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Glass fibers are in general not thick enough to withstand external forces
on their own without suffering axial distortion, mode coupling, and loss.
Thus, plastic jackets must be carefully designed to provide effective
protection. We evaluate jacket designs ranging from the mere use of soft
materials to the application of multiple plastic coatings and graphite
reinforcement. We compute the distortion loss as a function of dimensional
variations and of lateral forces considered typical for cable packaging.
The protective quality of a jacket s found to depend on a combination of
stiffness and compressibility and on the fiber characteristics.

I. INTRODUCTION

Surprisingly small external foreces can cause lateral deformations,
mode coupling, and optical loss in clad fibers. For example, minute ir-
regularities in the machined surface of a metal drum suffice to cause
substantial loss in fibers wound on this drum with only a few grams of
tension.! (An interesting and valuable study of this subject is described
by W. B. Gardner.?) The pressure exerted on the individual fiber in a
cable will almost certainly be considerably stronger and less uniform.
The concern with this effect has heightened recently with the notion
that lowest loss values are measured almost invariably in connection
with extremely small mode coupling and after carefully eliminating
external forces on the fiber.*~® Maintaining these loss values in a cable
may require better fiber and, more importantly, effective jackets
designed to optimally shield against external forces. This paper ad-
dresses the latter problem.

After gaining some insight into fiber deformation, we compute the
excess transmission loss® resulting from statistical surface variations
and lateral pressures affecting the fiber. The reader who is mainly
interested in the results of this theory may wish to turn to Sections V
or VI immediately, where practical examples and suggestions for an
improved jacket design are discussed. We show that some care in this

245



respect substantially reduces the excess loss resulting from fiber
distortion by outside forces.

Il. ELASTIC DEFORMATIONS

We begin with the simple model of a fiber pressed against an elastic
plane surface that is slightly rough (Fig. 1). The pressure from above
is uniform, but as a result of the roughness, the contact forces between
the fiber and the surface are not uniform along the fiber. Thus, the
fiber bends slightly yielding to a force f(z) per unit length.

According to the theory of the thin elastic beam, the lateral dis-
placement z(z) of the fiber axis is related to f(z) by

diz _ f
where
H = EI (2)

is the flexural rigidity or stiffness; £ is Young’s modulus and I the
moment of inertia. For the circular cross section of the fiber,

I=Zai (3)

=3

where a, is the radius of the fiber.

The foree f(z) not only causes a bending action, but also a deforma-
tion u(z) of the surface. Provided that f(z) does not change too drasti-
cally along z, u(2) is a linear function of the force applied.” We introduce
a factor of proportionality I, which we call the lateral rigidity, so that

_ J@)
u(e) = 12 (4
For the case of the elastic surface of Fig. 1, D is simply Young’s
modulus of the compressed surface material (we ignore a coefficient
close to unity). To simplify the following steps, we assume temporarily
that the surface is sufficiently compressible to conform to the fiber,
producing a continuous line of contact. This imposes the relation

T4+ uU— U =7, (5)
where uo, = (u) is the average of u(z) along z (see Fig. 1). Equations
(1), (4), and (5) combined yield the differential equation

H dt

D dz
We now introduce the Fourier transforms X (K) and V(K) of z(2)
and v(z). They are functions of a wave number K or a wavelength A

+zz = (6)
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Fig. 1—Sketch of a fiber pressed against a rough surface by a uniform force (ver-
tical dimensions strongly magnified).

related to K by

K = 2x/A. (7
In the Fourier domain, eq. (6) takes the form
Vv
X =1+ ®H/D ®)

According to (8), the effect each Fourier component V has on the fiber
displacement depends strongly on the wavelength of that component.
Periodic disturbances having a wavelength smaller than

R = 2r(H/D)} )

hardly affect the fiber, while those with longer wavelengths than (9)
are almost fully reproduced. The length £ is called the retention length
in the following, because it qualifies the usefulness of a given fiber
package to keep the fiber in its natural straight condition.

lIl. INCOMPLETE CONTACT

Assume v(z) to be a random variable measured from a suitable
reference plane so that its mean is zero as in Fig. 1. Characterize the
random process of which v(z) is a sample function by the (power)
spectral density P,(K). If a complete line of contact exists between
the fiber and the surface, we can apply (8) to P, so that the spectral
density P, of x becomes P, = P,(1 + HK4/D)™2.

