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We consider a general class of multibit adaptive quaniizers in which
the quantizer function is modified at every sampling instant according to
a recursive law with the transitions depending on the value of the quantizer
output. We obtain a rather comprehensive set of basic properties of the
device which explain the interrelationship of different aspects of the device
behavior and their dependence on the parameters of the adaptation algo-
rithm. For the quantitaiive analysis of the device, we give formulas and
bounds for the mean time required for the quantizer function to adapt from
an arbitrary initial state to the optimal. A feature new with this work is a
unified treatment and a common body of results for quantizers with both
bounded and unbounded range. This paper extends all the analytical
results reported in an earlier paper, which dealt with a restricted class of
quantizers having only four levels.

We also present new resulls from a computational investigation on
quantizers up to four bits (sixteen levels). These results indicate, for well-
designed examples of the respective classes, the kinds of improvement in
performance that can be expected in going from three-bit (eight-level) to
Sfour-bit quantizers and from uniform to nonuniform quantizers.

I. INTRODUCTION

In a recent paper! we obtained a number of fundamental properties
of a class of two-bit (four-level) adaptive quantizers useful for coding
speech and other continuous signals with a large dynamic range. We
also developed formulas for the quantitative analysis of the device.
In the present paper, we consider a general, multibit adaptive quantizer
and obtain extensions to all the results previously reported. A feature
new with this work is a unified treatment and a common body of
results for quantizers with both bounded and unbounded range, the
former being the case of practical interest.

In the final section of the paper, Section IV, we present results from
a computational investigation on adaptive quantizers up to four bits.
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Readers familiar with quantizers and whose primary interest is in the
performance of the device may skip the earlier sections that contain
the development of the mathematical results. Section IV includes a
comparison of the performances of uniform and nonuniform quantizers
for normally distributed input sequences.

A quantizer with 2N levels is shown in Fig. 1. In the figure, input
refers to the nth sample of the continuous signal, z(n), where n = 0,
1, ---; output refers to the level that is coded before transmission at
that time. We let £ = 1 and call A the step size.* In uniform quan-
tizers, £&; = 1 and the vertical axis is also subdivided into equal intervals
in the range (m4, nvA). In adaptive quantizers which are of interest
here, the step size, and hence the entire quantizer function, is time-
variable, and the step size at the nth sampling instant is denoted by
A(n). The parameters {£;} and {7:} are predetermined and do not
change with time.

In this paper, the main algorithm for step-size adaptation is

Aln + 1) = MA(n) if £..A() = |z(n)| < &:A(n), (1)

where My, M,, ---, My, called multipliers, are fixed constants. The
following natural restrictions are imposed on the multipliers:
Mi<1< My and M S M, =< ---= Mp. (2)

Even so0, a great deal of the flexibility of the quantizer is incorporated
in the multipliers and, to some extent, in the parameters {{;} and
{n:}. Observe that the algorithm in (1) utilizes only unit memory and
that it is not necessary to transmit to the receiver separate information
on the step size.

We shall also be considering the following important variation of
(1) in which the step sizes {A(n)} are constrained to be within a
gpecific bounded interval [K, L];suppose £;_1A(n) < |z(n)| < £:A(n),
then

Aln+1) = M:A(n) if K < MA(n) £
=K if M;A(n) = K
=L if L £ MA(n). (3)

We call the associated device the saturating adaptive quantizer. There
are situations where it is attractive to have the interval [K, L] rela-
tively small.

The most restrictive assumption that is made about the input
sequence {z(n)} is that it is a sequence of independent random vari-
ables (see Sections 1.1 and 1.2 for a discussion). However, in differ-
ential PcM schemes in which the quantizer is used together with a

* For notational convenience, we also let £, = 0 and £y = .
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Fig. 1—The quantizer function.

predicting filter in the feedback loop, the effect of the restriction is
diminighed.

With £; = 4, the adaptation algorithm in (1) is due to Cummiskey,
Flanagan, and Jayant,*?® who have also implemented speech coding by
a four-bit quantizer. References 1, 2, and 4 may be consulted for a
fuller account of the antecedents of the quantizer and related work
that has been done in this area. Goodman and Gersho* have also
examined the general multibit quantizer from a theoretical point of
view, and their work complements rather well the work described here.

We briefly summarize here the main features of this paper.

(7) The theory that we give here applies to quantizers having
bounded range and finite alphabet, with the important properties and
relations holding also for quantizers with unbounded range. However,
as may be expected, differences do exist between the two types of
quantizers. For instance, a key relation in the work of Goodman and
Gersho,* who do not consider finite range quantizers, called the design
equation, holds exclusively for the class they consider.

(#7) The single most important property of either type of quantizer—
ordinary or saturating—that we find is a localization property which
states that, for independent identically distributed inputs, there exists
a strong localization of the mass of the stationary step-size distribution
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about an easily identifiable central value. See Theorem 1, Section 2.2,
for a statement of this property. The localization property, together
with certain scaling properties of the central state, provides the key
to the synthesis of the adaptive quantizers.

(#45) A property of the quantizers having important 1mphcat10ns
is that, under certain conditions, as the range of the multipliers is
decreased to approach unity, then the stationary step-size distribution
becomes increasingly concentrated about the central step size. A
result of this type is given in Ref. 4, where it is shown that a “spread
function” has the appropriate behavior. However, the definition of the
spread function is novel, and connections, if any, with the dispersion
of mass in the distribution are not established. In Section 2.4 we
establish the property directly in terms of the mass of the distribution.

(%) In Section III we develop, as design aids, formulas and bounds
on the mean adaptation time, i.e., mean time required for the step
size to adapt from arbitrary initial values to the central step size.

The mathematical analysis is of a random walk on the integers, in
which the state transition probabilities depend on the states. Random
walks of the type considered here are encountered in other areas; for
instance, in various schemes (up-and-down method, transformed up-
and-down method’~7) for estimating a quantile of an unknown dis-
tribution by using only response, nonresponse data, as is required in
bioassay, sensitivity data analysis, and psychological testing. The
central properties of the random walk that we obtain here are new
and of general interest.

1.1 Assumptions and background

Let ¢ > 0 denote a scale parameter and let G denote an equivalence
class of distributions F,(z), z = 0, in which the distributions are
identical to within a scaling operation, i.e.,

F,(az) = F1(z)- (4)

For instance, G may be the class of half normal distributions, in which
case o? is the variance and F1(z) = Pr [|z| < z], where z is normal
with zero mean and unit variance. In what follows we let {z.(n)}
denote a sequence of independent random variables, each with the
distribution function Pr [|z.(n)| = 2] = F.(2).

