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An important problem in speech processing is to detect the presence of
speech in a background of noise. This problem is often referred to as the
endpoint location problem. By accurately detecting the beginning and end
of an utterance, the amount of processing of speech dala can be kept to a
minsmum. The algorithm proposed for locating the endpoints of an ui-
terance is based on two measures of the signal, zero crossing rate and energy.
The algorithm is inherenily capable of performing correctly in any rea-
sonable acoustic environment in which the signal-to-noise ratio is on the
order of 30 dR or better. The algorithm has been tested over a variety of
recording conditions and for a large number of speakers and has been
found to perform well across all tested conditions.

I. INTRODUCTION

The problem of locating the beginning and end of a speech utterance
in an acoustic background of silence is important in many areas of
speech processing. In particular, the problem of word recognition is
inherently based on the assumption that one can locate the region of
the speech utterance to be recognized. A further advantage of a good
endpoint-locating algorithm is that proper location of regions of
speech can substantially reduce the amount of processing required
for the intended application.

The task of separating speech from background silence is not a
trivial one except in the case of acoustic environments with extremely
high signal-to-noise ratio, e.g., an anechoic chamber or a soundproof
room in which high-quality recordings are made. For such high signal-
to-noise ratio environments, the energy of the lowest-level speech
sounds (e.g., weak fricatives, low-level voiced portions, etc.) exceeds
the background noise energy and a simple energy measure suffices.!
However, such ideal recording conditions are not practical for real-
world applications of speech-processing systems. Thus, simple energy
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measures are not sufficient for separating weak fricatives (such as the
/f/ in “four”) from background silence. In this paper, we propose
a fairly simple algorithm for locating the beginning and end of an
utterance, which can be used in almost any background environment
with a signal-to-noise ratio of at least 30 dB. The algorithm is based
on two measures of speech: short-time energy and the zero crossing
rate. The algorithm possesses the feature that is somewhat self-adapting
to the background acoustic environment in that it obtains all the
relevant thresholds on its decision criteria from measurements made
directly on the recorded interval.

The organization of this paper is as follows. In Section II we discuss
the major difficulties in locating the beginning and end of an utterance
and propose various measurements for distinguishing between speech
and no speech in these cases. In Section III we describe the algorithm
to locate the endpoints of the utterance. In Section IV we give examples
of the use of the algorithm, and give the results of both formal and
informal tests on its ability to find endpoints of a corpus of words
from several speakers. Finally, in Section V we discuss the general
characteristics of the endpoint-location problem and propose alterna-
tive methods of solving the problem.

Il. EXAMPLES OF SPEECH ENDPOINT-LOCATION PROBLEMS

To arrive at a reasonable algorithm for separating speech from non-
speech, it is necessary first to define the acoustic environment in which
the recordings are made. In this paper, we consider two specific modes
of recording. In the first mode, the speaker makes recordings on analog
tape using a high-quality microphone in a soundproof room. This mode
of recording is useful for obtaining reasonably high-quality speech. In
the second mode of recording, the speaker records directly into com-
puter memory in a noisy environment (e.g., a computer room) using
a noise-reducing, close-talking microphone. This mode of recording is
a reasonable approximation to a real-world environment for most
man-machine interaction problems. To eliminate 60-Hz hum, as well
as any de level in the speech, it is assumed that the speech is high-
pass filtered above 100 Hz ; similarly, to keep the processing simple, the
speech is low-pass filtered at 4 kHz, thereby allowing a 10-kHz sampling
frequency.

Figure 1 shows a comparison of the waveform* of the background
silence (on a greatly amplified scale) for these two modes of recording.
The top two lines of this figure show the waveform for tape-recorded

*In this and subsequent illustrations, each line shows 25.6 ms of the waveform.
Successive lines show successive 25.6-ms segments of the waveform.
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Fig. 1—Acoustic waveforms for the silences from tape and microphone.

silence from a soundproof booth, whereas the lower two lines show the
waveform for the silence from the close-talking microphone. It is seen
from this figure that the tape-recorded silence has a strong low-
frequency component (period ~ 8 ms) due to the recording process.
The waveforms from both the close-talking microphone and the re-
cording process appear to be quite broadband, as one would expect.
Figure 2 shows typical frequency spectra of these background silences.
The spectra are plotted on a log magnitude scale and are for 512-point
Hamming window weighted sections. Except for the strong low-
frequency-hum components for the recorded silence, the spectra of
these silences are quite similar.