If the contact is not complete, we have the situation of Fig. 2.
Figure 2a depicts the case in which the fiber is very stiff and stays
almost straight, while only the highest elevations of the rough surface
are compressed. We assume a mean spacing ¢ between the fiber periph-
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Fig. 2—Sketch of a fiber in incomplete contact with a rough surface. (a) The fiber
is very stiff. (b) The fiber yields to bending. Cross-hatched areas indicate surface
deformation (vertical dimensions strongly magnified).

ery and the surface. In this case the function causing the deformation is

_Ju@) —t forv =t
ye) = {O forv <t

rather than v(z) itself. To obtain an approximate characterization of
the random function y, we assume that v(z) obeys a gaussian random
process with standard deviation o. The first two moments of y are,
with this assumption,

(10)

) = (2m)te f " (v = ety (11)
and
W = @ne [ * (0 — tyrernetdy, (12)

The variance of y is _
s = () — W™ (13)

If one relates the spectral demsity P, of y — (y) to that of v (for
example, with the help of the Price method?), one finds the functional
shape of both spectra to differ little for most cases of interest, so that
the relation

Py(K) . &

PK) 5 (14)
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seems to be a useful approximation for all K. As y takes the place of
v in (6) and (10), we can write

P

— v
P =¥ HKyDN

(15)
which is

N P,s%/q?

~ (1 + HK*/D)
because of (14).

It remains to find a relation between s?/¢? and the (mean) lateral
pressure which determines the extent of the contact. In the limit in
which the fiber is stiff, as indicated in Fig. 2a, we have approximately
(f) = D(y), since (u) = (y) in (4). The mean force (f) per unit length
is, of course, the (linear) pressure we are interested in. To express (13)
as a function of (y) only, we must eliminate ¢ from (11) and (12). The
result of this calculation is presented in approximate form:

g2 a2 ot \—i
?=(1+Z@7‘) . (16)

If the fiber cannot be assumed as stiff, the situation of Fig. 2b
applies. We find that the surface deformation is more correctly given
by the function

v(z) —x v
we) = {5 v an
and that the mean of (17), rather than (y), determines the lateral
pressure. The statistics of (17) are difficult to evaluate, since v and x
are interrelated as a result of (15). Aecording to (15), x(z) essentially
comprises all Fourier components of »(z) having wave numbers
K < (D/H)*. Asis evident from Fig. 2b, it is the remaining spectrum
with K > (D/H)! that contributes to u(z) of (17). This fact is the
basis for the following estimate for the mean of (17):

wp =Y (" pk

s Jopm
2 oo
~ W f _PJK. (18)
o (D)

If the mean lateral pressure is f, = {(f), we can write with (4), (16),

and (18)
&2 2 D* © 274
‘;2 B [1 + Z ﬁ (f(D.fH)i PudK) ] . (19)

This relation together with (15) permits us to calculate the spectral

OPTICAL-FIBER PACKAGING 249



density P, of the fiber deformation, if the spectrum of » and the mean
pressure f, are known.

IV. DISTORTION LOSS

A significant exchange of power between two modes in a multimode
fiber occurs when a periodic disturbance exists whose wave number K
equals the phase lag between the two modes. This phase lag is in general
a complicated function of the mode numbers involved and of the
refractive index profile across the fiber core. Only if the index decreases
as the square of the fiber radius (parabolic profile) is the phase lag
the same for all modes coupled. This phase lag is

_ (2a)}

c Tc H (20)
when a,. is the core radius and A the relative index difference between
core axis and cladding. If the index is uniform within the core and
decreases abruptly to the cladding value (step-index profile), the
coupled mode pairs have typically a smaller phase lag than K., al-
though the phase lag approaches K, for modes close to cutoff. For this
profile, it is the spectral density P.(K) in the regime 0 < K = K.,
which determines coupling and coupling loss.

