inserting 102 randomly chosen faults

100
ERROR PATTERNS

E 90 |-
B COMPARES
@
w g 80—
wo
>
Q70
<0
-
28
8 z 60 —

=
83
- 50 —
o
w o
> w
T 40

% | | | | | |

1 2 3 4 5 6 7
NUMBER OF CHASSIS ON LIST

Fig. 5—Typical number of chassis per fault list.

§82 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

Table V — Preliminary fault isolation evaluation results

i serti Independent .
Number of Chassis Fault gnbertlon Simlljllation Ann.olysm
(%0) (%) (%)
o

1 76 70 85
2 or fewer 87 81 96
3 or fewer 93 92 08
4 or fewer 94 04 99
5 or more 4 3 1
No or wrong 2 3 _

into a processor (99 detected). Physical fault insertion exercised the
processor dictionaries in their actual environment. Faults were isolated
to three chassis 93 percent of the time. The second column sum-
marizes the results of simulating 261 detected faults on an independent
simulator and then searching the appropriate 32 dictionaries for
isolation. Finally, the third column summarizes the results obtained
by analyzing the 300,000 possible detected faults covered in 19 ran-
domly chosen dictionaries. The size of the 19 logic blocks covered by
the dictionaries ranges from 12 to 31 chassis and averages 22 chassis.
This analysis assumes that when the M&p program is run on the hard-
ware in the presence of a fault, the first two detections of the fault will
occur exactly as predicted in simulation and, therefore, will always
yield correct isolation (i.e., the isolation list for a fault is exactly the
set of chassis associated with the first two detections). The advantage
of this type of analysis is easy determination of the approximate
isolation for very large numbers of faults. Again, isolation to three
chassis is better than 90 percent.

Dictionary isolation evaluation is continuing with emphasis on
increased hardware fault insertion, off-line analysis of dictionaries, and
initial field experience. Results to date have been generally consistent
with those presented in Table V. In fact, dictionaries have been used
in the field to isolate to the integrated-circuit package. The feedback
to programmers on detection has been instrumental in improving the
quality of program fault coverage. Simulation statistics on processor
programs, for example, show they now detect 87 percent of the simu-
lated detectable faults. A four-man committee reviews simulator
information on undetected faults and makes recommendations for
improvement code. This technique has increased detection by as much
as 25 percent in some areas. In most cases, the maintenance program
was resimulated after the recommended improvement code was added.
In such cases, the simulation data base was first made consistent with
the latest hardware changes. In a few cases, where the computer time

PROGRAM-FAULT DICTIONARY S83

for simulation was large, improvement code was added to the end of
the program so that the dictionary remained correct with entries
corresponding to the added program instructions at the end of the
dictionary.

Hardware changes which cause a divergence from the simulated
hardware are a significant problem. These hardware changes eventually
cause maintenance programs to noncompare when run against fault-
free hardware. Such a condition causes rapid modification of the main-
tenance program. Often, however, the corresponding dictionary cannot
be immediately regenerated. Since it is difficult to quantify the re-
sulting dictionary degradation, maintenance personnel eventually lose
confidence in the dictionary and stop using it. Dictionaries seem to be
worthwhile for hardware that is modified only occasionally.

There has been much discussion about the need for a ‘“nonexact-
match’’* strategy to handle such items as marginal, transient, and
multiple faults or faults improperly handled due to parameter trade-
offs or minor hardware change. The general strategy of on-line pro-
cessing of dictionary entries allows a very simple algorithm for isolating
faults causing exact match. Nonexact match can be handled by inter-
action between maintenance personnel and dictionary. Simple informa-
tion requests, such as “List all chassis associated with the first six non-
compares or previous six compares,” can be answered from the general
dictionary entry (see Fig. 4). Such information tells maintenance
which logic was being tested at the failed instructions. Since the
chassis list is usually short, it is a good starting place for further
manual troubleshooting. Thus, maintenance personnel can use the
dictionary in homing in on the fault. Not all this interactive capa-
bility is currently available. A microfiche print summarizing dictionary
entries (i.e., which logic chassis could cause the failure) is being pro-
vided to allow such interaction, although less conveniently.

IV. CONCLUSIONS

As others have noted, simulation facilitates detection feedback.
Statistics provided by simulation agree with the laboratory experi-
ments (i.e., they are believable). Since the statistics indicate which
faults are not detected, they enable the Mm&p programmer to improve
detection, resulting in a better maintained system. Since good detection
is required for good isolation, this benefit of simulation should be con-
sidered when one chooses a dictionary generation method. It often

* A nonexact match situation results when a fault causes the maintenance program
to noncompare when it is run_on the hardware and the dictionary entries do not
indicate any fault consistent with the observed error patterns.

$84 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

overshadows the dictionary itself. If the simulator is efficient, the
augmented M&D program can be resimulated.

The consistently high quality of the processor-unit dictionaries, for
example, indicates the practicality of dictionaries for large logic blocks
(20,000 gates) using SAFEGUARD hardware technology.!? Both the
fault model and the simulation were simplified, yet isolation remained
quite good. (In fact, multiple faults were often correctly isolated.)
Thus, dictionaries for large, stable blocks are useful in isolating faults
to a small number of chassis. Because the format actually indicates
suspect integrated-circuit packages, the dictionary is further useful in
repairing the chassis. On the other hand, dictionaries are marginal, at
best, for very small logic blocks, blocks with very low detection, or
blocks subject to a very high rate of hardware change activity. Diction-
aries can be regenerated for blocks experiencing high hardware change
order activity providing the computer time required for regeneration
is reasonable.

REFERENCES

1. J. R. Hahn, Jr,, and F. 1. Blojkowski, “Sarrcuirp Data-Processing System:
Maintenance and Diagnostiec Subsystem,” B.S.T.J., this issue, pp. S63-372.

2. J. W. Olson, “Sarrcuarpd Data-Processing System: Architecture of the Central
Logic and Control,” B.S.T.J., this issue, pp. S41-861.

3. H. Y. Chang, E. Manning, and G. Metze, Fault Diagnosis of Digital Systems, New
York: Wiley Interscience, 1970.

4. H. Y. Chang and W. Thomis, “Methods of Interpreting Diagnostic Data for
Locating Faults in Digital Machines,”” B.S.T.J., 66, No. 2 (February 1967),
pp. 289-317.

5. D.B. Armstrong, ““A Deductive Method for Simulating Faults in Logie Circuits,”
I.E.E.E. Transactions on Computers, C'-21, No. 5 (May 1972).

6. H. C. Godoy and R. E. Vogelsberg, “Single Pass Error Effect Determination
(Speed),”” I.B.M. Technical Disc. Bulletin, 153 (April 1971).

7. 8. A. Szygenda, “Problems Associated with the Implementation and Utilization
of Digital Simulators and Diagnostic Test Generation Systems,” International
Symposium on Fault-Tolerant Computing (March 1971).

PROGRAM-FAULT DICTIONARY S85