The problem of locating the endpoints of an utterance in these back-
grounds of silence essentially is one of pattern recognition. The way
one would attack the problem by eye would be to acclimate the eye
(and brain) to the ‘“typical” silence waveform and then try to spot
some radical change in the pattern. In many cases this is easy to do.
Figure 3 shows an example (a waveform of the word “eight”) in which
the silence pattern (on a reduced amplitude scale) is easily distinguished
from the speech which begins just past the beginning of the third line
on this figure. What one is observing in this case is a radical change in
the waveform energy between the silence and the beginning of the
speech.

Figure 4 shows another example (a waveform of the word “six’)
in which the eye can do an excellent job in locating the beginning of
the speech. In this case, the frequency content of the speech is radically
different from the frequency content of the background noise as mani-
fested by the sharp increase in the zero crossing (or level crossing)
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Fig. 2—Log magnitude spectra for the silences from tape and microphone.

rate of the waveform. For this example, the speech energy at the
beginning of the utterance is not radically higher than the silence
energy; however, other characteristics of the waveform signal the
beginning of the speech.

The next set of figures illustrates some of the cases in which the eye
can be greatly deceived, even with the use of expanded amplitude
scales to aid in the examination of the frequency content of the speech.
Figure 5 shows the waveform for the beginning of the utterance “four.”
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Fig. 3—Waveform for the beginning of the word “eight.”

MIKE-SIX

Fig. 4—Waveform for the beginning of the word “six.”
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Fig. 5—Waveform for the beginning of the word “four.”

This utterance begins with the weak fricative /f/. Without any a prior:
information about the utterance, the eye would select point B as the
beginning of the utterance. This is incorrect, however, in that it com-
pletely misses the weak fricative /f/ at the beginning. For this example,
point A is a better indication of the beginning of the speech.* Thus, one
problem to be concerned with is weak fricatives at the beginning (or
end) of the utterance.

Figure 6 shows another example of the difficulty in locating the end-
point of an utterance. This figure shows the waveform for the end of
the word “five.” Without any a priori information, point A might be
chosen by eye as the endpoint of the utterance. However, the actual
endpoint occurs approximately at point B. In this example, the final
/v/ in “five” becomes devoiced and turns into an /f/, a weak fricative.
Such weak fricatives are difficult to locate by eye (and sometimes
even by ear).

* The criterion for deciding the actual beginning and ending points of the utterances
was to use a combination of eareful listening combined with precise visual examina-
tion of the waveform.
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MIKE-FIVE (END)

Fig. 6—Waveform for the end of the word “five.”

As a final example, Fig. 7 shows the waveform for the end of the
word “nine.” It is quite difficult to say where the final nasal ends and
where the silence begins. A reasonable location for the endpoint is the
point marked END in this figure, although it is not clear how accurate
this choice actually is.

Rather than give several more examples of situations in which it
is difficult to locate either the beginning or the end of an utterance, we
list below the broad categories of problems encountered. These
include:

() Weak fricatives (/f, th, h/) at the beginning or end of an
utterance.
(77) Weak plosive bursts (/p, t, k/).
(#7¢) Final nasals.
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Fig. 7—Waveform for the end of the word ‘“‘nine.”

(iv) Voiced fricatives at the ends of words which become devoiced.

(v) Trailing off of certain voiced sounds—e.g., the final /i/ be-
comes unvoiced sometimes in the words ‘“‘three” (/th-r-i/) or
“binary” (/b-al-n-e-r-i/).

The approach we have taken to solve these problems in an automatic
endpoint-location algorithm is a pragmatic one. Our goal is to isolate
enough of the word (utterance) so that a reasonable acoustic analysis
of what is obtained is sufficient for accurate recognition of the word.
Thus, it is not necessary to locate ezxactly the point where the word
begins or ends, but instead it is important to include all significant
acoustic events within the utterance. For a word like ‘“‘binary,” it is
of little consequence if the trailing off unvoiced energy is omitted
(in fact, it is probably quite helpful for a ‘“phonetic” word-recognition
strategy) ; however, for a word like “four” it is important to be able
to reliably locate and include the initial weak fricative /f/. For this
last example, the word “four,” it is not necessary to include the entire
initial unvoiced interval; in fact, experience has shown that 30 to
50 ms of unvoiced energy is sufficient for most word-recognition pur-
poses. This type of knowledge is of great importance in an endpoint-
finding algorithm because it enables you to set conservative values on
all decision thresholds (thereby guaranteeing a very low false-alarm
rate) and, for the word-recognition application, the concomitant
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high miss rate will be of little practical significance. In Section 111, we
give the details of one practical implementation of an endpoint-
location algorithm.

lIl. THE ENDPOINT-LOCATION ALGORITHM

Based on the preceding discussion, the goals of the endpoint algo-
rithm are:

(#) Simple, efficient processing.
(77) Reliable location of significant acoustic events.
(727) Capability of being applied to varying background silences.