Equation (15) relates P, to the spectral density P,, which charac-
terizes the original source of disturbance. We know little about its
character; thus, to cover a broad variety of possibilities, we use the
rather general functional description

_ P,

Pn - WK_E)T‘ ) (21)
with ¢ > 1 and [ large compared to 1/K, and (H/D)* This stipulates
a decrease of P,(K) in the vicinity of K, in agreement with available
experimental evidence.? The parameter ! has the physical significance
of a correlation distance. Integration of (21) yields a relation between
P,(0) and the standard deviation ¢ introduced earlier:

(et

PO = rre -’
Coupling among neighboring modes dominates the power transfer
inside the fiber. In the limit of very large mode numbers, the resulting
power flow can be modeled by a diffusion process.® More specifically,
if one defines a (continuous) mode variable r, one finds the power
¢(r) in a mode group characterized by r from diffusion equations of

w> 1. (22)
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the form?.?
d [K

41K p, k) % ]+~/¢=o (23)

for the step profile and
4

G Eerpka |+ 20 -0 (24)
for the parabolic profile. The term y¢ accounts for an overall decay of
¢ as a result of coupling loss. This excess loss is caused by radiation
from modes at or beyond cutoff (+ = 1). The mathematical model
considers the steeply rising loss at » > 1 to first approximation by the
boundary condition ¢(1) = 0. In addition, we have d¢/dr = 0 at
r = 0, since no power can be lost at r = 0.

Equation (24) has an infinite set of eigensolutions® for arbitrary
P, ; such solutions also exist for (23) at leastif » > 1and ! > 1/K.. In
any of these cases, the lowest eigenvalue v, is also the smallest and
denotes the loss value approached asymptotically by long fibers once
a “steady state’ is reached. In the case of (24), v, can be computed
rigorously for arbitrary P.; a way of finding a good upper limit for
vo of (23) is outlined in the appendix. The result is

4 — 3 K! P(K)

Yo =
16 A 4u
1+4 T (HK/DP

(25)

for the step profile and
K P,(K.)

= 036 % T Ak Dy

(26)

for the parabolic profile, with

_ e
P = mre — g
a2 (u)o*Het -
(1+ G S penen) @D

from (19) and (22). Note that (25) is an upper limit and that these
derivations are subject to the limitation g > 1 and that ! must be large
compared to 1/K, and (H/D)*

In general, it will be necessary to determine the parameters in (21)
from experimental evidence. For the numerical results following in the
next sections, we have used g = 3 as a typical and realistic example.?
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In this case, the use of (20) and (27) converts (25) and (26) into

3 o%a? 1
< 2 c
Yo = 50 laAz(l N 144 A2 (1 BAAHIDI 1 (28)
25a5D? 225 fa10
for the step profile and
96 o%a? 1
Y0 T 957 1A (1 LARHNT 64 HDI \? (29)
atD 225 30 )

for the parabolic profile.

V. FIBER STORAGE DRUM

The main objective of this theory is, of course, the design of jackets
that protect the fiber from distortion and the loss associated with it;
but, to begin with a simple problem, let us first ask how the loss in-
creases in a fiber when it is wound on a drum. Clearly, the drum
surface properties and the winding force are important factors. We
assume the radius p of the drum to be so large that the constant
curvature of the fiber has no noticeable influence on the loss. If we
apply a tensile force F, the fiber presses against the drum surface with
a (linear) pressure

fo=F/P' (30)

With these definitions, the distortion loss as a result of the winding
pressure can be directly computed from (25) and (26). The results are
illustrated by the following representative example:

(z) Fiber characteristics:

Core radius a, = 40 pm.

Qutside radius a; = 60 um.

Relative index difference A = 0.005.

