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A new technique for very fast start-up of adaptive transversal-filter
equalizers used in high-speed synchronous data communications is pre-
sented. A special training sequence whose period in symbols is equal to
the number of equalizer taps is used initially to achieve an open eye
pattern. Rapid convergence, even over highly distorted channels, is obtained
because an ideal reference sequence is available at the receiver, but it is
not necessary to synchronize the ideal reference with the received sequence.
The spectal choice of the training sequence automatically provides the
synchronized ideal reference needed for fast convergence, but the resulting
equalizer coefficients may be cyclically displaced from their proper posi-
tions. After the eye 1s opened by this process, the equalizer coefficients are
rolated to their proper positions, and deciston-directed equalization is used
with either a longer training sequence or random data lo achieve final tap
settings. Adjustments during the training period can be made with a
gradieni-type algorithm or with stochastic adjustment techniques; an
exac! analysis is possible for both of these schemes. Cyclic equalization 1s
shown to provide perfect equalization at evenly spaced poinis in the fre-
quency domazn.

I. INTRODUCTION

The effective data throughput in polling systems is, to a large degree,
dependent on the start-up time of the data modems that are used in
the network. Many of these systems operate at high speed and trans-
mit data blocks of comparatively short duration. At 4800 b/s, a 1000-bit
block is transmitted in about 200 ms, and to achieve a reasonable
overall efficiency, the time needed to condition the modem for trans-
mission (start-up) should be short in comparison to the time required
to transmit an average block. This becomes increasingly difficult with
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higher modem speeds. Prior to the transmission of the actual data,
timing and carrier information must be recovered very accurately, and
the adaptive equalizer that is necessary to cope with the linear channel
distortion at such high speeds must be trained.

The time required to adjust the equalizer represents the bulk of the
modem start-up time; it is thus important to study in detail the prob-
lems associated with fast equalizer start-up. The most common strue-
ture of such an equalizer consists of a transversal filter with a set of
controlled gain coefficients that are spaced at the symbol interval T,
and the start-up problem is to find an initial set of ‘‘reasonably good”
values for these coefficients in a very short time. The purpose of this
paper is to present a practical method for doing this.

We first provide some background and discuss some factors that
affect equalizer start-up. This leads to the principle of cyclic equaliza-
tion that is discussed in Section III. Sections IV through VIII discuss
the operation of the cyclic equalizer using the mean-square tap-adjust-
ment algorithm where averaging is used to compute the adjustment
signals. The optimum tap coefficients are discussed and shown to
provide perfect equalization of the channel at equally spaced points
in the frequency domain. The relationship is explained between the
eigenvalues of the channel correlation matrix, which control the con-
vergence of the adaptive algorithm, and the discrete Fourier transform
of the received training signal. Selection of the training sequence and
the starting values of the tap coefficients and the effects of noise are
also discussed. Finally, in the remaining sections, a more practical
implementation is analyzed of the cyclic equalizer that does not use
averaging in the tap adjustment algorithm (stochastic adjustment).
The analysis of this algorithm is, in general, very difficult but, in the
case of the cyclic equalizer, the time-varying difference equation that
describes the noiseless equalization process can be solved exactly, and
the conditions for this algorithm to be stable can be developed. Again,
here the stability of the algorithm is related to the discrete Fourier
transform (DFT) of the received signal. It is shown that the algorithm
converges if the pFT of the received signal has no zero elements—that
is, if the received signal spectrum has no nulls. This material along
with a brief discussion of the asymptotic behavior of the algorithm is
given in Sections IX through XII.

Within the paper, we also discuss various implementations, includ-
ing a method to further speed up the tap calculation using an acceler-
ated signal-processing technique. It will be seen that cyclic equalization
is very attractive and economical to implement. Actual convergence
is presented with some computer simulations that demonstrate the
fast start-up capabilities of the new method.
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Fig. 1—Block diagram of data transmission system.

Il. BACKGROUND

We will consider the pulse-amplitude modulated data system shown
in Fig. 1. Data symbols, dj, are transmitted every T seconds through
a transmitter low-pass filter. This signal then passes through a dis-
torting channel that has been made baseband by the modulation-
demodulation process inherent in the modem, noise is added, and the
composite signal is sampled every T seconds after the receiver filter.
The sampled signal vector x; is then equalized by a transversal filter
with coefficient vector ¢ (see Fig. 2) to produce an output y, = xfc
upon which the decision device operates to produce estimates, dy, of
the transmitted symbols. The receiver structure has the form of the
optimum linear receiver® but, because the channel is never precisely
known and changes with time, the transversal equalizer is made
adaptive to optimize performance.

Our concern in this paper is with the equalizer and ways to make it
adapt rapidly from some initial setting to its final setting. A large
number of papers, a partial list of which has been included in Refs.
1 to 51, have been written about equalizers, algorithms for adjusting

Fig. 2—Nonrecursive transversal filter.
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them, and the speed with which these algorithms converge. In de-
veloping procedures for adapting the equalizer coefficients, some ap-
propriate performance measure must be defined that will discriminate
between good and bad coefficient vectors. Although our goal is to
minimize the probability of error, this criterion is too difficult to work
with directly. As a result, secondary performance measures such as the

peak distortion,? ‘
D=h0_1 Z |hk[) (1)
k=0

or the mean-square error,
e=E{|ye — de|™}, M =2, (2)

are used. In (1), h is the sampled system impulse response. The peak
distortion is related to the ‘“eye opening,”’® and for binary symbols
and noiseless transmission, D < 1 implies no decision errors. In (2),
E{-} is the expectation operation and y. — d; is the remaining error
at the equalizer output. These performance measures (M could be
greater than 2, if desired) can be shown to be convex functions of the
equalizer coefficients, thereby proving the existence of a global
minimum.

We will work primarily with the mean-square error (MsE) criterion.
This criterion includes the effects of noise, whereas the peak distortion
criterion does not, it is convenient to work with mathematically, it
can be used to bound the probability of error,52 and it leads to adaptive
algorithms that are easy to implement. Using the mMsE, the optimum
coefficient vector for the equalizer can be determined easily. Assuming
E{d}} = 1, we have from (2)

e = cTAc — 2¢7v 4 1, (3)

where
A = E{xx{] (4)

is the signal autocorrelation matrix,
v = E{dx:} (5)

defines the signal correlation vector, and x; is the vector of tap signals
at the kth time instant. Finding the gradient of (3) with respect to the
tap gains gives

g = 2E{(yx — dr)xe} = 2(Ac — V). (6)
Our optimization problem has a unique solution if A~ exists. Setting
(6) equal to zero yields

Copt = Ay (7)

€pt = 1 — ¥Tcgp, = 1 — v7ATV. (8)
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The problem of equalizer start-up is simply to find the solution to
(7) in a rapid and economical manner. The economical part of the
question is very important. One can imagine a start-up procedure that
operates by sending a special training signal for a short period of time.
The received signal, z(f), is stored at the receiver. The training se-
quence is known at the receiver, but its absolute time reference is not
known. The receiver contains a very fast high-power computer which
now, in essentially no time, computes (8) for a large number of different
time references and finds the time reference for the locally stored
training sequence that minimizes e... The computer has thus ac-
complished both synchronization and equalization. This hypothetical
system achieves a start-up time limited only by the time required to
transmit the training signal but, with today’s technology, its speed-cost
product, if you will, is very poor. It does not represent an economical
solution to the problem. Many currently proposed fast start-up
equalizers, although not as extreme as this example, still do not present
cost-effective solutions.