The first goal implies that only simple measurements can be made on
the speech waveform as a basis for the decision. If speed and simplicity
were not major issues, far more sophisticated processing could be used
to give a better, more accurate result.

With the above considerations in mind, the endpoint location algo-
rithm that was implemented is based on two simple measurements,
energy and zero crossing rate, and uses simple logic in the final decision
algorithm. Both energy and zero crossing rate are simple and fast to
compute, and, as seen in Section 1I, can give fairly accurate (although
conservative) indications as to the presence or absence of speech.
Before proceeding to a description of the algorithm, we first define
how the energy and zero crossing rate are measured. The speech
‘“energy,” E(n), is defined as the sum of the magnitudes of 10 ms of
speech centered on the measurement interval? i.e.,

E(m = % |stu+9)], (1)

where s(n) are the speech samples and it is assumed that the sampling
frequency is 10 kHz. The choice of a 10-ms window for computing the
energy and the use of a magnitude function rather than a squared-
magnitude function were dictated by the desire to perform the com-
putations in integer arithmetic and, thus, to increase speed of compu-
tation. Further, the use of a magnitude de-emphasizes large-amplitude
speech variations and produces a smoother energy function. By way
of example, Fig. 8 shows typical energy functions for the words “direc-
tive”” and “multiply.” (The beginning and end of these words is noted
on these energy plots.) For this example, the energy function is com-
puted once every 10 ms, or 100 times per second.

The zero (level) crossing rate of the speech, z(n), is defined as the
number of zero (level) crossings per 10-ms interval. Although the zero
crossing rate is highly susceptible to 60-Hz hum, dec offset, etc., in
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Fig. 8—Tg'pica] energy plots for the words ‘‘directive’’ and “multiply’’ with markers
indicating the beginning and end of the utterance.

most cases it is a reasonably good measure of the presence or absence
of unvoiced speech.

Figure 9 shows a flowchart of the endpoint-location algorithm. The
speech waveform is filtered prior to sampling at 10 kHz by a bandpass
filter with a 100-Hz low-frequency cutoff and a 4000-Hz high-fre-
quency cutoff and having 48 dB per octave skirts. It is assumed that
during the first 100 ms of the recording interval there is no speech
present. Thus, during this interval, the statistics of the background
silence are measured. These measurements include the average and
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Fig. 9—Flowchart for the endpoint algorithm.

standard deviation of the zero crossing rate and the average energy. If
any of these measurements are excessive, the algorithm halts and warns
the user. Otherwise, a zero crossing threshold, IZCT, for unvoiced
speech is chosen as the minimum of a fixed threshold, IF (25 crossings
per 10 ms), and the sum of the mean zero crossing rate during silence,
IZC, plus twice the standard deviation of the zero crossing rate during

silence, i.e.,

IZCT = MIN(IF, IZC + 201z¢).
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The energy function for the entire interval, E(n}), is then computed.
The peak energy, /M X, and the silence energy, IM N, are used to set
two thresholds, ITL and ITU, according to the rule

Il = 0.03*(IMX — IMN) + IMN (3)
12 = 4*IMN (4)
ITL = MIN(I1, I2) (5)
ITU = 5+ITL. (6)

Equation (3) shows I1 to be a level which is 3 percent of the peak
energy (adjusted for the silence energy), whereas (4) shows I2 to be
a level set at four times the silence energy. The loweér threshold, ITL,
is the minimum of these two conservative energy thresholds, and the
upper threshold, IT'U, is five times the lower threshold.

The algorithm for a first guess at the endpoint locations is shown
in Fig. 10. The algorithm begins by searching from the beginning of

IS
E(m) = ITL
?