Young’s modulus (silica) £; = 7000 kg/mm? (107 psi).
(72) Drum surface statistics:

Standard deviation ¢ = 1 um.

Correlation length I = 1 mm.

Spectral coefficient 4 = 3.

The evaluation of (25) and (26) for p = 3 is given in (28) and (29).
We discuss only the step-index profile in the following. The results for
the parabolic profile can be obtained from (29) ; they differ little from
those of the step profile.

Figure 3 is an evaluation of (28) as a function of Young’s modulus
of the drum surface material with the pressure f, as a parameter. The
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Fig. 3—Distortion loss versus drum surface modulus according to eq. (30); fiber
diameter is 120 um, core diameter is 80 pm, relative index difference is 0.5 percent,
rms drum surface roughness is 1 um, correlation distance is 1 mm. Mean lateral force
per unit length is the parameter.

plot represents the loss for drums of different elasticity provided that
the surface statistics are the same for all. If F = 100 g and p = 10 cm
(fo = 1 g/mm), the distortion loss can be as high as 130 dB/km. For
low pressures, the loss decreases with increasing rigidity of the drum
surface, as the fiber ceases to conform to the irregularities of the surface.
If the drum is soft, the loss is reduced independently of the pressure,
since the fiber sinks into the surface and smoothes the irregularities.
Thus, both hard and soft surfaces have a tendency to decrease the
excess loss for a given pressure. The effect of a hard surface, however,
strongly depends on the pressure applied. A reduction of the loss to
0.5 dB/km independently of pressure requires an extremely soft sur-
face (0.11 kg/mm? = 157 psi) for the kind of fibers characterized by
this example. Typical winding forces which are caused by the pulling
operation itself or applied in rewinding operations are in the range
between 10 to 100 g. Thus, a loss increase of 100 dB/km or more as a
result of drum storage is not surprising.

Equation (28) shows that v, is proportional to A—% in the case of
“soft” surface conditions, i.e., when the first parenthesis in the de-
nominator of (28) is much larger than unity. Hence, an increase in the
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index difference by a factor of 1.5 would reduce the loss coefficient in
this range by one order of magnitude. Of course, these results depend
on the surface statistics assumed here. For arbitrary u, the excess loss
coefficient is proportional to A~* if the surface is hard and to A=+
if the surface is soft.

Next, let us consider a jacketed fiber wound onto a slightly rough
drum. The lateral rigidity D. of the jacket is, in general, different from
the rigidity D, of the drum surface. To account for the compressibility
of both, one must use an effective rigidity

1
~ 1/D: + 1/D;

in (25) to (29). There will be statistical variations of the jacket thick-
ness and these are likely to differ from those of the drum surface. If
one or the other dominates and follows the characteristics (21) with
u = 3, one can still use (28) or (29) or Fig. 4 to determine the distortion
loss if one incorporates (31).

D, (31)

VI. PLASTIC JACKET DESIGN

In a cable, the fibers will be organized in bundles and pressed to-
gether by binding or sheathing forces, by cable deformations, and by
pressure on the cable, once it has been placed.

Considering only one cross-sectional dimension, we assume a typical
fiber of the bundle to be contacted by two others, one on either side.
All fibers have plastic jackets, so that elastic surfaces of equal modulus
press against each other. The situation is similar to that described by
(31) except that now D; and D of that equation are identical and equal
to the modulus (or the rigidity D) of the jacket material. Hence,
D, = D/2. Other differences with respect to the previous model are
the two lines of variable pressure and a total of four random variables
involved in the deformation of the fiber. These variables are the jacket
thickness variations v, and v, of the fiber in the middle and the varia-
tions v; and v, referring to the jackets on the outside. If we assume again
complete and continuous contact, the resulting differential equation
becomes
H d
D dzt
where the relation D, = D/2 has been used. The variables v; to v4 are
statistically independent, but they are samples of the same ensemble.
Therefore, they all have the same spectral density P.(K) and the
spectral density of the sum on the right of (32) is 4 P,(K). After
TFourier transformation and the insertion of spectral densities into (32),