In addition to the economic aspect, this example illustrates two other
important points. The first is the solution of (7). Much of the work on
equalization is concerned with efficient algorithms that avoid the direet
matrix inversion and obtain an iterative solution. Often, however, the
time required to perform the calculations in (4) and (5) is not explicitly
considered in evaluating start-up time. Second, synchronizing the
stored reference signal in the receiver can take significant time, and
that aspect of start-up time seems to be universally ignored.

Now we consider the solution of (7) in more practical terms. A well-
known approach for solving (7) is

cm+1 = Cm — ﬁm(Acm - V), (9)

i.e., a first-order steepest-descent gradient algorithm. For appropriate
conditions on 8, ¢, converges to Copt.

According to (6), the gradient is obtained by correlating the tap-
signal vector and the error voltage

g = 2E{ex;}. (10)

From an implementation point of view, this is a convenient quantity
because the signal vector, x;, is readily available, and the error,
e, = yr — di, can be estimated. A difficulty still remains in that the
expected value is not available in real time and must be estimated by
averaging over a finite number of symbols. The difference equation

(9) then takes the form
1 mL+L—1 ,
Cnt1 = Cn = Bm 7 2 Xe(Xitm — di) | (11)

k=mL
=Cm — Bm(Amcm - vm)
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Averaging is done over L symbols between succeeding adjustments.
If random data are transmitted, A, and v, will depend on the par-
ticular signal pattern of each iteration interval and are random vari-
ables with mean A and v and variances decreasing with longer averaging
interval L. The analysis of the behavior of (11) is difficult, particularly
when we try to determine ways of improving the convergence rate.
By reducing L, we can make many more iterations in a given time, but
we must use a smaller 8-value to take into account the larger variance
of the calculated gradient. Longer averaging between each step would
take more time but give a better estimate for the gradient, and there-
fore allow a somewhat higher value of 3. Monsen® has studied the
optimization of the averaging interval, assuming an ideal reference and
Gaussian signals. In this special case, the optimum valueis L = 1;1i.e.,
corrections are made after each symbol and no averaging at all is
done. This method is often called ‘‘stochastic approximation,” because
the corrections are stochastic quantities whose means equal the desired
gradient.

At this point, it appears that the mean-square algorithm with no
averaging, i.e.,

Cmt1 = Cm — ﬂmemxm
(I - ﬁmxmxg)cm + ﬂmdmxm ’ (12)

is an attractive scheme to investigate further to obtain fast real-time
convergence. There remain, for the moment, two main difficulties that
need further discussion. The first one is the problem of obtaining the
data values dy. They can be estimated in the usual way from a threshold
decision, but on channels with large distortion the initial error rate
may be close to 50 percent and estimates dy are very unreliable in such
a situation. An algorithm with a decision-directed reference may thus
behave erratically, and convergence cannot be guaranteed. The results
of a few simulations will give some further insight.

The channel assumed for the simulation consisted of a 10-percent
cosine roll-off baseband filter with parabolic delay distortion [5.4T
at the Nyquist frequency (1/27)] and a sampling offset of 0.37 from
the peak of the response. The resulting channel response from a single
pulse is shown in Fig. 3. This same pulse was also used by Hirsch and
Wolf.* The initial peak distortion is 2.62, resulting in a completely
closed eye pattern.

The first simulation is for the algorithm (12), but an estimated
reference (obtained from a threshold decision) was used. Figure 4
shows the resulting peak distortion versus the number of symbols for
four different step sizes. Decision errors are responsible for random
distortion increases rather than reductions. This is avoided in Fig. 5
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PULSE RESPONSE
10% COSINE ROLL-OFF BASEBAND FILTER WITH PARABOLIC DELAY DISTORTION
TIMING OFFSET FROM PEAK RESPONSE : 30%

Fig. 3—Impulse response with peak distortion of 2.62.

where we have repeated the same runs with an ideal reference signal.
The improvement is significant. Note that the ideal reference signal
is really needed only until the peak distortion has decreased sufficiently
to yield an open eye pattern; from this time on, the error probability
is essentially zero, and a decision-directed reference can be used.

The difficulty in providing an ideal reference signal lies in the syn-
chronization problem. Remember that we require such a signal only
in channels with very large amounts of distortion, but achieving reliable
synchronization in the presence of severe distortion is a problem in
itself that usually calls for time-consuming correlation methods.?

A second problem is associated with the choice of the training
sequence. Obviously, a strictly random data pattern would be a bad
choice, since transitions would only occur on a probabilistic basis and
not be guaranteed. The variability of repeated convergence runs would
be large. This can be avoided by transmitting a short-period training
sequence. Even if the starting point occurred at random, convergence
would be more predictable. We know that we eannot make the period
of the training sequence shorter than the duration of the impulse
response of the equalizer; otherwise, the tap signals would not be
linearly independent, the correlation matrix A would be singular, and
a unique solution for the optimum tap vector ¢ would not exist. We
will, however, study the limiting case where the period, in symbols, of
the training sequence is equal to the number of taps on the equalizer.
This will lead directly to the idea of the cyclic equalization. Before we
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Fig. 4—Convergence behavior of stochastic adjustment algorithm (12) with a
decision-directed reference.

do this, we will provide some additional insight by a short discussion of
the frequency domain aspects of the equalization problem.

Ill. PRINCIPLE AND IMPLEMENTATION OF CYCLIC EQUALIZATION

Let the spectrum of the received data signal be G'(w) and assume
that this signal is applied to an N tap equalizer with coefficients c.,

n =0, -, N — 1. The resulting output spectrum is
N—-1
X (w) = G(w) X cnexp (—jonT), (13)
n=0
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Fig. 5—Convergence behavior of stochastic adjustment algorithm (12) with an
ideal reference.

and the overall system would be distortion-free (Nyquist criterion) if
zx(w+2—’rk = oxp (—jur),  u| < 2 (14)
% T T

Combination of (13) and (14) yields the condition

N-1
Y coexp (—jonT) 2 G (w + 2—;,'&) = exp (—jw7), |e| < % (15)
n=0 k

Obviously, (15) cannot be satisfied for a finite N and an arbitrary
(}(w). Usually, the coefficients ¢, are chosen according to a minimum
mean-square-error (MMSE) criterion in the time domain, which is
equivalent to an MMSE criterion of (15) in the frequency domain. The
problems of such an approach have been discussed in Section II, and
we have seen that the commonly used iterative search schemes can be
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very efficient during the tracking mode, but initial training may not be
without problems.