We recall certain known facts about optimal nonadaptive quantiza-
tion where {z,(n)} forms the input sequence, F,(z) is known, and, for
some suitable choice of a fidelity criterion such as E[{y(n) — z.(n) }’]
where {y(n)} is the output of the quantizer, the optimal step size A,
is computed. With the rms criterion and the inputs normally distrib-
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uted, Max*® has computed A, and, for the nonuniform case, the
corresponding optimal parameters {£:}, {4} for quantizers with
various levels, N. A convenient way of presenting such results for
any @ is as

FI(AI) = o, (5)

where a is some constant, since optimal (nonadaptive) step sizes A,
corresponding to the scale parameter ¢ are obtained from
A, =0 51. (6)
In this paper we show that, when ¢ is fixed and {z,(n)} forms the
input to the quantizer, then the step size, a random variable evolving
according to either (1) or (3), has a natural center C,. We show, for
instance, that the stationary step-size distribution is localized about
C, and that the degree of localization may be arbitrarily increased,
although at the cost of other aspects of performance. There are two
important facts to note about C,. First, by virtue of its explicit defini-
tion, C; can be made to take almost any desired value by suitable
choice of the multipliers. Second, as we show in the following section,
the central step size has a scaling property similar to (6). We are
therefore in a position to incorporate the results of optimal nonadaptive
quantization by identifying A; with C;.

1.2 Central state

We consider only quantizers with multipliers having the following
form:

M‘.=-ymi '1:=1’2,"',N, (7)
where v is some real number greater than 1 and the m.'s take integral
values. With (2), this implies

m <0< my and mi Em, =---< my. (29

We shall further take the set of m,’s to be relatively prime, i.e., their

greatest common divisor is 1. If, as we shall assume, the initial step

size is of the form v7, ¢ integral, then the step size is always of that
form and the space of possible step sizes forms a lattice.

Consider an independent identically distributed input sequence

{z1(n)}, where Pr{|zi(n)| <z} = Fi(2) and Fy(-) is an element of
G. We drop the subscript that identifies the scaling. For z = 0, let*

A N
B(z) = g m.(F(t2) — F(§,-12)}. (8)

*F0)=0,F(z) >1asz—w and F(2) is monotonic, strictly inereasing with z.
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Since it is also true that

B() = my — Ng‘ (Mo — m)F(£,2), (8)

it is clear that B(z) is a monotonic, strictly decreasing function of z;
also, B(0) = my >0 and B(z) »m; <0 as z—=. Hence, there
exists a unique integer ¢ with the property that

B(y=) >0 = B(vY). (9)

We denote v* by C and refer to it as the central step size. All step sizes
are considered to be of the form Cv? ¢ = 0, +1, £2, ---.

Remarks:

(z) The parameters {m:} and v may be selected to make the resulting
central step size C approximate as closely as desired any given real
positive number, A. First, by making v close to unity the grid of
possible step sizes can be made sufficiently fine. Second, the integral
parameters {m.} can be chosen to make 3 m, {F(tA) — F(£-14))
sufficiently small.

(i5) So far, we have been concerned with the central step size for
the probability distribution F(z), corresponding to the particular scale
parameter ¢ = 1. To demonstrate the behavior of the central step
size with various scale parameters, let C, denote the central step size
corresponding to the input probability distribution, F,(z), and let
B.(2) be defined like B(2) in (8) with F(-) replaced by F.(-). Let C,
be the unique solution of

Bd(gv) = 0! (10)

where, of course, C, may not be of the form +*, 7 integral. However,
C./y<C, =C,. (11)

We observe that C, scales, i.e.,
C, = oCh (12)

The above follows from the following property of the functions

{B.(1)}:
B.(02) = Bi(2).

From (11) and (12),

Ccr/'y < 0Q1 é Cn‘ (13)

and it is in this sense that we say that the central step size scales.
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1.3 Basic equations

We define a Markov chain and obtain the transition equations for
the ordinary quantizer with the inputs being {z(n)}, which are inde-
pendent identically distributed, and Pr{|z(n)| < z} = F(z). Let

w(n) £ log, A(n) — log, C,
so that
win+1) =wn) +m, if £.,0y*™ < |z(n)| < £Cy*™, (14)

where 1 = r = N. We have in (14) a Markov chain on 0, 1, +2, - -,
with the central step size C corresponding to the 0 state. Let

p(i;n) £ Prw(n) = i].

The state transition equations are
- N - -
p(i;n+ 1) = 2 b0 — m)p(@ — me;n), (15)

where the transition probabilities are
b (i) £ F(£,0y) — F(k,Cv?), 1Sr < N. (16)

The qualitative results that we obtain are based on the following
two relations that do not depend on the particular distribution F(z).

(1) 0 = F(kw) < F(gv™) =11
foralliand1 < r < (N —1). (17)

(@) 3 mb@(—1) > 0= 3 mb (0). (18)

The latter condition follows from the definition of the central step size.

The 0 state of the random walk has the following important prop-
erty: There is a net drift to the left (right) from states to the right
(left) of the O state.

Elwo(n+ 1)|w@®) =i] —1i = f: mb () <0 if >0
r=1
>0 if i<0/. (19)

The above super- and submartingale properties are the basis for the
existence of a stochastic Liapunov function (Appendix A) and the
bound given in Section 3.2.
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1.4 Saturating adaptive quantizer

Any hardware implementation of the quantizers will incorporate
gome scheme for restricting the range of step sizes. In addition, there
are reasons for desiring the step size to be bounded. For instance, by
limiting the step sizes at both ends, it is possible to devise automatic
schemes for “forgetting” the effects of past channel errors.’ In such
algorithms, the step size may be bounded to fairly small intervals.

For the saturating adaptive quantizer, eq. (3), suppose that

£_1Cye™ = |z(n)| < ECye™

for some 7, 1 < r < N. We obtain the following equation analogous
to (14):

win+1) =wn) +m, f —K =Zwn)+m =L
=—K f wn) +m.=2—K
=L if L= ow(n)+m, (20)

where K and L are fixed positive integers. The ordinary quantizer is
obtained if K, L — .

We observe the following: The central state for the saturating
adaptive quantizer may be defined exactly as in the ordinary type of
quantizer; the important martingale properties, expressed in eq. (19)
for the ordinary quantizer, carry over to the saturating type. The
time-dependent transition equations of the saturating quantizer are
characterized by numerous involved boundary equations. However,
the bulk of the equations are of the form given in (15):

p(i;n +1) = flbw (i — m)p(@ — me;n)
—K+my<i=L+m. (15)

We do not give the remaining equations since we have no direct need
for the time-dependent equations. In Appendix B we give, following
the method and notation of Section 2.1, a complete set of reduced
equations satisfied by the stationary probabilities.

Il. STATIONARY DISTRIBUTIONS

Appendix A establishes the existence and uniqueness of a finite
stationary distribution for the step size in the quantizers. The following
sections establish the main qualitative properties of the stationary
distributions for both the ordinary and saturating adaptive quantizers.