2 +2$=b‘1—?)2—?}3+1}4, (32)
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Fig. 4—Distortion loss versus outside jacket radius according to eq. (30); fiber
characteristics as in Fig. 3, rms jacket thickness variation 1 pm, correlation distance
1 mm, mean lateral pressure 1 g/mm. Curves refer to four jacket configurations listed
in Table I.

all numerieal factors cancel, leaving us with the mathematical relation-
ships derived earlier. As a result, (28) and (29) are also applicable to
the problem of the jacketed fiber in a bundle, provided that the statis-
tics of the jacket thickness variations can be described by (21) with
g = 3. Now D stands for the modulus of the jacket and H for the
combined stiffness of fiber and jacket. The stiffness of the latter is

Hy = gm(aa — af) (33)

with E; being Young’s modulus of the jacket material and a, and a,
its outer and inner radius, respectively. In the case of several jackets, H
is generally the sum over all stiffnesses. If the outer jacket is the softer
one and sufficiently thick that a deformation beyond its elastic limit
is unlikely, D is simply the modulus of the outer jacket. If the outer
jacket is harder than the inner one and has a thickness b small com-
pared to its outer radius as;, we have'?

ba
@ ]
where F; and E; are the moduli of the inner and the outer jacket, re-

D=~ E,+ E, (34)
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spectively. If the inner jacket is very soft and thick, we must consider
the hard outer shell and the fiber as two independent systems, each
undergoing deformations governed by differential equations similar
to (32). The result are four instead of two expressions in the denomina-
tor of (28) and (29), one pair comprising the H and D parameters of
a hard shell surrounding a soft material, and the other pair comprising
the H and D parameters of a fiber imbedded in a soft material.

The following is a discussion of four alternative jacket configura-
tions. As a realistic example, we consider the same fiber characteristics
and the same statistical parameters listed in the previous section for
the drum surface. Table I gives a description of the jackets. The first
is made entirely from a soft plastic, the second from a hard plastic, and
the third and fourth are hybrid structures. We assume a modulus of
1 kg/mm? (1400 psi) for a typical soft material and 100 kg/mm? for
a typical hard material. In Figs. 4 and 5, the outer jacket radius a.
is plotted versus the excess loss computed for each structure if the
mean lateral pressure is either 1 g/mm (Fig. 4) or 0.1 g/mm (Fig. 5).
The pressure obviously determines the choice between a soft or a hard
material, if the jacket is to be made from one material alone. The
decrease of the loss contribution with increasing jacket radius in case
of the hard jacket comes about as a result of the increase in stiffness.
The corresponding increase afforded by the soft jacket is negligible.
The last two columns of Table I list the D and H parameters used in
each case.

40

SOFT

20—

HARD SHELL

SOFT SHELL

DISTORTION LOSS IN dB/km

11— PRESSURE:0.1g/ mm
0.8
0.6

0.4 1 ]
0 0.1 0.2 0.3

JACKET RADIUS IN mm

Fig. 5—Distortion loss versus outside-jacket radius according to eq. (30); fiber
characteristics as in Figs. 3 and 4, jacket statistics as in Fig. 4, and mean lateral
pressure 0.1 g/mm. Curves refer to four jacket configurations listed in Table I.
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The third structure has a hard jacket padded with a soft outer
layer. The layer thickness of 20 pm was chosen to avoid any deforma-
tion beyond its elastic limit. The fourth structure has a hard shell
surrounding a soft material. The thickness of this shell should be ap-
proximately 0.02 a.. This optimum is a result of an increase both in
stiffness and lateral rigidity as the shell thickness is increased, so that
the retention length R, which is the ratio of the two, passes through a
maximum. To simplify matters, we have chosen a thickness of 40 ym
independent of the shell radius. The two pairs of D-H values listed
in the case of the fourth configuration refer to the two independently
deforming structures (shell and fiber) which must be considered in this
case, as was mentioned earlier. The slight advantage of the soft over
the hard shell, evident in Figs. 4 and 5, is too small to be decisive. It
may well be offset by weight and cost considerations. The substantially
improved fiber protection afforded by the hybrid structures as com-
pared to simple jackets, however, is well worth considering. A jacket
diameter of 0.5 to 0.6 mm permits a virtual elimination of the distortion
loss in case of the example considered here. A similar reduction by a
single hard jacket requires at least twice this jacket diameter.