A closer look at (15) shows that the left-hand side is a linear com-
bination of the coefficients c.. Although perfect equalization cannot
be achieved at all frequencies, it is possible to obtain zero error at a
number of specified frequencies w,, within the range |w.| < =|T. This
is, of course, also true with an MMSE approach, since the resulting
transfer function will oscillate around the desired one; i.e., the error
will ripple between positive and negative values. The crossing fre-
quencies are, however, not known and usually not of interest. In the
new scheme we propose here, we will do exactly the contrary: We will
precisely specify the crossing frequencies, although we realize that such
an approach will, in general, not yield MmsE. Specifying the frequencies
wn where perfect equalization is obtained will transform the condition
(15) in a set of linear equations for the coefficients ¢.. Obviously, we
have to consider two cases:

(i) N = even: N/2 different frequencies v, # 0 must be specified.
() N = odd: (N — 1)/2 different frequencies w, # 0 and w = 0
must be specified to obtain a unique solution for the ¢,’s.

Theoretically, a set of reference tones wn could be transmitted, G'(wm)
measured at the receiver, and the coefficients computed from (15).
Fortunately, it is possible to propose a much more attractive solution.

The generation of the reference tones can be accomplished in a
straightforward way if we select the frequencies w, equally spaced
across the Nyquist band; a suitable periodic data sequence of length
NT will produce such spectral lines at w, = 2rm/NT. Note that the
number of symbols in such a training sequence is equal to the number
of taps of the equalizer. This choice is extremely important and provides
a number of unique advantages to achieve fast equalizer start-up.

We now discuss in detail such a training procedure. Assume an
equalizer where an ideal reference signal is used and the period of the
training sequence is equal to the number of taps on the equalizer.
Assume for the moment that the channel is distortionless and the ideal
reference is synchronized with the incoming signal. If we let the adap-
tive algorithm adjust the equalizer taps, the center tap on the equalizer
will become unity, and all the others will be zero. This is really what
we mean when we say the reference is synchronized ; that is, the opti-
mum equalizer coefficients are centered on the equalizer rather than
shifted off to one end or the other. Now again, for this “ideal” example,
if the reference signal is delayed by one symbol from perfect syn-
chronization, the adaptive algorithm will cause the equalizer coefficient
one position removed from the center to become unity, and all the
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others will be zero. The movement of the unity gain tap by one position
indicates a one-symbol delay in synchronization of the ideal reference.
In an actual situation, the other taps on the equalizer will be nonzero
and, with an unsynchronized reference, the adaptive algorithm will
cause tap coefficients to occur that are cyclically rotated from those
that would occur if the reference were synchronized.

To say this another way, if the training sequence is periodic with a
period equal in symbols to the number of taps of the equalizer, the
received signal is then also periodic (neglecting noise effects), and one
full period of the sequence is always stored in the equalizer. Each
symbol that is shifted out at the end of the delay line is replaced by
an identical new symbol at the input. This is more clearly shown in
Fig. 6 for a seven-tap equalizer with taps ¢; through ¢; and a seven-bit
sequence x; through x;. At time ¢, 4+ 2T, it is seen that the stored
sequence has been cyclically shifted by two units as compared to the
time f,. But it is also seen that the same output signal y (¢, + 27)
could have been obtained at time ¢{ = ¢, if the taps were cyclically
shifted back by two positions. Thus, at any given time ¢ = {,, all out-
puts y({ = {o + kT) can be obtained with a suitable cyclic shift of the
components of the tap vector.

x(ty)

Sl [l [l el
O @ ©@

- y(ty)

xltg+2T)

e o o T [ oo ]
ONONO

yit,+2T)

o [ [ [ [ [ [ o]
222999

Fig. 6—Basic idea of cyclic equalization.

x(tg)
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This feature provides an elegant solution to the synchronization
problem. Any cyclic shift between the received sequence and the refer-
ence sequence will yield a compensating cyclic shift of the (same) tap
coefficients. It is, therefore, not necessary to achieve synchronization
prior to equalization, but it is of course necessary to properly shift the
tap coefficients after initial training to prepare the equalizer for random
data. This can easily be done by cycling them in such a way that the
largest coefficient is aligned with a reference position, e.g., the center
tap. Because of its particular features just described, we will call this
novel start-up scheme “cyclic equalization.”’*

The possible structure of such an equalizer is outlined in Fig. 7.
An internal word generator produces an ideal reference sequence that
need not be synchronized with the received sequence. All taps are
initially preset to identical values (since the location of the ‘“‘center
tap” is not known). The equalizer will then produce a set of taps with
the particular cyclic shift corresponding to the ‘‘synchronization
delay.” After this initial training, the tap coefficients are cyclically
shifted for ‘“alignment,” as outlined above. At this point, the equalizer
has reasonably good tap coefficient settings and the peak distortion at
the output is less than unity; i.e., the eye is open and, in the absence

p— P >— —

silndlini

C1 | W
<k
—B j SL

{ o
OcLoCK WORD GEN. d

Fig. 7—Block diagram of an equalizer with cyclic start-up.
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of noise, errorless decisions can be made. Fast coarse adjustment of
the tap coefficients has been achieved without wasting time synchro-
nizing the ideal reference. Once the eye is open, decision-directed
equalization can be used with a somewhat longer training sequence
or random data to achieve the final fine adjustment of the tap
coefficients.

The fact that mean-square equalization with a training sequence
period equal to the length of the equalizer can give very fast and very
consistent, relative to the starting point of the adaptation, equalization
has been demonstrated in numerous simulations. One of these is il-
lustrated in Fig. 8. The same channel is used for this example as was
used previously; the peak distortion is 2.62, the signal-to-noise ratio
is 30 dB, and the step size is 0.04. In this case, the equalizer has 15
taps and a 15-bit maximum length training sequence is used because
of its nice spectral properties. Adjustments are made at the symbol

6

CYCLIC EQUALIZATION, 15 TAPS—-15 BITS

INITIAL PEAK DISTORTION = 2.62
5/N=30dB, 8=0.04, 5=0.05

PEAKDISTORTION
w
I

0 5 10 15 20 25 30
SYMBOLS

Fig. 8—Start-up behavior with eyclic equalization.
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rate. The shaded region in the figure contains all 15 possible con-
vergence curves that correspond to the different starting points for
adaptation. Not only are all the convergence curves very similar, but
they all achieve a peak distortion of about 0.4 or less in 15 symbols.

A few words are in order about the presetting of the tap coefficients.
Because an unsynchronized reference is used, the location of the
largest coefficient is a priori unknown. It is therefore reasonable to
preset all coefficients to identical initial values s, as we have already
mentioned above. With most channels, tap coefficients of both polari-
ties will evolve so that one might consider setting s = 0 for an unknown
channel. The large final value of the center tap would, however, suggest
that slightly biased initial conditions might give faster convergence;
we will make more precise statements about that in Section VII.

The discussed method of presetting has, of course, some consequences
if a channel with low distortion or even an ideal channel were used. In
such a situation, a conventional equalizer could do a better job because
it would be started with the optimum tap settings (ci = 8u) right
away and need not make any corrections at all. The cyclic equalizer
would have to “converge’’ even with an ideal input signal ; simulations
of this case have shown a convergence plot similar to that of Fig. 8.

As a final example, we present the results of a vsB system that is
operated over a channel with “‘parabolic-like”’ delay (exponent = 2.73)
and an s/n of 30 dB. The received and demodulated signal is sampled
with different timing phases spaced 7'/4 apart and equalized in a cyclic
equalizer with N = 15 taps. The distortion values resulting after
equalization during only one sequence (i.e., 15 symbols) are sum-
marized in Table I. For comparison, the initial channel distortion
Dchannet 80d the minimum distortion D, that can be achieved with
an equalizer of this length are also included. It can be seen that initial
training using cyclic equalization achieves a performance that is
already close to optimum.