If we set p(i; n+ 1) = p(¢; n) = p(z) in the time-dependent
equations, then the stationary probabilities are given by {p(¢)}. Thus,
the stationary probabilities of the ordinary adaptive quantizer are
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obtained from

p) = }: bW (@ = m)p(d —m,), i=0,£l, £2 .- (21)

r=]1

and the normalization equation,
Zp@) =

2.1 A useful reduction of the equations for stationary probabilities

In each equation in (21), the maximum difference in the indices of
the state probabilities is (mx — m;). By exploiting a property of the
stationary distribution, we now obtain a set of new equations where
the maximum difference in the indices is (my — m; — 1). The reduced
set of equations together with the normalization equation is complete.
A simple interpretation and the motivation of the reduced equation
is given in Ref. 1; remark (i) below gives an additional probabilistic
interpretation. The reduced equations are important to us, as they
allow us to consider only a smaller set of solutions.

For any integral j,

J J N
Z,, p(r) = I_qu rElb“"’(i — m)p( — my)
—mN

=Z

PR

gﬁm@ﬂpu)+_ 3 {meuﬂpa)

i=j—mn+1 [ r=1

oot R b @)pG).

1=j5—mas+1

Since 2%, b (7) = 1, the above reduces to

> ma=%fff’{iw%ﬂpm (22
i=j—mn+1 r=1 i=j—mra+l1 |s=1

Define for 1 < r < N and all integral 7,
YOG 2 Y b, (23)
=1
The quantities {¢‘".(7)] may be directly obtained from the input

distribution, since ¢ 7 (z) = F(¢,Cy?). From (22) we obtain the reduced
equations

£ o ="% ¥ yowp =0, 1, %2, -

i=j—mnx+ r=1 i=j—mrqp

(24)
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In these equations, the set [j — m.41 + 1, j — m,]is to be treated as
empty if m, = My

Remarks:

(7) The manipulations leading to (24) are justified since they involve
bounded quantities, as is implied by the existence of a unique finite
stationary distribution.

(#3) Equation (24) is equivalent to the following identity, which is
intuitively plausible and may be proven independently :

Pr,[w(n) £ jand w(n + 1) = j+ 1]
=Pr,[e(n+1) < jand w(n) = j+ 1],

where the subseript s is being used to identify stationary probabilities.

(#15) Equation (24) may be used to give a simple proof of an identity
(called simply an identity in Ref. 1 and “the design equation” in
Ref. 4) involving the stationary state probabilities of the ordinary
quantizer. Sum both sides of (24) for all integral j:

£ p=35 % T voana.

j=—w i=j—myN+1 j=—t0 r=l §=j—mptl

The left-hand side is simply mxy and the right-hand side is
N
my — z}l mrq"
where
¢ 2 X W06 — v @)p0).

Hence,

M=

m.q, = 0. (25)
1

Equation (25) has a natural interpretation if we recognize that g, is
the stationary rth step oceupancy probability, i.e.,

gr = Pr, [£1A(n) = [z(n)| < EA()]. (26)

The steps leading to eq. (24) may be repeated for the saturating
adaptive quantizer, and a similar reduction may be achieved. These
equations are given in Appendix B. The main recursion is identical
to that of the ordinary quantizer, namely, eq. (24), and holds for all
integral j, —K + my < j < L + my1 + 1. Observe that the range
over which (24) is valid, for the saturating quantizer, is such that
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every state probability is included in at least one component of the
recursion.

It may be verified by the reader that the identity in (25), the design
equation of Ref. 4, does not hold for the saturating quantizer.

2.2 Localization property of the stationary distribution

We prove a fundamental distribution-free property of the stationary
distribution of the step size. For both the ordinary and the saturating
adaptive quantizers, we obtain sharp geometric bounds on almost all
the stationary state probabilities as a function of the distance of the
state from the 0 state. The actual bounds obtained are somewhat
stronger than the above statement implies, since the rate parameter in
the geometric bound itself decreases monotonically with increasing
distance from the 0 state. These bounds show that a strong localization
of the mass of the stationary distribution about the 0 state (central
step size) is inherent in the random walk. Also, we found that it was
necessary to prove a result like Theorem 1 before the effects of the
multipliers on the dispersion of the stationary distribution could be
quantified.

It is necessary to define certain vectors and matrices of dimensions
(my —mi — 1) and (my — m1 — 1) X (my — my — 1), respectively.
Let P; denote the column vector with the following components:*

P: = [p@),pi + 1), -+, p(i + my — my — 2) 7. (27)

Equation (24) may be used to construct matrices {A;}, which govern
the transitions of the above vectors in the following manner:

Py = AP, (28)
By examining (24) we observe that the elements of A; depend on the
quantities ¢ (2), ---, ¢ (i +my —m; — 1), 1 =7 = N, and the

subscript 7 indicates this dependence.

Theorem 1 (Localization Property): Let i > 0. For both the ordinary and
saturating adaptive quantizers, there exists a constant weight vector with
positive elements, X, and a constant, r > 1, depending only on A; such
that, for all j = 1,

P = ( %)H(wPa. 29)

There exists the Ly-norm, |x| 2 3 \i|zi|, of the vectors {P;} which
decreases geomelrically as | j — i| increases.

* The superscript ¢ denotes the transpose.
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An identical statement with |j — i| replacing the index j — 1 in
(29) s also true for t < O and all j < 1.

Remarks*:

(i) When r and % in (29) are as constructed by us in the proof of
the theorem, then the inequality in (29) becomes an equality if Ax = A:
fork = 4,7+ 1, - - -, j. This indicates that it is not possible to obtain
tighter geometric bounds without making further assumptions on the
distribution F(z).

Using Theorem 1, we can give the following point-wise bound on
the stationary state probabilities for both the ordinary and saturating
adaptive quantizers:’ let 2 > 0; then, for j = ¢

1

p(i+ my —my — 2) < (F)ﬁ(vpf) < (30)

IA
N
sl
S~—
1

Similarly, for 7 < 0 and all j < 4,

p(j —my +mi+2) = (%)H(l‘P.-) < (%)H. (30

The proof of (30) is as follows. Let A denote the largest element of the
vector A occuring in Theorem 1 so that 1 £ m = my — m1 — 1. From
Theorem 1,
: 1\~ 1\~
M+ m =1 535 (1) Ry s (5) Mmap,
and the inequalities in (30) follow.
Remarks:

(#7) Observe that for the bounds in (29) and (30) we may use any
i, 0 < 1 < j, as the reference state. The choice of the best reference
state depends on the behavior of » with ¢ which, in turn, depends on
the distribution F(z). The main distribution-free property of r(z),
namely, statement (i77) of Lemma 1, indicates an advantage of choos-
ing a large 7 for the reference state. In Section 2.4, we prove an assertion
by implicitly using more than one reference state 1.