DONE

Fig. 10—Flowchart for the beginning point initial estimate based on energy
considerations.
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the interval until the lower threshold is exceeded. This point is pre-
liminarily labeled the beginning of the utterance unless the energy
falls below ITL before it rises above ITU. Should this occur, a new
beginning point is obtained by finding the first point at which the
energy exceeds IT'L, and then exceeds ITU before falling below ITL;
eventually such a beginning point must exist. A similar algorithm
(shown in Fig. 11) is used to define a preliminary estimate of the end-
point of the utterance. We call these beginning and ending points N,
and N, respectively.

Until now, we have only used energy measurements to find the end-
point locations; and these endpoint locations are conservative in that
fairly tight thresholds are used to obtain these estimates. Thus, at
this point, it is fairly safe to assume that, although part of the utterance
may be outside the (N, N.) interval, the actual endpoints are not
within this interval. In relation to this, the algorithm proceeds to

DONE

Fig. 11—Flowchart for the ending point initial estimate based on energy
considerations.
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examine the interval from N, to N, — 25, i.e., a 250-ms interval pre-
ceding the initial beginning point, and counts the number of intervals
where the zero crossing rate exceeds the threshold 7ZCT. If the number
of times the threshold was exceeded was three or more, the starting
point is set back to the first point (in time) at which the threshold was
exceeded. Otherwise, the beginning point is kept at N;. The rationale
behind this strategy is that for all cases of interest, exceeding a tight
threshold on zero crossing rate is a strong reliable indication of un-
voiced energy. Of course, it is still possible that a weak fricative will
not pass this test, and will be missed. However, in these cases there is
no simple, reliable method of distinguishing such a weak fricative from
background silence.

A similar search procedure is used on the endpoint of the utterance
to determine if there is unvoiced energy in the interval from N, to
N: + 25. The endpoint is readjusted based on the zero crossing test
results in this interval.

To illustrate the use of the endpoint algorithm, Fig. 12 shows repre-
sentative contours of the energy and zero crossings for an utterance.
Using the energy criterion alone, the algorithm chooses the point N,
as the beginning of the utterance and N, as the end of the utterance.
By searching the interval from N, to N, — 25, the algorithm finds a
large number of intervals with zero crossing rates exceeding the thresh-
old; thus, the beginning point is moved to Nj, the first point (in
time) that exceeded the zero crossing threshold. Similar examination
of the interval from N. to N, 4+ 25 shows no significant number of

ENERGY

ITUf———

ITLF——=1

ZERO
CROSSINGS

—

1ZCT

|

Fig. 12—Typical example of energy and zero crossings data for a word beginning
with a strong fricative.
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intervals with high zero crossings; thus, the point N, is retained as
the endpoint of the utterance.

In Section IV, we give examples of the use of the endpoint algorithm
for a large number of words with different speakers and different
acoustic environments,

IV. EXAMPLES OF THE USE OF THE ENDPOINT ALGORITHM

The endpoint algorithm described in Section III was implemented
on the DDP-516 computer facility of the Bell Laboratories Acoustics
Research Department. The algorithm was tested using the two modes
of recording described in Section II: high-quality tape recordings from
a soundproof booth and on-line recordings using a close-talking
microphone.

Figures 13 and 14 show examples of how the algorithm worked on
typical isolated words. In Fig. 13 there are eight plots of the energy
function for eight different words (of two different speakers). Some of
the words were recorded on-line (marked mikE) and others were
recorded on tape (marked TaPE) from the soundproof booth. The
markers on each plot show the beginning point and ending point of
each word, as determined by the automatic algorithm. For the ex-
ample in Fig. 13a (the word “nine”), the energy thresholds were
sufficient to locate the endpoints. For the example in Fig. 13b (the
word “‘replace’”), the zero crossing algorithm was used to determine
the ending point due to the final fricative /s/. It should be noted that
even though the final /s/ has fairly large energy, since the energy
thresholds were set conservatively, the energy criterion was not able
to find the actual endpoint of the word. Instead, the zero crossing
algorithm was relied upon in this case. In Fig. 13c, the final /t/ in the
word ‘‘delete’” was correctly located because of the significant zero
crossing rate over the 70-ms burst when the /t/ was released. Thus,
even though there was little energy or zero crossing activity for about
50 ms in the stop gap, the algorithm was able to correctly identify the
endpoint because of the strength of the burst. On the other hand, if
the burst had been weak, the ending point would have been located at
the beginning of the stop gap.