Some comments should be made about the simulation results we
have presented. They indicate that initial training with cyclic equaliza-
tion may only be necessary for a very short time; in some cases, for
only one sequence period. This means that the received signal is not

Table | — Distortion for VSB channel and 15-tap equalizer
Tlmlng Dchlnnﬂl DCyul. Dmin
0 2.04 0.15 0.06
259 1.87 0.52 0.21
509, 2,25 0.99 0.98
75% 2.88 0.25 0.12
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really periodic and that no spectral lines in the striet sense will occur at
equally spaced frequencies wn, as we specified earlier in this section.
The spectrum will be continuous, showing increasingly concentrated
peaks at those frequencies with larger numbers of sequence repetitions.
We have not found this to be a disadvantage; in fact, under some cir-
cumstances, the tap settings achieved with only a small number of
iterations were, for the transmission of random data, preferable to the
steady-state solution.

We have shown by example that fast reliable initial convergences
can be achieved using an ideal reference signal without spending any
time to synchronize the reference. Final fine adjustment of the taps is
accomplished in a decision-directed mode using a longer sequence or
random data. In the next sections, we will analyze the behavior of the
cyclic equalizer during its initial training period. The convergence be-
havior with the mean-square algorithm with averaging, the choice of
the training sequence, and the effect of the initial value of the taps will
be considered. Then the exact behavior of the mean-square algorithm

without averaging will be analyzed and conditions for convergence
will be given.

IV. STEADY-STATE SOLUTION FOR THE TAPS

As was discussed in the previous section, the operation of the cyclic
equalizer does not depend upon the synchronization of the reference,
and we will not stress the rotation property of the taps unless necessary.

We assume a system with N equalizer taps and let the samples of the
received signal be the components of the vector

xT = (yw, YN-1, ==+, Y1). (16)

If we neglect the noise components, the tap-signal vector is periodic
and successive vectors are cyclic shifts of each other (yyim = vm). We
define a signal matrix

YN YN-1 YN—-2 " Y1
Y1 TN YN-1 """ Y2

S = Y2 Y1 YN Tt Ya |, (17)
YN-1 YN—2 7YN-3 """ YN

whose rows consist of all N succeeding sample vectors. The elements of
S are given by
Sik = Y (i—k)Mod N- (18)

At the equalizer output, a sequence of values x7c (c is the tap-weight
vector) appears as the input vector x is cyclically shifted through its

CYCLIC EQUALIZATION 383



N states. The resulting output sequence is
y = Sc. (19)

Obviously, it is possible to obtain from a given input sequence any
arbitrary desired output sequence by a suitable choice of ¢, provided
only that S—! exists. If we define a data vector ¥ which contains the
reference values associated with y, it is possible to select ¢ so that

y =& =8¢, (20)

i.e., the recovered sequence can be perfectly equalized (at least, at the
sample points) and there is no residual error. This is even true with
nonlinear distortion. Since the error can be reduced to zero, we con-
clude that the same tap vector

Co = S_IE (21)

is obtained with any equalizer in the steady state, regardless of the
particular tap-updating algorithm (as long as it is unbiased).

We now proceed to determine the eigenvalues of the circulant matrix
S. Let us first define a set of values » so that

rN=1—>rk=exp(j%c)- (22)
In the next step we form
A=y +ryv1+ v+ s VN
=yt + et iy
PN = ey s s+ TVl
This may be written in matrix form as
I\ = Srty, (23)
where we have defined the vector

I, = {rea}; withre, = \/—exp( 2m nk) (24)

The r,’s are obviously eigenvectors of S. The eigenvalues A\, are
Ak=XTl'k, Oéng— ]., (25)

and are given by the discrete Fourier transform (prr) of the input
vector x. The signal matrix S can be diagonalized if we introduce a
matrix W with

{iWha = rexp( 2 "Jc) (26)
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whose columns are made up from the vectors r,. W is also symmetric
and unitary ; the properties

W =WwTr, W*=Wt, WW=1 (27

are easily established. We may now alternatively either express the
eigenvalues as components of the diagonal matrix D

D = WiSW (28)
or as components of a vector
A= Wx, (29)

since multiplication with W transforms a vector into its DFT.
We now give an interpretation in the frequency domain. The received
(periodic) sequence can be expanded into a Fourier series

1 T
z(l) = N )E X exp (J%—, mt) ) (30)

where the coefficients X,, correspond to the spectral lines and the range
of m is determined by the bandwidth. The components v; in x are
given by z(t = 7 4+ ¢7"); this may be combined with (25), and we
obtain for the eigenvalues the frequency domain representation

.2
M= T Xy oxp [J 2 (z + %)] (31)

In the case where all spectral lines are contained within twice the
Nyquist frequency and » = 0, we have

A= Xy + Xo + Xy
M =X+ Xy

A2 = Xa + Xo (32)
Ay—2 = Xy_2 + X_»

Av—1 = Xy_1+ X4

As this represents 100-percent excess bandwidth, we may assume that
most practical systems are within this range. If spectral lines are only
within the Nyquist limit, (32) is simplified to

we=x i [k <
o= X 0[R2
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We can now give some comments as to the nature of the resulting
tap vector co. By combining (21) and (28), co may be expressed as

co = WID-'WE. (34)

Here the term W is the pFr of the ideal samples and establishes a set
of reference values at equally spaced points in the frequency domain
(discrete Nyquist equivalence). The multiplication with D! determines
the gain of an ideal correction function at these points. The resulting
tap-vector ¢, is the inverse pFT of this correction function. The overall
transfer characteristic (channel and equalizer) is discrete Nyquist
equivalent when ¢, = S7', ie., frequency-domain equalization is
precise at a set of equidistant points [spacing (2x/NT)]. This tap
vector is, in the general case, not optimum for random data trans-
mission after the training period. Basically, equalization is a mathe-
matical approximation problem. The equalizer approximates the com-
pensation function with a trigonometric polynomial. With a cyclic
equalizer, the coefficients are selected to match the desired function
at equidistant points. This will generally not give minimum mean-
square error at the output, since only discrete frequency information is
used and the channel behavior between the sample points is not taken
into account. In a recent paper, Chang and Ho* briefly discussed this
problem from a somewhat different point of view and concluded that
the initial approximation c, is generally close to the optimum settings
for random data. We will not further discuss the approximation prob-
lem in this paper.

V. MEAN-SQUARE ALGORITHM WITH AVERAGING

In this section, we are looking at a tap-control system that minimizes
the mean-square error between the equalizer output y(n7') and refer-
ence symbols £,. We use a steepest descent gradient algorithm of the
form

Cut1 = Cm — B(ACh — V), (35)

where A is the signal-correlation matrix and v is the signal-correlation
vector. The gradient

gn = E{xi(yi — £)} | cmem (36)
is evaluated in the usual way by time averaging.