The excess loss ecomputed for the structure with a hard shell vanishes
when the modulus of the inner jacket is reduced to zero. This implies
that the protection provided by a stiff shell that surrounds the fiber
in a loose way without any material in between is perfect. Of course,
this would indeed be true if the only forces present were lateral outside
forces borne by the shell. In practice, there are other forces not con-
sidered here ; forces that press the fiber against the inside jacket wall
in a cable bend, for example. Such forces determine the distortion loss
of the loosely jacketed fiber. Although this is an important problem
to consider, it is beyond the scope of this work.

Properties similar to those of hybrid jackets can also be obtained
with reinforced jackets. The reinforcement could, for example, consist
of strong fine fibers running parallel or slightly stranded to the optical
fiber imbedded in a relatively soft jacket material. The fiber material
could be plastic, glass, or graphite, the latter being particularly suited
because of its low weight, high tensile modulus, and high strength. Also,
as graphite fiber is available with diameters down to 5 um, its incorpora-
tion into the jacket should be manageable without causing permanent
internal stresses resulting in distortion loss by itself. The advantage of
the reinforced jacket is its anisotropy which combines stiffness with
lateral compressibility. Although these properties are difficult to com-
pute, an estimated loss reduction of two orders of magnitude for a
jacket 0.4 mm in diameter seems achievable with the fiber characteris-
tics listed in the previous section.
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The effect of the reinforced jacket and of the configurations 1, 3, and
4 in Table I is a combination of stiffness and compressibility, while that
of configuration 2 is based on stiffness alone, preventing its conformance
to surface irregularities. Mathematically, these two effects are dis-
tinguished by the two parentheses in the denominator of (25) or (26).
It is important to note that the first parenthesis depends strongly on
the fiber characteristics. An effective jacket implies HK%/D 3> 1 in
(25), so that the loss reduction afforded by the first group of jackets
is proportional to K? or, with (20), to A%/a®. As a result, a small in-
crease in index difference substantially increases the effectiveness of
these jackets. If, for example, A = 2 percent instead of 0.5 percent
as previously assumed, the soft jacket, the reinforced jacket, and the
two hybrid structures reduce the excess loss coefficient by an additional
factor of 256, while the effect of the hard jacket remains the same.
This strongly emphasizes the importance of this first group of jackets
and the need for fibers with large index difference.

Of course, the above dependence on A holds only as long as the pre-
dominant sources of loss are indeed those assumed here. If other sources
of loss dominate, as, for example, the influence of a very lossy cladding
material, typically only a fraction of all trapped modes propagates in
the steady state. In this case, A in (20) and in the above arguments
must be replaced by N?/2n, where & is the effective numerieal aperture
characterizing the mode distribution of the steady state and n the
refractive index of the core.

Vil. CONCLUSIONS

Optical fibers need protection from lateral forces and this requires a
careful design of the fiber jacket. The jacket should have a high flexural
rigidity or stiffness in combination with a good lateral compressibility.
These properties define a retention length within which the jacket
essentially absorbs irregularities impressed from the outside. Longer
irregularities deform the fiber and can lead to distortion loss if they
comprise spectral components in the vicinity of the critical wave
number of the fiber.