The proof of Theorem 1 relies on two lemmas that we state here
and prove in Appendix C.t

* This remark implies the tightness of the bound in (29), which is lacking for the
bound obtained in Ref. 1 for the two-bit quantizer.

T The vector 1 has every element equal to unity.

t Observe that neither A; nor A7 is a nonnegative matrix so that the usual
Frobenius theory does not apply.
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Lemma 1: For every ¢ > 0,

(¥) A, is nonsingular and A7 has a unigue positive real eigenvalue,
say, r. Furthermore,r > 1.

(17) Every element of the corresponding left eigenvector of A=, A, s
of the same sign and nonzero, hence we may take A to be a positive
vector.

(777) r which depends on i is monotonic, strictly increasing with 1.

Lemma 2: For j = 1 > 0,

MLA7T — AP, 2 0. (31)
Remarks:

(#27) It is not the case that A[A;' — A;7 '] = 0, so that (31) is
not true if P;,, is taken to be an arbitrary nonnegative vector.* In
proving Lemma 2 it is necessary to take into account the fact that the
vector Pj, from which Pj;, evolves according to eq. (28), is itself
nonnegative, and this implies that P;,; is restricted to a cone that is
a proper subset of the nonnegative quadrant.

Proof of Theorem 1:For j = 7 > 0,

MPj = MATPy = MA7 — A7JPja + MATP,
MLAS' — A7']Pa + Py, from Lemma 1
= raiPiy, from Lemma 2. (32)

Hence, (A*P;) = (1/r)7(3P;) for all j = 4, as was to be proved.

As every element of P; is nonnegative, the Ly-norm |P;| is equal
to A'P;. Finally, we may transfer the result that holds for 7 > 0 to
the case of i < 0 by a simple renumbering of states in the manner that
has been indicated in Ref. 1.

The notation common with Ref. 1 conceals some rather significant
differences in both the main result (29) and its proof. In Ref. 1, the
corresponding result involved A and r, which were elements of the
eigensystem of an additional matrix A; obtained in an involved way
from A; The result in Lemma 2 has no counterpart in Ref. 1. The
geometric bound obtained in Ref. 1 is peculiar to two-bit (N = 2)
quantizers, and does not directly generalize. Also, the bound obtained
here is stronger even for the case N = 2,

Il

2.3 Lower bounds on the steepness factors, r(i)

Theorem 1 and the subsequent bound in (30) indicates that r(z)
is a local measure of the rate with which the stationary probabilities

" A vector is nonnegative if every element is nonnegative. The nonnegative
quadrant in R" is the set of all nonnegative vectors of dimension n.
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change, and for this reason we find it natural to call r(z) the local
steepness factor. Here we go back to the definition of (7) as being the
unique positive real root of the polynomial C(u), eq. (60), to obtain
the following bound on r(z), which has the advantages of being ex-
plicit and being dependent only on the transition probabilities at state
1. We make free use of this bound in the following section.

A i (—m) {2 (3) — ¢ ()} Hmy—m1=1
WO , (33)
o m Y0 (E) — ¢ ()}

where, of the N multipliers, only x multipliers have values not exceed-
ing unity, i.e.,

My, May =y My =0
and

Myg1y Myga, -, my > 0.

The bound p(3) has certain interesting properties. First, observe that,
by virtue of the definition of the central state [eqs. (8) and (9)],
p(7) > 1forall7 > 0. Also, the sequence p(3), is, like {r(7)}, monotonic,
increasing with 7. The numerator and denominator of the bracketed
expression have interesting probabilistic interpretations: The numer-
ator (denominator) is the expected change in state conditional on the
transition being from state 7 to all states 7/ < (¢’ > 7).

The proof of eq. (33) is involved, and for the sake of brevity we
omit giving it.

2.4 Effect of + on the stationary distribution

We show in this section that the mass of the stationary distribution
of the step size can be concentrated about the central step size to an
arbitrary extent by making y sufficiently close to unity. To show this,
we first put together, from the results of the preceding two sections, a
rather explicit bound on the stationary probability of the step size
exceeding a particular value for a given v, i.e., Pr, [A > Cy*]. This
bound is in a form that allows direct comparison with the corresponding
probability arising from the choice of ¥’ = 4/¥. By successively taking
v to be the square root of the preceding value, the bound on the
probability can be made as small as desired. This procedure for proving
the assertion is similar to the one we developed in Ref. 1. We restrict
our attention to step sizes that exceed the central step size, i.e., ¢ > 0,
since a parallel argument holds for 7 < 0.

In the following discussion the quantity (mxy — mi — 2) arises
frequently, and it is convenient to denote this quantity by the symbol
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v. Clearly, » is a measure of the spread in the log of the multipliers.
For ¢ > 0 and r = r(z), we have from eq. (29) that

@) ¥ p) s Taksap 3 (1) -

i=itv

r
Lo (34)
Now

r z p(1), (35)
where p(¢) is defined in eq. (33), and

A max [p(), -, pli + 9]

Since

Pr,[A = Cyit] = Z p(2),

j=i+r

we have, from eq. (34),

Pr.[a 2 Oy = B max[p(), 0+ 91| (36)

Finally, from Eq. (30), for¢ = » + 1,

max [p(3), -+, p(i + »)] < [;(11—)]" . 37

Equations (36) and (37) together give us the desired bound on the
stationary probability of the step size exceeding a given value, which
we now compare with a similar bound that holds for v = vv. The
prime superscript is used on symbols to denote the functional depend-
ence of the associated quantities on v’. In establishing the reference,
i.e., central, step size corresponding to %', minor differences exist
depending on whether [see eqs. (8) and (9)]

(4) B(vi™) > 0 =z B(v*%)
or
(%) B(y¥4) > 0 = B(v¥). (38)

We consider only (iz), in which case: w’'(n) = 2{ &= w(n) = 7, and all
the transition probabilities are simply related: ¢ (27) = ¢ (3). As
a consequence of the latter property, we have

o' (26) = p(3). ' (39)
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Repeating the arguments leading to egs. (36) and (37), we have

Pr,[A = CVy?+] < ;,%% max [p'(27), ---, p' (20 + »)] (40)

and pias
max [p(20), -+, ' @i + 0] = [ﬁ] . (41)

By the fact that p’(27) = p(7), we have

Pri[A = C\y#] < ﬁ”ﬂ—l [p—(ll—) ]FH [ ﬁ]i_l. (42)

Comparison with eqs. (36) and (37) completes the demonstration.

lll. TRANSIENT RESPONSE

In this section, we are interested in the random time, called the
adaptation time, taken for the step size of the quantizer to adapt from
some arbitrary initial value to the central step size. It is necessary to
have the adaptation time relatively small if the quantizer is to ade-
quately track the scale variations of the input process. Also, it is
reasonable to expect that, as v is made large, the increased range of
the multipliers [eq. (7)] will give the desired tracking. However, as a
counterbalance, we already know from the preceding section that, with
the correct choice of the log of the multipliers, {m.}, the quality of
steady-state performance is increasingly impaired as the value of v is
raised. From this brief discussion (see Ref. 1 for a more detailed
discussion), it is clear that it is useful to have formulas for the efficient
computation of the mean adaptation time and bounds that provide
insight on the dependence of the time on the multipliers.