First we note that, in the noiseless case, because of the cyclic nature
of x, both A and v can be determined by time-averaging over one full
sequence length of N symbols. Further, 4 and v are constant and well-
defined throughout the process. It is easily verified that A can be

386 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1975



expressed in terms of the normal signal matrix S,

1 1
= = 88t = = St
A N SS i S8, (37)
and that v is equivalent to
1
= — T
V=5 STE. (38)

The gradient is zero, and updating stops when
c=c¢p= Ay = 8, (39)
If we introduce the tap error vector .. = ¢, — ¢,, (35) takes the form
i1 = (I — BA)™5.. (40)

The choice of 8 and the convergence depend on the eigenvalues of A.
To guarantee that 8,1 — 0 for large m, we require 0 < 8 < 2/pmaz,
where u; are the eigenvalues of A. Since

S = WDWwt (41)
and therefore
1 1
= = 8§t = = T
A i SS ¥ WDDIWt, (42)

the eigenvectors of A and S are common (and independent of x). The
eigenvalues u; of A are related to the eigenvalues A of S by
1 ..
Hie = IV AAk. (43)
Another interpretation is obtained by realizing that the matrix 4 is
circulant (like S) and symmetric with elements

1 1+N-1
(Al = aix = @i = an = N Z YmYm—n. (44)

By analogy to (25), the eigenvalues are
we =a’rt; 02k =N —1, (45)

where a contains the components a,. We see that the eigenvalues are
given by the prr of the cyclic autocorrelation values, a..

We now express these eigenvalues by the spectral lines in the fre-
quency domain. If we combine (31) and (43), we obtain

1 L2
th = 5 ¥ T XpomyXepy €XP [3 % (m — n)J (46)

m n
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or, in an equivalent form,

1 ;
e = v L % XemwXcnimy—e €xp (5270 7 )- (47)
NS % T
If the bandwidth is Nyquist-limited, only one single term in (47) con-
tributes to the eigenvalues, namely,

1 N
#k=ﬂN—m=N!xk|2, kéa' (48)

The eigenvalues are then independent of timing and carrier parameters
and phase distortion of the channel. Only the signaling format, the
channel attenuation, and the choice of the sequence ¥ determine the
eigenvalues. (Note that we have so far not restricted the choice of &
to a particular class of sequences, such as maximum length sequences.)

In the case of excess bandwidth which is, however, limited to twice
the Nyquist frequency (all reasonable pulse-amplitude modulation
systems fall in this category), a few more terms in (47) need be con-
sidered, and

me = | X|? + [ Xy |?

.2 ok .2
+ XpXy_i €Xp (.? %—) + XpXy_r €Xp (— %) , (49)

which shows the influence of the timing phase 7. Note that only the
third and fourth terms depend on phase and timing parameters. This
term represents the fold-over around the Nyquist frequency.” The
smaller the roll-off, the less the eigenvalues will be affected by this
fold-over. In fact, it is even possible to have a small amount of excess
bandwidth without any contribution of these terms. This is shown in
Fig. 9. We distinguish two cases.

() N = odd. The Nyquist frequency is located midway between
two spectral lines of the training sequence. Fold-over is avoided
if we have a normalized roll-off « < 1/N.

() N = even. The Nyquist frequency coincides with a spectral
line of the training sequence. If we choose a =< 1/N, the
eigenvalues will still be phase-invariant, but one of them (for
k = N/2) will now be dependent on the timing phase f.

Most voice-grade telephone channels have very large phase distor-
tion, but only moderate amplitude distortion. Usually, the worst-case
gain deviations over a given frequency range are known (e.g., on

* Some crossterms in (49) are zero if the bandwidth is less than twice the Nyquist
frequency.
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Fig. 9—Spectrum of training sequence.

private channels). If we deal with small excess bandwidth and we
know our sequence &, it is obviously possible to caleulate the spread of
the eigenvalues from (46) or (49). We may then choose the value of 8
in (35) so that

2

Amax

0<p< (50)
to insure convergence. In addition, it may, of course, be necessary to
normalize the signal power xTx with an automatic gain control to make
the eigenvalues dependent only on the relative gain difference between
the various frequencies, but independent of the average absolute gain.

VI. CHOICE OF THE TRAINING SEQUENCE

So far, we have not discussed the choice of the training sequence &.
From the previous study we know that the eigenvalues of S and A
are well-behaved as long as the pFr of x, or of the sampled autocorrela-
tion function, respectively, has no zero elements. This is obviously
sufficient to guarantee the existence of inverses of S and A and there-
fore also the existence of a solution c,. Zero elements can be avoided
by selecting a signaling format and a sequence § to insure nonzero line
amplitudes at all frequencies f, = n/N T within the transmission band-
width. If the channel does not have serious attenuation gaps, we have
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also nonzero amplitudes at the receiver input. To obtain fast con-
vergence, the eigenvalues should be as equal as possible (minimum
spread). This can obviously best be achieved by selecting a sequence
£ which produces lines of equal amplitudes; predistortion for expected
attenuation at the band edges is possible. The transmitter is then
effectively sending a comb of equally spaced frequencies of approxi-
mately equal amplitudes that could obviously also be provided by a
number of frequency generators, but are, of course, much more effi-
ciently synthesized as spectral lines of a suitable sequence. Note that
the samples of the training sequence £ need not necessarily be binary;
arbitrary numbers (and sequence lengths) can be stored in rRoM’s in
both transmitter and receiver. We will discuss a few special cases for
¥, assuming small excess bandwidth (<1/N) and an odd number of
taps and flat gain:

(7) Single pulse, £7 = (0, ---, 0, 1,0, ---, 0): This produces a fre-

quency comb of equal amplitudes. We have further

A= 1%1’ \: = const = 1/N, Bopt = N. (1)
Convergence is obtained in a single iteration, independent of
the initial settings. See eq. (40).
(i) Single pulse, ¥7 = (1, ---,1, —1,1, --+, 1): This produces a
similar frequency comb, but with a much larger amplitude at
de. The eigenvalues are shown to be

M= (N —2)/N; M=+ =1 =4/N. (52)

(74%) Maximum-length pseudorandom sequence: Such sequences
have lengths N = 2 — 1 (among others), and were used for
the simulations given earlier in Section II. The eigenvalues are

_— 1 .
= 3
For a given symbol magnitude of the £/s and a given peak power, the
maximum-length sequence gives the largest spectral line energy and
seems thus to be a good choice, especially for noisy channels. Both in
(#7) and in (4%7), A, is different from the other N — 1 identical eigen-
values ; we will, however, show that 8 can be selected according to these
(N — 1) values and that A\, does not affect the convergence if the
equalizer is properly preset.