Figure 13d is an example in which the energy during the silence was
significant in a couple of places prior to the beginning of the word
‘“subtract,” yet the algorithm successfully eliminated these places
from consideration because of the low zero crossing rates. In this
example, a relatively weak burst in the final /t/ was correctly labeled
as the endpoint.

Figures 13e through 13h show examples of words with fricatives at
either the beginning or end of the word. In all cases, the algorithm was
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Fig. 13—Sequence of energy plots showing how the endpoint algorithm performed
over a variety of words.

able to correctly place the appropriate endpoint so that a reasonable
amount of unvoiced duration was included within the boundaries of
the word.

Figure 14 shows three examples of how the algorithm performed for
the word “four.” It can be seen from the location of the beginning
point that, although the level of the initial /f/ varied from strong to
weak, the zero crossing indicator was able to find positive indications
of the frication noise in all three cases. As discussed earlier, there are
many examples where initial or final fricatives (mainly /f/ and /th/)
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Fig. 14—Energy plots and endpoint assignments for three variations of the word
I‘Ifour'll

were s0 weak they were indistinguishable from the background silence.
In Section V, we discuss more sophisticated techniques for distinguish-
ing such weak fricatives from background silence.

Two sets of formal tests were made on the algorithm. In one test,
the 54-word vocabulary used by B. Gold in his word-recognition ex-
periments? was read by two males and two females. For this vocabulary,
the algorithm made no gross errors in locating the beginning and
ending points. The algorithm did make a number of small errors of
the type discussed earlier, such as losing weak fricatives or releases of
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stops; however, none of these errors seriously affected the human
recognition (based solely on listening) of the utterance from the portion
that the algorithm did locate correctly. Thus, in some pragmatic
sense, such errors can be tolerated for word recognition purposes;
although for such applications as computer voice response, these small
errors would probably be significant.

The second test involved 10 speakers each repeating the 10 digits
from zero to nine in 10 separate sessions. (These data were actually
measured for a digit-recognition experiment that used this endpoint
location algorithm.) For this test, there were essentially no gross
errors in locating the endpoints; in fact, it was determined that for
purposes of word recognition, the algorithm was essentially error free.

V. DISCUSSION OF THE ENDPOINT-LOCATION PROBLEM

The problem of accurately locating the endpoints of an utterance is
actually a specific case of the more general problem of labeling an
interval of a signal as silence, unvoiced, or voiced. If one had a perfect
technique for this three-level decision, the endpoint-location problem
would be trivially solved. However, such an ideal algorithm does not
exist as yet. Therefore, we have looked for partial solutions to this more
specific problem of isolating speech from a noisy background.

The solution to this problem was based on the premise that some-
where within the given interval there was an utterance and that it
would be easy to isolate the broad region in which the speech was
located using energy measures alone. From this interval, we set very
conservative thresholds on the speech energy (normalized to the
maximum speech energy) to get a good first guess at the endpoints
of the utterance. The zero crossing rate of the waveform outside these
initial estimates of the endpoint was used to provide better estimates
as to the existence of unvoiced speech energy in a broad region on
either side of the initial endpoints.

The question now arises as to how to make the algorithm work better.
One of our key goals in the original formulation was to make the algo-
rithm fast and efficient. To this end, the readily available parameters
of short-time energy and zero crossing rate were the only ones used
in the decision-making process. To increase the sophistication and
thereby the accuracy of the algorithm would require the inclusion of
other speech parameters, such as predictor coefficients, autocorrelation
coefficients, etc. The use of such additional measurements is predicated
upon knowledge of how they differ for silence and for speech. Atal*
has suggested a reasonable pattern-recognition approach for making
the distinction between the three classes of silence, unvoiced speech, or
voiced speech. This method, although promising, is much slower in
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running and, thus, cannot be relied upon in an on-line environment. It
does, however, give good indications that the problems associated with
this decision are not totally untractable.

VI. SUMMARY

We have presented a fast, efficient algorithm for locating the end-
points of an utterance in a background of noise. The algorithm is
based on two measurements made on the speech: short-time energy
and zero crossing rate. Although the algorithm does make small errors
in finding the exact endpoints of the utterance, it was designed to
minimize the number of gross errors (off by more than 50 ms) in the
analysis. The algorithm has been found to be sufficiently reliable and
accurate that it is currently being used in on-line experiments on word
recognition.
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