3.1 Mean time for first passage to the central state

We consider only the saturating adaptive quantizer since, as K
and L are made large, the quantities obtained for this model approxi-
mate corresponding quantities for the ordinary adaptive quantizer.
Also, for the usual reason only the case of positive initial states,
w(0) > 0, is considered.

Let the initial step @(0) = 7 > 0 and let T'(i) denote the mean
value of the random time r where w(7) £ 0 and w(n) > 0 for all
n < 7. It can be shown that, as a consequence of the recurrence and
irreducibility of the Markov chain (see Appendix A), the mean first
passage time, T'(7), is finite with probability 1. If the first transition
results in a transition to the state ¢ + m,, the process continues as
if the initial state had been ¢ 4+ m,. The conditional expectation of the
first passage time is therefore T'(¢ + m,) + 1. From this argument, we
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deduce that the following recursion is satisfied by the mean first
passage time,

N
T({7) = Zlb"’(z'){T(i+m,)—|—1} —m+1=¢t=L—my|, (43)

where, as in eq. (16), b (?) = F(£,Cvy") — F(§,-1Cy%). Of course,

M1 bWi(7) = 1. The recursive relation in (43) may be used to
generate the entire sequence {7T(z)}, provided (my — m;) initial con-
ditions can be found. Now, by the same argument that led to eq.
(43), we have

TA+m) =T2+m) =---=T(0) =0. (44)
The remaining my initial conditions, namely,
T(l):l T(Q): ] T(mN):

are harder to obtain, and it is necessary to look more deeply into the
dynamics of the process to obtain these quantities.

For every time instant, we define the L-dimensional vector z(n) with
components z2(j; n), 1 £ j £ L, where

2(j;n) 2 Prlw(n) = jand w(s) = 1foralls < n].  (45)

We show in Appendix D that the vectors z(n) evolve in time according
to the homogeneous equation

z(n + 1) = Dz(n), n =0, (46)

where D is an L X L matrix. Also, in Appendix D we prove the
following: For 7 = 1,

T@ = 2 =f,
=1

where ’ ’ (47)

[:I — D:Ix(t') — e(i)

v

and the elements of the L-vector e are zero everywhere except at
the 7th location where the element is unity. It is shown in Appendix D
that [I — D] is nonsingular.

The simple recursion in (43) may be used to generate the sequence
{T(7)} after obtaining the nonzero initial conditions via my inversions,
as in (47). Alternatively, if T'(7) is required for only a few particular
values of ¢, it may be easier to obtain them via the inversions in (47).

The bulk of the equations in (47) [see eq. (72)] are in the form
encountered in the analysis of the stationary distribution, eq. (21).
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Also, the elements of the vectors z{® are all nonnegative. Hence, by
applying the techniques and results of the preceding section, we may
draw certain conclusions about eq. (47).

First, the bandwidth of the matrix [I — D] may be reduced by 1
by carrying out the reduction of the equations described in Section
2.1. For my = —1 and arbitrary values of my, -+, my, this step is
enough to triangularize the matrix [I — D] for any countable L and
thus substantially simplify the computations. Second, we may con-
clude from Section 2.2 that, with increasing j, the solution elements
zf® decrease at least geometrically. This is a very useful property from
the point of view of numerical inversion of [I — D] for L large and
the approximation of the solution for L = « by finite L.

3.2 A bound on the mean first passage time

Let T(i, ), 0 £1 < j, denote the following mean first passage
time : the initial state «(0) = j, first crossing occurs after 7 transitions
if w(r) =4, and w(n) >4 for all n < r, and T'(?, j) = E(r). The
quantity T'(j) of the preceding section is equivalent in our present
notation to 7'(0, 7). We now give an explicit bound on T'(7, j) that
provides some insight into the dependence of T'(z, j) on the multipliers.

For both the ordinary and saturating adaptive quantizer,

T(i,j)ga(Tﬁr—l)[u—i)—(mwl)] 0<i<j
where - (48)

N-1

Ci) = X (Mepr — m W) — mu

r=

From the definition of the central state, eq. (18), and the monotonicity
of ¢ (¢) with respect to 7, we observe that for ¢ > 0, C(7) is positive,
monotonic, increasing with 7. We only sketch the proof of (48) because
the method of the proof is contained in the proof of the bound that
we gave in Ref. 1 for the two-bit quantizer. First, recall [eq. (19)]
that a supermartingale property exists that holds for both types
of quantizers, according to which there is a net drift to the left
from all states j > 0. Second, we define a new process in which
w'(n) = w(n) + nC (i + 1) and show that the supermartingale prop-
erty, i.e., E[w’'(n + 1)|w’(n)] = w'(n), is preserved for the range of n
of interest. Finally, an application of Doob’s theorem on optional
stopping of supermartingales® on the new process yields the bound
in eq. (48).

The bound provides some insight into the dependence of the mean
adaptation times on the multipliers, and v in particular, when the
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initial and final step sizes are Cy? and C, respectively. Briefly, consider
the effect of making v/ = Vv, i.e., M; = VM, and the spread of the
multipliers is reduced. The number of states between the states cor-
responding to Cy’/ and C is doubled. Now C(1) is hardly affected by
the transformation and, as a consequence of the linear dependence of
the bound on T'(, j) on the distance (j — Z), we have the bound on
the mean adaptation time approximately doubled. For 7 = 0 and
7 > (—m,), computations amply corroborate this conclusion.

IV. COMPUTATIONAL RESULTS

We present here a sampling of rather extensive computations done
on three- and four-bit adaptive quantizers (N = 4 and 8, respectively)
for independent identically distributed input sequences with gaussian
distributions. Both uniform, i.e., {; = ¢, and nonuniform quantizers
were considered. Max® has shown in the nonadaptive framework that
optimal nonuniform quantizers can yield an improvement in the
signal-to-noise ratio of about 20 percent over optimal uniform quan-
tizers with the number of bits in the range of interest here. We note
that four-bit adaptive quantizers have been breadboarded in Bell
Laboratories,® and that Jayant's? systematic numerical study is re-
stricted to uniform quantizers up to three bits. We also observe that a
simple search procedure of the ‘“optimal’ set of multipliers grows to
be almost unmanageable and expensive when the dimension of the
parameter spaces is 8.