1
Ao )\1="'=)\N_|_=1+N‘ (53)

Vil. PRESETTING THE TAPS

Since the reference sequence is not synchronized with the received
signal, the resulting tap vector may have its main tap in any position,
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and it would obviously not make sense to preset in the traditional way
of having ¢; = 8. Instead, we choose an initial tap vector su whose
coefficients have equal values s. If we assume N = 2M + 1 taps, the
initial equalizer transfer function is given by

M _ . sin (NwT/2)

Hw =s Y et

ne—M sin (wT/2) ’ (54)

which is a comb filter with period 1/T and attenuation poles at
f=k/NT, ie., precisely at the frequencies where the spectral lines
of the training sequence are located. Only de information is thus
transmitted to the output prior to the first iteration, This is also obvious
from the fact that the output y = sxTu does not depend on the cyclic
shift of x, since it is the sum of all N sequence samples. 1f an ideal
Nyquist pulse is applied to such a system, the initial distortion of the
output signal is very large, i.e.,

Dpeuk = DMSE =N — 1. (55)

This is independent of s. If, however, we look at the average mean-
square error of the training sequence, we have with the initial setting

d =y % (axlu — £
= M) — 25 (xMu) (ET) + - (£79). (56)

This can be differentiated with respect to s, and we find that the initial
mean-squate error is minimized if we choose

1 #u

Sopt = 7 37y’ (57)

The quotient associated with 1/N represents the de gain of the channel
and is usually close to unity. Since the de gain of the equalizer is equal
to the sum of the tap coefficients, (57) means that the initial settings
should be chosen to have the same sum as the final settings in c,
(remember that c, is the inverse pFr of the correction function).

Some further physical insight is obtained if the mean-square error
after m iterations is studied. This mean-square error may be expressed
asﬂﬁ

N—1
€$n+1 = go qi,m+1y (58)

where the 7th error component, ¢; .1, is given by

Gimyr = il 7T [2(1 — BA)™ (59)
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The initial value of each component is proportional to its corresponding
eigenvalue and to the square of

87r; = suTr; — ¢y, (60)
where
o= [y 1120
The values of 57t; are then obtained as
87r; = —¢Tr; = {—DFT(c,)} 1#0 (62)
87r, = N-¥(Ns —cfu) if ¢=0. (63)

Because of what we have said earlier, we see that these coefficients are
proportional to the values of the correction function at the line fre-
quencies, except in the case of 2 = 0, where 8{T, is only proportional to
the misadjustment at de. If we select s according to (57), the error
component associated with A, becomes zero. The constant 8 is then
selected in accordance with the remaining eigenvalues to provide fast
convergence.

A few comments are in order for the case of u, = 0. This will occur
whenever the sequence is dec-free. An example of this property is a
maximum-length sequence that is complemented by one additional
bit to provide an equal number of ones and zeros (N would then be
even). From (59) we see that the error term associated with u, is zero;
gince there is no spectral line at de, the gain at w = 0 is obviously im-
material as long as we transmit the training sequence, and convergence
and mean-square error are independent of the choice of s. To see how
this affects the solution c,, we write the relation Ac, = v in the form

DDtWte, = NWtv. (64)

Assume k eigenvalues in the diagonal matrix DDt are zero.* Therefore,
we have only N — k linear independent equations for the N com-
ponents of c,. The set of solutions for ¢, can be expressed with & inde-
pendent linear parameters. In the most important case where only
#o = 0, this ambiguity can be avoided easily by constraining the sum
of the tap values. This sum remains constant throughout the equaliza-
tion process. We can best show that if we look at the sum of the
gradient components,

2 ulx;(xfc — &),

1]

*This can happen if the test sequence has zero power at some frequencies
fr = k/NT within the transmission band.
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which is obviously zero since u”x; is zero by definition. We would thus
choose s in such a way as to match the desired de gain (which is no
longer immaterial if we transmit random data after the initial training
period). This is still in accordance with (57) if the quotient of the
right-hand side is replaced by the quotient of the spectral densities
at de when data are random.

VIIl. INFLUENCE OF NOISE

So far, we have made the assumption that the received samples are
noiseless. We give here a coarse analysis of the effects of noise which
will show that its influence is, in fact, quite small and may often be
neglected. We assume that the taps are calculated from a single-input
signal vector which includes noise; that is, the vector x in (16) now
consists of the received signal values plus noise samples. As the equalizer
cannot make any distinction between signal and noise components, a
tap vector,

Cor = (S + R)7I, (65)

will evolve instead of ¢, = 8~'§, where R is a noise matrix defined in
accordance with (17). We then write the tap difference vector as

Co — Cor = S_IRCW (66)

if we combine (21) and (65). If a noiseless test sequence were trans-
mitted over the system, there would be some output error because the
vector ¢,, is different from the optimum c,. The resulting mean-square
error, averaged over the ensemble of ¢,’s, would be

€ = E{(c, — c,,)TA(c, — cor)}, (67)
and can be written as
¢ = E{c R (S )tAS'Rc,}. (68)

If we make use of the relation (37), this can be simplified to
1
e = ¥ E{c},R'Rc,,}. (69)
Assuming that succeeding noise samples are uncorrelated and  that
|€or|? &2 1, we finally obtain for the mean-square error

where ¢? is the noise power. We conclude that for reasonable s/n’s
there will be only a small bias introduced because of the superimposed
noise.
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IX. CYCLIC EQUALIZATION USING A MEAN-SQUARE ALGORITHM
WITHOUT AVERAGING

The previous discussion has given an analysis of the process of cyclic
equalization using the mean-square algorithm with averaging. Much
of the insight developed there regarding the final tap values, the type
of training sequence to use, etc., carries over to the equalization
process which uses the mean-square algorithm without averaging.
However, to be more precise we now will carry out an exact analysis
of this algorithm. Because it permits a more simple implementation,
it is the algorithm without averaging that will most likely be used in
practical situations.

Let the N-component tap-signal vector at time 7, 4 &7 be denoted
by xi. In the absence of noise, succeeding signal vectors will then be
related by

Xppm = U™Xp, (70)
where U is an N X N cyclic shifting matrix of the form
00 --- 01
10 --- 00
U=|01 --- 0 0f- (71)
0 0 10

Note also that U is orthogonal and
Um = Umsi¥, (72)
The equalizer output at time ¢, + mT will be
y(t, + mT) = cIxm = cIU™x,, (73)

where we have expressed the signal vector as a cyclic shift of one fixed
state at start-up. We will drop the index on x from now on.

Let d; be the reference value of the data signal at t = ¢, + k7. The
mean-square error at &, + mT is

en = B{(cIU™x — d,)?}, (74)

where m indicates any of the equally probable cyclic shifts of x and d.

The expected value in (74) can be obtained by time averaging over

2+ 1 = k =1+ N because of the cyclic nature of the signals under

consideration. The gradient with respect to the tap weights is given by
de

3 = 2E{eUmx}. (75)

In this section we make adjustments of ¢ at each symbol interval and
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use a nonaveraged approximation of (75) (the product of error and
tap signals of the previous baud interval) for updating. Thus, our
strategy becomes®

Cmp1 = Cm — BU™x(cZU™x — dn)
= Un(I — gxxT)U—mc,, + BU™xd,,. (76)

For convenience, we define a data vector £ which contains the reference
values d,,. We further define an N-dimensional vector,

Ir= {T.'], T; = O, (77)

containing zeros in all positions except in one reference (kth) position
(“center tap’’). We observe that

dn = rTUE, (78)
and we can write (76) in the form
Cm1 = UrZU ¢, + BUEU—™r, (79)
where we have introduced for convenience

Z =1 — Bxx” (80)
E = xgT. (81)

By solving the time-varying difference equation (79), the tap vector
after m adjustments can be expressed as

m—1
Cupr = U™ {Qmcy + B kE QEUmr | - (82)
=0
The new matrix @ in (82) is defined as
Q=2z2U"= (I —pxxT)U™, (83)
and will play an important role in further analysis. We can also easily

verify the synchronization-invariant properties of (82). In fact, if we
replace x by Uix (introducing some arbitrary delay), we obtain

m—1
Cny1 = Umt¥ QU= + 8 2. Q*EU™r;, (84)

F=0
but since we choose the initial ¢; with equal bias values for all coeffi-
cients, U~c; = ¢;, and (84) and (82) are identical except for an

i-position cyeclic shift of the resulting tap vector.