Although the forces to which a fiber is subjected in a cable are diffi-
cult to estimate, one gains a fair notion of the sensitivity of the fiber
to such forces by winding it on a drum with minute surface irregulari-
ties. This can best be illustrated by way of a representative example.
Consider a silica fiber, 120 ym in diameter, that has a relative index
difference of A = 0.5 percent and a core diameter of 80 um. Assume a
tensile force of between 10 and 100 g applied when winding the fiber
on a drum, which has a diameter of 10 ¢cm and an rms surface roughness
of 1 pm. The estimated loss increase is between 50 and 130 dB/km
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depending on the winding force applied. A winding force of 10 g cor-
responds to a mean pressure of 0.1 g/mm on the fiber.
Now consider five types of jackets:

(7) A soft plastic jacket having a modulus of 1 kg/mm?.
(77) A jacket of hard plastic with 100 kg/mm?.
(#4%) The same as (¢7) padded with a thin layer of the material used
in (7).
(iv) A shell of the material of (1) on top of soft material as used
in ().
(») A soft jacket reinforced by a filler of strong plastic, glass, or
graphite fiber.

We find that, for equal jacket diameters, (¢) is almost always better
than (i7) except when A and the lateral forces are small. For the fiber
of the previous example, the jacket (7) reduces the excess loss cofficient
by a factor of 3. If optimized in thickness, the shell (sv) is about as
useful as (447). An overall thickness of 0.6 mm permits in both cases a
reduction of the loss coefficient by two orders of magnitude. A graphite
reinforced jacket of equal size should have at least the same effect.

The effectiveness of a jacket is a strong function of the fiber to be
protected. For example, the factor by which the jacket reduces the
loss coefficient is proportional to A% In addition, the distortion loss of
the unprotected fiber is a function of A. Hence, the loss coefficient
may typically scale as A~2 for a fiber without jacket, but as A~ for the
jacketed fiber. In other words, if the index difference in the previous
example had been 1 percent instead of 0.5 percent, the excess loss would
have been initially less than 35 dB/km on the drum and 0.5 dB/km
after protection with a simple soft jacket. Cable forces are likely to be
stronger and less uniform than those encountered on a storage drum
and may necessitate a fiber protection by the more expensive hybrid
jackets or even by reinforcement.
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APPENDIX ‘
Rayleigh-Ritz Limit for Steady-State Loss

The Rayleigh-Ritz method? provides a surprisingly close upper
limit for the lowest eigenvalue of differential equations of the type in

(25) or (26) if a reasonable trial solution for the lowest eigenvalue can
be constructed. We demonstrate this for an important subclass of (25).
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Consider the case that I in (23) is very large and (H/D)! in (17)
is very small compared to 1/K., so that P,~s P, ~ 2I'(u)e%l/
I'(HT (e — 3)(K)*. After suitable normalization, (25) is then of the
form

c(r) + gp =0 withe =7 (35)

and ¢ > —2. Multiply (36) by ¢, integrate over r from 0 to 1, and solve
for g. With the boundary condition ¢(1) = 0, one arrives at

Le(@)

g= (36)

f d%dr

¢=1—17r withy > 1, (37)

We choose the trial solution

so that the boundary condition d¢/dr = 0 at r = 0 is also satisfied.
We insert (37) into (36) to obtain

Z+1F+1)

2v —o—1 (38)

_1
=3

Since (38) is larger than the true eigenvalue #, for all », we find the
best approximation from dg/dv = 0. The result is

_%[(d+1)+(0+5a+6)"] a+Z (39)
and
o+ (40)

The quality of this result can be checked against the rigorous solution
Yo = w2/4 = 2.467 as compared to ¢ = 2.5 for ¢ = 0. One can show
that (40) converges on v, for increasing ¢. For ¢ < 0, (40) proves use-
ful even beyond the regime of validity of the trial solution. For ¢ = —1,
for example, the rigorous solution is® vy, = 1.446, while (40) yields

= 1.5. This case, by the way, is the solution of (26).

The trial solution (37) is useful also in the case that P, of (24) has
the more general form given by (17) and (22), but it becomes sub-
stantially more difficult to optimize ». One can convince oneself that
the final result (27) converges on the form derived in (40) in the limits
(D/H)t> K, and (D/H)! € K,.
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