Table I lists five quantizers with their respective parameters {m;}.
The parameter v is not considered part of the characterization of the
quantizer type. Among the quantizers investigated, the following five
proved to be the most interesting in their respective classes, specified
by number of bits and uniform or nonuniform. The first of the five,
with ¥ /&2 1.12, is close to what Jayant calls the optimal, three-bit
quantizer. The parameters {m;} were arrived at by the procedure
described in remark (7), Section 1.2.

Table | — Five quantizers

Specifications
Unif Number of Designation
Nonuntform | Bits | o0&y (M)}:my, oo, my
Uniform 3 -1, -1,2,5 UQ, 3 bits, No.1
Uniform 3 -1,0,1,4 UQ, 3 bits, No. 2
Nonuniform 3 -2, —-1,2,8 NUQ, 3 bits
Uniform 4 -2, —2,0,0,2, 5,10, 17 UQ, 4 bits
Nonuniform 4 -2, —-2,0,0,1,2 5 16 NUQ, 4 bits
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The optimum division of the horizontal axis in Fig. 1, given by
£, 1 =1,2, -+, (N — 1), was obtained from Max,* and we reproduce
these parameters for the reader’s benefit.

NUQ, 8 bits. {£:} = {1.0, 2.097, 3.492}.
NUQ, 4 bits. {£:} = {1.0, 2.023, 3.097, 4.256, 5.565, 7.142, 9.299}.

Table II lists some statistics of the stationary step-size distribution
for unit variance of the input distribution. The stationary distri-
bution was obtained by solving the stationary equations of the satu-
rating adaptive quantizers with suitably large saturating levels
(K + L = 100). We also give the stationary step-occupancy prob-
abilities g:, where ¢; = Pr, [£:1A(n) £ |z(n)| < £:A(n)], as in eq.
(26). Table II also gives, for purposes of comparison, corresponding
quantities of the optimal nonadaptive quantizer obtained from Max.?
In particular, A is the optimal, nonadaptive step size.

Figures 2 to 5 show the mean adaptation times for inputs with
unit variance. Figures 2 and 3 are concerned with the three types of
three-bit quantizers for various values of y. These figures plot the
mean time taken by the quantizers to adapt to the central, and
optimal, step size for various values of the initial step size. In Fig. 2,
the initial step size exceeds the central step size, while the reverse case
is considered in Fig. 3. Similarly, Figs. 4 and 5 plot data on the mean
adaptation times for the uniform and nonuniform four-bit quantizers.

The purpose of the remaining tables (III to V) is to give the reader a
feel for the relative performance of the five quantizers. We measure per-
formance by the ratio of the input signal energy to the quantization

Table Il — Statistics of the stationary step-size distributions

- A ) ?tgp Occupancy Pro}babilities
ype ¥ E(A a(A) adaptive quantizer
(Max) |optimal nonadaptive quantizer|

UQ, 3bits | 1.04 | 0.586 | 0.594 | 0.105 {0.445, 0.310, 0.156, 0.089 }
No. 1 {0. 442 0. 317 0. 162 0.078}
UQ, 3 bits 1.04 | 0.586 | 0.613 | 0.089 {0.458, 0.314, 0.152, 0.0756
No. 2 {0.442, 0.317, 0.162, 0.078
NUQ, 3 bits | 1.04 | 0.501 | 0.522 | 0.114 {0.396, 0.317, 0.198, 0.088

{0.383, 0.323, 0.213, 0.081

UQ, 4bits | 1.04 | 0.335 | 0.366 | 0.095 | {0.285, 0.244, 0.182, 0.121, 0.075,
0043 0024 0.0 7}

{0.263, 0235 0. 188, 0.135, 0.086,
0049 0025 0019}

NUQ, 4 bits | 1.04 | 0.258 | 0.279 | 0.066 | [0.219, 0.205, 0.178, 0.145, 0.110,
0.076, 0.045, 0.022)

{0.204, 0.195, 0.177, 0.152, 0.121,
0.086, 0.049, 0.016}
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Fig. 2—Transient response of three three-bit quantizers.

error energy. Unlike all previous data, the data for these tables were
obtained by Monte Carlo simulation. The interval of time over which
performance was monitored is denoted by NA. Thus, signal energy is

21 2*(n). The remaining parameter in the tables is the initial step
size, A (initial). However, we do not list the raw initial step size, but

Table IlI*— S/N performance of two uniform three-bit quantizers
(Main numbers are for UQ, three bits, No. 1; numbers in ()

for UQ, three bits, No. 2)

Log {4 (initial) /A =10 I NA =100 | NA = 1000 | NA = 10,000
—1 6.92 (5.84 ‘ 144 (14.8) | 17.4 (193) | 17.7 (20.1)
0 257 (27.6) | 191 71 4) | 179204 | 178 (202)
1 0540 (©. 349) |3 (3 99) | 1311 (14.3) | 17.1 (19.2)

* All logarithms in Tables ITI, IV, and V have base 10.
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Fig. 3—Transient response of three three-bit quantizers.
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Fig. 4—Transient response of two four-bit quantizers.

the more relevant quantity A(initial)/A where A is, as usual, the
optimal nonadaptive step size. After experimenting, we arrived at the
following values of ¥ for the five quantizers, since they gave a suitable
mix of performances over short (NA small) and long (NA large) runs.

Table IV—S/N performance of nonuniform three-bit quantizer
(NUQ, three bits)

Log {A(initial)/A } N4 =10 NA =100 NA =1000 | NA = 10,000

-1 5.81 16.0 21.2 22.0
0 20.8 23.8 224 22.1
1 1.12 7.00 18.2 21.6
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Fig. 5—Transient response of two four-bit quantizers.

For a particular input process, the relative weightings may be quite
different, and v may then be tuned accordingly.

Quantizer ¥
UQ, 3 bits, No. 1 1.12
UQ, 3 bits, No. 2 1.12

NUQ, 3 bits 1.06
UQ, 4 bits 1.06
NUQ, 4 bits 1.06

The following observations may be made on the above results.
There is a pronounced asymmetry in performance with respect to
log {Af(initial)/A} over short runs (NA = 10 or 100). This is, of
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Table V— S/N performance of uniform and nonuniform
four-bit quantizers
(Main numbers are for UQ, four bits; numbers in ()
for NUQ, four bits)

Log [A(initial) /A } N4 =10 NA =100 | NA = 1000 | NA = 10,000

-1 19.62 (21.65) | 36.98 (47.30) | 48.22 (67.35) | 48.97 (71.50)
0 86.2 (111.0) | 56.0 (80.1) ~ | 50.60 (72.50) | 49.20 (71.90)
1 297 (4.86) | 17.7 (27.6) | 42.00 (62.00) | 48.10 (70.30)

course, related to the contraction multipliers being grossly smaller
than the expansion multipliers in all the quantizers considered (Table
I). The s/n when Af(initial)/A = 1 and NA = 10 is close to the s/n
obtained with the step size optimally tuned to the known level of
scaling of the input sequence. The steady but not excessive deteriora-
tion in performance with increasing NA is the price paid for adapt-
ability : it is due to the fluctuations in step size arising from the random
walk. Finally, we observe from Table V that there is a striking gain
from nonuniform quantization, the extent of the gain being somewhat,
greater than what may be expected from previous results on non-
adaptive quantizers.