*We are assuming 8 is constant; in practice, it might be desirable to make g
dependent on m.
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X. SOLVING THE DIFFERENCE EQUATION
Before we discuss (82) in more detail, we define

H, = ﬁ:i_:: Q:EU* (85)

because sums of this type will be frequently needed in the subsequent
analysis. Examples are

Hy=0

H, = BE

N—1
Hy =8 ¥ QEU-
k=0

Further, it is rather straightforward to show that

H,;=H;+ QH;U'= H; + Q'H;U’, (86)
and, as a special case,
Hinin = Hivy + QWVH, = H, + Q"HiyU™ (87)

H;x may be expressed in a more convenient form if we introduce a new
summation index, 1N + j,

-1 o N=1 . .
Hix=p Zﬁ QN Z‘a QEU, (88)
i= J=
The first series can be summed, and we obtain
Hiy = (I —Q™)(I — QV)'Hy, (89)

where we have made the implicit assumption that I — @V is non-
singular (we will say more about that in a moment).
We are now ready to study (82), which may be written as

Cny1 = U’"{chl -} H,,.U_”'T}. (90)

By setting m = IN + n and combining the first expression in (87) with
(89), we obtain

CiNfnt1 = U"[Q”\H—"CI + QWH, U
+ (I — @™y — QV)'HyU—r}. (91)

For any nonzero value of 3, c» will not converge in the usual sense;
however, it will reach a steady-state condition that does not depend
upon the initial value of ¢;. In order that this can occur, we require

lim @V = 0, (92)

[+
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which means that we require the spectral radius p(@Q) to be less than
unity (all eigenvalues inside the unit circle). This will also guarantee
the nonsingularity of I — Q% and thus the existence of (89). The first
(transient) term in (91) will then converge to zero, which means that
the steady-state solution is independent of the initial tap settings.*
The second term will also converge to zero and the steady-state value
of ¢ is

Con 2 Ur(I — QV)HyUr. (93)

This solution is periodic in n; it is trivial to verify that, owing to the
cyclic nature of U,
Co,ntN = cq;,ﬂ- (94)

As an important special case we have, if n = 0,

o = (I — Q¥)'Hnr £ Hor. (95)
After m = IN iterations, the tap vector is
Civy1 = QWer + (I — QW) (I — QYV)lHyr. (96)

By combining (95) and (96), we can express the convergence with the
error vector iy 1 — Ce,

CENJrl — Cp = Q:N{cl - cm)’ (97)

as a function of the initial error vector. This is a particularly simple
form, which shows how the convergence is directly dependent on the
eigenvalues of ¢. The error vector is reduced by a factor Q¥ with each
cycle of iterations. The eigenvalues of @ are functions of 8 and of the
signal format and channel characteristics. We will study this problem
in the next section.

XI. CONDITIONS FOR CONVERGENCE

The eigenvalues A and eigenvectors z of @ are determined by

Rz = U1 — gxxT)z = Az. (98)
We can calculate (A\z)*(Az) and obtain
[N|2ztz = 2tz — 2 zfxxz -~ A%zf(xxt)iz. (99)
Assuming normalization of the eigent ctors, we then require for
stability that
N2 =1 — 28|zfx* + B*(xtx)|zix|? < 1. (100)

*If only a small number of iterations are used for training, c. should be chosen
carefully, since ¢ will then be a function of the tran: cnt term as well.
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If we now assume that z'x % 0, we get the simple condition

2
0<ﬁ<;7'_x (101)

to ensure convergence of the tap coefficients. Note that the bound
(101) depends only on the received signal power, which can be nor-
malized with an automatic gain control.

A completely different situation occurs if x is orthogonal to an
eigenvector z; z'x = 0. It is easy to see from (100) that this would
imply |A| = 1, regardless of 3. This case must be avoided and needs
some special attention.

We first conclude that z'x = 0 implies that z is an eigenvector of
both @ and U; this is evident from (98). The next step is then to de-
termine the eigenvectors y and eigenvalues p of the cyclic shifting
matrix U. They are defined by the equation

Uy = uy. (102)

We introduce a unitary matrix W with elements
1 27 . .
e = —— —7 == = = -
Wi \[__exp ( I tk) , 0=4k=N-1 (103)

and observe that

{WIUW }u = 8 exp (—j % ) (104)

is diagonal. The eigenvalues of U are thus given by
m:exp(—j%’”) i=0,1,--,N —1 (105)

and the corresponding eigenvectors are
¥y7 = (Wi, Wery Win, ***, Wi,N—1)- (106)
We now define a vector h with values y/x,

Yox
h = : = Wx. (107)
Yi—1X
The components of h are thus simply the components of the discrete
Fourier transform of x, and we can finally write our requirement
ztx # 0 in the form

N-1
VNhi = ¥ wkexp(—j%fik);«so for i=0,+---,N —1. (108)
k=0
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This is not a serious restriction, since most channels will produce an
x whose prr will have only nonzero components. Difficulties can arise,
however, with frequency gaps of severe attenuation within the pass-
band range, but this is a condition that needs special attention with
any equalizer. Partial-response signaling does not satisfy (108), and
we conclude that it cannot be used for cyelic equalization without
changes in the equalizer structure or tap-updating algorithm.

Before we leave the stability discussion, we would like to point out
another aspect of our problem. By setting n = 1 and IN — « in (89),
we obtain

H, - QH,U = BE,
or, after postmultiplying with U,
QH, — HU' = —EU. (109)
Matrix equations of the above type play an important role in stability
and control theory (Lyapunov), and it is known that a unique solution

of (109) exists only if @ and U~ have no common eigenvalues. This
would obviously also lead to our conditions (101) and (108).