APPENDIX A
Existence and Uniqueness of the Stationary Distribution

We establish in this appendix that, for independent identically
distributed inputs, there exists a unique, finite stationary step-size
distribution (invariant measure). The proof given here is via the
construction of a stochastic Liapunov function, and it relies on a
standard, unified theory of stochastic stability' 12 that is well-known.
The stochastic stability of the adaptive quantizer has been proved by
Goodman and Gersho,* and the prime reason for including an alterna-
tive proof is our belief that familiarity with the method followed here
may be beneficial to future workers in adaptive processes. The positive
function that is proved to be a stochastic Liapunov function here is
identical to the function that worked in Ref. 1 for the two-bit quan-
tizer, and the proof is a straightforward generalization.

We consider in turn two properties of well-behaved Markov chains,
namely, irreducibility and recurrence.

A.1 Irreducibility

The Markov chain is irreducible if and only if every state com-
municates with both neighboring states. This occurs if and only if

ADAPTIVE QUANTIZER 359



there exist nonnegative integers n; and n;, 1 < ¢ £ N, such that

Zmin; = 1 (49)
and
Zmn; =—1. (50)

It is an elementary fact from Euclid’s theory that this occurs if and
only if the integers {m;} are relatively prime, ie., their greatest
common divisor is unity.

A.2 Recurrence

Consider the following nonnegative function of the states

V(@) 2 i i=0, £1, £2,---. (51)
Let D(z) be defined as
D) & E[V{ie(n + 1)} |w(n) = 5] — V(). (52)

Now D(z) is uniformly bounded from above. By the monotonicity
of ¢ (3) with respect to 7 and the definition of the central state, (18),
we obtain, for all 2 = (—m,),

N—-1

D7) = my — 21 (Mrp1 — mP" ()

N—1
s my — zl (Mrpr — MY (—ma) < 0 (53)
and, for all ¢ £ —mu,

DG) =—my + X (mes = mW )

r=1
N—-1
=—my+ gl (Mry1 — m")a‘(r)'(_mN) <0, (54)

where, as in eq. (23), ¢ (i) denotes F(¢,Cy?). Hence, by virtue of
eqs. (53) and (54), D() < —e < 0O for all but a finite set of states 1,
and V (7) is a stochastic Liapunov function for the process.

From Kushner’s Theorem 7,!! we have recurrence and we can infer
further, from Theorem 4, that there exists at least one finite invariant
measure, i.e., stationary distribution. Also, since we have shown
earlier that two or more disjoint self-contained subsets of the state
space do not exist, we have, from Theorem 5, at most one invariant
probability measure. The existence and uniqueness of a finite stationary
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distribution for the step size of the ordinary adaptive quantizer is
therefore established.

A.3 The saturating adaptive quantizer

The argument leading to irreducibility is intact. In addition, we
have here that the end states (—K) and L have period 1 and, since
periodicity is a class concept (i.e., every state in a particular com-
municating class has the same periodicity), the entire Markov chain
is aperiodic and, consequently, there is a single ergodic class that
includes every state in the chain. Hence, the distribution at time
n, p(n) approaches p, the stationary distribution for all initial dis-
tributions, and furthermore every component probability of p is
strictly positive.

APPENDIX B
The Saturating Adaptive Quantizer

We give in this appendix a set of equations satisfied by the stationary
probabilities of the states in the saturating adaptive quantizer. These
equations are complete and reduced by the method described in
Section 2.1.

Let p denote the number of contraction multipliers, i.e., multipliers
having values less than 1, so that

Mmy, * -0, My < 0 < '}ﬂ.”+1’ ttcy, My, (55)

The tacit assumption that there are no multipliers exactly equal to
unity is by no means necessary, but does lead to a simpler presentation.
The main set of equations is
i . N—1 j—m, . .
2 pw=X X y"06)pQ),
i=j—mpN+1 r=1 i=j—met1+1
The lower boundary equations are*
i—1 . a—1 j—mp—1 . .
=% 3 @), (57)

r=1 i=—KA(j—mr+1)

wheregy +1 <s<Nand K+ m,3+1= j=<—K + m, Finally,
*zay = Max [z, y] and xvy = Min [z, y].
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the upper boundary equations are

i ) N—1 Lv(i—m;) ) )
X o p=X X ¥"0@pQ), (58)
i=j—mN+1 r=g i=j—mqs+1+1

wherel £ s < wand L+ m, £ j £ L+ M — 1.

APPENDIX C
Proofs of Lemmas 1 and 2
C.1 Proof of Lemma 1

(¢) It can be shown that the determinant of the matrix A;,
det [A;] = (—1)™—m1[1 — ¢V ] /YW (G + my — my — 1).

As det [A;] > 0, A7 exists.

Since P; = A;'P;,1, we observe from the structures of P; and P:,
that the matrix A; ! is in companion form in that all rows except the
first reflect shift operations, i.e., for k = 2,

(A7 e =0 if I35 (k—1)
=1 if 1= (k—1). (59)

The elements of the first row of A;! are obtained from the equation

my— N—1 my—m—1

1
o+ — ¥ X ¥OGE+DpGE+0D) =0 (24)
=0 r=1 l=mN—mr+1

As the matrix A;! is in companion form, we know that its charac-
teristic polynomial is equal to within a constant of proportionality to
the polynomial obtained by replacing, in eq. (24), p(i + ) by
pmy—mi—1=1 That is, where

C(x) & (—1)mv—m—t det [A;! — ul],

we have

my—1

[1 =y DI = x wmw—mit

N—1 my—mp—

1
% R o6+ umemeL (60)
r=1 l=mN—mr+1
The quantity [1 — ¢¥1(¢)] is merely the coefficient of p(i) in
eq. (24).
Scanning the coefficients of the polynomial C(u), we observe that
there is a single-sign alternation and, hence, by Descartes’ rule, C(u)
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has at most one real positive root. Since
C0) =—yVE 4+ my —my— 1/[1 —¢g¥E] <0

and C(g) > = as p—ow, there exists exactly one real positive root.
Let r denote this root.
Now

N—-1 my—mp—

[1— @I = my — T 5 W0+ D

r=1 l=mN—mr+]

N—-1 my—m,—

<my— X 3 ' Y (7)

r=1 l=mN—m¢+1
N
= X om Y@ — ¢V @)} (61)
r=1

where we have followed the usual convention in setting ¢V (d) = 1
and ¢©(z) =0.80 C(1) < 0if M, m, {¢y™ () — ¢V (E)} = 0. The
latter condition holds for all ¢ = 0 [see eqs. (17) and (18)]. Hence,
r>1

(#7) Let us denote the elements of the first row of A7 ! by {ey} and
{81} so that the row appears as

[—o1 —as - — amy—1B1B2 - *Bom, . (62)

One reason for expressing the row in this manner is that every a; and
81 is strietly positive by eq. (24).