Xil. ASYMPTOTIC BEHAVIOR

The coefficient vector that minimizes the mean-square error of the
received sequence is given by
c. = A7, (110)

where A and v are the signal-correlation matrix and the eross-correla-
tion vector between this sequence and the reference. Our current
strategy does not use the gradient (75) in a steepest descent algorithm,
nor do we assume that 8 decreases as the iterations proceed. Thus, it
is to be expected that we obtain settings that are biased with respect
to (110). We first write (95) in the form

(I — @V)c, = Hyr. (111)
From (70) and (83) we can express @V as

Q¥ = (I — Bxnxf) «++ (I — Bx.x3) (I — Bxix7)
=1 -8 xxT + 8 % xxlxuxl — --- (—1)¥8Vzy --- x]. (112)
i 1>k

If the signal matrix,
N
4 = Blxal) = 1 3 xaf, (113)
N i=1
is introduced, we have

I — Q¥ = 8NA I—EA—lzxixTxkx{-{----}' (114)
N i>k
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We can expand the right-hand side of (111) in a similar way,

N N
HNI' = ﬁ Z (I — ﬁx,-x}") X,‘d.‘
i=1 |j=1+1
N—1 N
BNV —F L 3 xafxdit+ o, (115)

i=1 j=i+l

where the signal correlation vector v is defined as
1 N
v = E{xd} == ¥ xd. (116)
N i1

Combining (113) to (116) and writing out only the first-order terms
in B/N yield

]

Co = I+NA‘1.§‘xix3"xkx{—--- Co
5

B Ay xxmxdy — -, (117)
N >k
The neglected terms in (117) are multiplied with higher powers of g.
It is, therefore, always possible to choose g small enough to make the
linear term dominant. We can conclude that the resulting asymptotic
tap vector differs from the MMsE solution c.p: by a bias which, for
sufficiently small 8, is directly proportional to 8 and may be made
arbitrarily small. Very fast initial convergence can be obtained by
choosing 8 large ; then 8 may be made smaller for the remaining itera-
tions to reduce the bias error (gear shifting).* This will also reduce the
periodic fluctuation of the tap coefficients in the final steady state.
On the other hand, one should always keep in mind that the cyclic
process is used only during the training time and that random data
are used later on for adaptation. The tap vector that yields MMsE for
the training sequence generally does not minimize the mean-square
distortion for random data. However, the work of Chang and Ho*
indicates that (for small 8) the results may not be significantly in
error. It would be expected that, in the normal data set application,
cyclic equalization would be used for enough cycles to achieve a good
open eye; then a longer training sequence would be used, decision-
directed, to determine the steady-state tap coefficients.

Xill. ACCELERATED PROCESSING

After these theoretical studies, we conclude our paper by discussing
some more practical aspects of the signal-processing organization.

* It seems possible that a continuous decrease of g during the iterations would
yield superior results; we have, however, not analyzed this case.
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More precisely, we present a somewhat modified implementation
technique of cyclic equalization that will allow a further reduction in
the initial training time. For this, we assume that the received sequence
is not substantially corrupted by noise. In a highly dispersive channel
with a relatively high s/n, this is a realistic assumption since inter-
symbol interference is completely dominant and noise'is of minor in-
fluence at the beginning of equalization. Once the initial transients
have settled, the receiver will thus see a train of continuously repeated
identical sequences. No information is lost if one sequence length is
stored in the receiver for further processing and the input is switched
off. Such a system is depicted in Fig. 10.

BLE‘___
p=t—

DATA IN
1
SUMMING
| AMPLIFIER
E —_—
——i
.
|
MULTIPLIER
| st
g SLICER

- I DATA
> ﬂ P CLOCK
~ 7 Vs
I N\ / 7 S A

v
HIGH
N 7 Q\No—<_o SPEED

-
STORED REFERENCE SEQUENCE B CLOCK

-

Fig. 10—Block diagram of cyclic equalizer equipped for accelerated processing.
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For clarity, only three taps are shown. The samples of the data se-
quence are entered into the delay line (shift register in the case of a
digital equalizer) of the transversal filter while switches S are in posi-
tion A. As soon as one full sequence is stored, i.e., when samples have
reached the end of the delay line, switches S are moved to position B.
Thus, a shift-register ring circuit is formed and the stored samples can
be shifted cyclically by applying appropriate clock pulses. The stored
reference sequence is shifted at the same speed. It is important to
realize that this speed need not be related to the actual data rate. The
stored signal vector and the reference sequence can be shifted at a
much higher rate, thus simulating a “speeded-up’’ data flow. Initial
training can be achieved in a time interval limited only by the speed
capabilities of the signal-processing hardware. After going through a
specified number of sequences, training is considered sufficient and the
computed tap coefficients are cyclically shifted for alignment. All
switches are then set to position A, received data are shifted down the
transversal filter at the actual data rate, and further adaptive equaliza-
tion is performed on a decision-directed basis. The described training
method combines cyelic rotation of the signal vector, the reference
vector, and the coefficient vector to simultaneously achieve equaliza-
tion and synchronization in ‘“speeded-up”’ time, i.e., virtually instantly.

The above method is particularly simple when used with a stochastic
adjustment algorithm. However, accelerated processing is also at-
tractive with the mean-square gradient-type algorithm. Since the
gradient is determined by averaging over N symbols, an additional
array is necessary to store the accumulated correlation products of
error and tap signals. The speeded-up data flow is again achieved by
cyclically shifting either the signal vector or the coefficient vector at
the highest possible rate consistent with the required signal-processing
operations, only now the coefficient vector remains unchanged until,
after one full cycle, the correlator array contains the (suitably scaled)
tap corrections. The coefficients are now updated and the process is
repeated, if necessary. After a couple of iterations the coefficients are
rotated to align the largest of them with the reference position and the
equalizer is switched to real-time processing and decision-directed
operation.

Even without accelerated processing, the initial training time using
cyclic equalization is so short that the delay needed for the signal to
initially “fill up” the transversal filter becomes significant. With the
described method of accelerated processing, the training time can be
reduced to an arbitrary short interval limited only by the speed capa-
hilities of the circuit elements. The “fill-up”’ time becomes completely
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dominant. In the extreme, cyclic training can be achieved within a
single symbol interval (after the equalizer is filled up).

XIV. CONCLUSION AND SUMMARY

Cyeclic equalization, as presented in this paper, is a new method for
initial equalizer training. Its main features are:

(7) A special training sequence where the number of symbols
equals the number of equalizer taps.

(#4) Very fast start-up with provision for futher speeded-up opera-
tion, reducing training time theoretically to less than one
symbol interval.

(#7d) Ideal reference operation with no synchronization required.
The processes of equalization and synchronization are com-
bined in a unique way.

(iv) Perfect equalization at a set of equally spaced points in the
frequency domain.

(v) Simple and economical implementation.

Cyeclic equalization provides a set of tap coefficients that need to be
cyclically rotated after initial training. At this time, a coarse equaliza-
tion is achieved, the eye pattern is open, and the equalizer can switch
to a decision-directed mode to achieve final tap settings using random
data.

We have shown that the periodic training sequence can always be
exactly equalized, so that all unbiased tap-updating algorithms will
converge to the same tap settings, namely the inverse prr of the
sampled channel correction function. The mean-square gradient algo-
rithm was analyzed in detail. The channel correlation matrix eigen-
values that influence the convergence are directly related to the lines
of the power spectrum of the received sequence. The problem of initial
coefficient presetting was discussed, and we made some comments con-
cerning the choice of the training sequence and the influence of noise.

The cyclic equalization process using the mean-square algorithm
without averaging was considered, and the difference equation that
describes the coefficient convergence was solved. It was proved that
the algorithm converges provided that the discrete Fourier transform
of the received signal vector has no zero elements, and that the step
size is within certain limits related to the number of taps and the
received signal power. Finally, it was shown that the tap coefficients
for the algorithm without averaging equal those for the algorithm with
averaging except for an error term which goes to zero as the step size
approaches zero.
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The paper has been concluded by presenting a signal processing
technique that achieves ‘‘accelerated convergence.” This' allows co-
efficient calculation in a time interval limited only by the speed
capabilities of the equalizer circuitry.
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