The left eigenvector X of A;' corresponding to the eigenvalue r
satisfies, by definition, &*A;! = r)t. Examining the component equa-
tions, we find that

My = (et -t aph 1 =210 (my — 1), (63)

Also, for 1 £ 1 £ (—my),

N my—my—
Ny—my—t = Amy—m—1 [Bmyetgt”™ 4 Bty + -+ Bom . (64)

Byt
Finally,
B-m,
T

Amy—my—1 = A1 (65)
Since the o’s and A’s are positive quantities, statement (77) of the
lemma is true.

(#27) The statement may be verified by examining the characteristic
polynomial C(g) in eq. (60) and observing that the quantities ¢ ()
are monotonie, increasing with 1.
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C.2 Proof of Lemma 2
It is required to prove that, for j = 7+ > 0,

lt[A{'] —_ A;l:lpprl = 0. (66)

The matrices A;! and A;™! are identiecal in all except the first row and
also A! > 0. Equation (66) is therefore equivalent to*

€iA; 'P;, = ejA;'Pj.. (67)

We prefer to show that
NV ()p(j) = 6V (1)efA Py, (68)

where 81 () £ {1 — y¥-D(5)} > 0. As e!A P, = p(j), the
lemma will then have been proved.
From eq. (24),

09D (f)p(i) = p(i) — ¥ (f)p ()

j+my— J+my—my—1

=_l§_+l‘p(z)+“§‘ SeL0YI0)

r=1 l=HmN—mr+1

— ¥ (Ge(5)  (69)

and
J4my—1
gV (1)elAT P =— 3 p(l)
=741
N—1 j4+my—me—1 . . . .
+ 2 X vl — 4+ adpd) — ¢ D @p(s). (70)
r=1 l=j+mN—mr+1
Now

0D (i)p(3) — 0N (i) e{AT P
0D (j)p(j) — 0V (i)t A Py

N—1 j+my—me—1

2 TALORSR AL VR I N 10

r=1 l=/HmN—mr+1
= PR (G) — P E)p() 2 0, (71)

because of the monotonicity of (" (I), and the final term in the expres-
sion on the right-hand side of (71) is cancelled by an identical com-
ponent (r =N —1, Il = j + my — m,;1) of the leading part. The
lemma is proved.

v

1%

* The column vector with the leading element equal to unity and all other elements
equal to zero is denoted by e;.

364 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1975



APPENDIX D
Two Equations Concerning Mean First-Passage Times

We prove two assertions made in Section 3.1, eqs. (46) and (47),
concerning (z) the homogeneous evolution of the vectors {z(n)} via
the matrix D and (4z) the explicit formula for the mean first-passage
time, T (z).

D.1 Derivation of eq. (46)

Let X (n) denote the event 1 S w(r) = L for all 7, 0 = 7 S n.
Then, by definition,

2(j;n) = Prlw(®) = jand X,] 1= j=L
Since it is also true that
z2(j;n) = Prw(n) = jand X, ],

we have

2(j;n) = i Prlw®) = jlo(n — 1) =1, Xa_12(Z; n — 1).

We have obtained the quantities Pr [w(n) = jlo(n — 1) =4, X, 4]
for 1 £ 7, j £ L and, thereby, the following equations. In the follow-
ing, u denotes the number of contraction multipliers, that is,

My, Me, = -+, My < 0 < Mpyq, -+, my.
The basic recursion is, for my + 1 = 7 = L + my,
N
z2(f;m) = 200 —mpyz(j — m,;n — 1). (72)

r=1

The initial boundary equations are

2(Gin) = bW (G —me(j—mein —1) 12 j < mup (73)
r=]1

= 200G —m)a(G—mysn—1) m+ 125 S m
r=1
s=p+Lp+2 -, (N=-1). (74
The final boundary equations are

2(j;n) = 3 b9 — mz(j — mesn — 1)

r=a

L4+mey+1=jij=L+m,s=23 -, u (75)
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N
= 3 b(j—m)z(j — my;n—1)
r=p+1
L+m,+1=j=L-1, (76)

% i b (d)z(z;n —1) j= L. (77)

r=p+1 i=L—my

Equations (72) to (77) define the matrix D stated in the main text.

D.2 Derivation of eq. (47)
Fori=1,2, ---, L, let
f(i;n + 1) A Pr [first passage occurs at (n + 1) |w(0) = 7]
=Prlwn+1) 20, X.[w(0) =]

‘>§ Prlw(n + 1) < 0]w(n) = j1(j;n), (78)

with z(0) = e, the vector with every element equal to zero except
for the 7th element, which is unity. The event w(in +1) =k <0
conditioned on w(n) = j is associated with a jump = &k — j. The
following diagram illustrates the magnitudes of the jumps required for
passage.

jumps

N
| o |
..0 1 2.--—‘”1“i (—7]’1“—’—1). . '_Jn[f-‘*li .. { (—Jn'ig-l—l).. ._mll..._
! b |

jump = m, jump = m,, jump = m,

Equation (78) can be explicitly stated, thus,
—1

Jn+1) = X W @elin + 3 e (el

J=—my

+-+ X ¥ (D(G5n). (79)
j=—mat1
In the more convenient vector form,

f@;n + 1) = ctz(n), (80)

where the coefficients of the L-dimensional column vector ¢ is ob-
tained from (79), and we observe that only the leading (—mi) ele-
ments of ¢ are nonzero.
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The important fact about the vector ¢ is that
¢t =1{I—- D] (81)

where 1 is the vector with every element equal to unity. Equation
(81) may be established by either direct verification or by probabilistic
reasoning. Now

T =¥ n+1DfEn+1),

n 20
=ct 2 nz(n) + 2 f(i;n + 1),
n=0 n=0
=ct Y nz(n) + 1, (82)
n=0
= 11 — D] }; nz(n) + 1 from (81),
=1t gﬂz(n), (83)
- 1| |20, (84)
n=0
= 111 — DT'z(0). (85)

Equation (82) is obtained by noting that the probability that passage
occurs at finite time is unity. In obtaining Eq. (83), we have used
z(n 4+ 1) = Dz(n) and that 12(0) = 1. The convergence of the series
ZD" is a consequence of the fact that every eigenvalue of the matrix
D is strictly inside the unit circle. We omit the proof of this assertion,
ag it is similar to the proof given in Ref. 1 in connection with the
matrix D for two-bit quantizers.

Equation (85) with z(0) = e® is the same as eq. (47) in the main
text.
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