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Concepts and calculations from group theory have led to a new way of
demonstrating rearrangeability of networks made of stages of square
switches and to new factorizations of symmetric groups of compostie degree.

I. INTRODUCTION AND BACKGROUND

Telephone connecting networks usually consist of stages of switching
that alternate with fixed cross-connect fields; in effect, these two kinds
of units are used to build up desired connection patterns out of sim-
pler permutations by composition (see Fig. 1). Since permutations
form a group under composition, the notions of group theory have
become relevant to the study of connecting networks. They are
particularly useful for looking at desired combinatorial properties
such as rearrangeability, which is the capacity to realize any permuta-
tion. This is true because, in the group-theoretic setting, the original
Slepian-Duguid rearrangeability theorem' provides the possibility of
factoring a symmetric group into a product of subgroups, or of double
cosets of subgroups generated by stages.

Here we extend a natural notion of “switch permutation’’ implicit
in Duguid’s proof to general networks with nr inlets and as many
outlets. For such networks g and », we establish a group-theoretic
condition on the sets D(u) and D(v) of switch permutations realized
by x and », respectively, under which the larger network obtained by
cascading p and » alternately between three stages of r n X n switches
is rearrangeable. This result corresponds to factorization of the sym-
metric group of degree nr into a product of subgroups with the sets
P(u) and P(v) of permutations realized by u and », respectively. The
condition given is verified in the examples in Section V by carrying
out group multiplications.

It is conceptually useful to regard a connecting network as a quad-
ruple » = (G, I, ©, S), where (¢ is a graph depicting structure and, in
particular, indicates between which terminals (nodes) there is a switch
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Fig. 1—Switching network with incomplete access between stages.

(edge); I and Q are respectively the set of inlets (terminals) and the
set of outlets, and S is the set of states deemed physically meaningful,
that is, the set of allowed ways of closing switches so as to connect /
to Q@ by paths through G. We shall assume » to be two-sided: I N @ = ¢
and |I| = |@| = nr, where n and r are integers =2. The set A of
assignments is the set of correspondences of subsets of I into @, each
correspondence being interpreted as a particular way that terminals
could ask to be connected together in pairs. Of course, there may or
may not be a state in S realizing such a desired assignment. In any
case, there is a natural map v:.S — A such that v () is the assignment
realized by state z; in effect, y(z) tells us who is talking to whom
when the network is in state z.

To put our questions into their natural group-theoretic setting, we
shall identify both 7 and @ with the integers {1, 2, - --, nr}, and the
set of mazrimal assignments (everybody wanting to talk to somebody)
with 8,,, where

S = {k — permutations} = symmetric group of degree k.

The set P(») of maximal assignments or permutations realized by » is
then expressible as

P(V) = 'Y(S) ﬂ Sar

A connecting network is called rearrangeable iff for every assignment
@ € A thereis a state x © S such that z realizes g, i.e., y(z) = a. Thus,
the basic problem of the rearrangeability of » can be cast in the follow-
ing equivalent questions: When can every assignment be realized?
When is y(8) = A? Under our assumptions, these questions take the
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form: When can the symmetric group on {1, ---, nr} be realized?
When is P(v) = 8,,?

The latter, group-theoretic form of the question begins to assume
interest and importance when we note that many of the usual ways
of constructing networks from stages of square switches correspond to
factoring S,, into factors that are subgroups. How this happens is
explained next.

Il. FACTORING S,

If X and Y are sets of group elements (complexes, in the old
terminology) then X'V is the set of products zy withz € X andy € Y.
We drop the notation I for the set of inlets, and use it henceforth for
the identity permutation. Also, it is convenient to use exponent
notation both for products of complexes with themselves, as X? for
XX, and for the direct product of a group with itself some number of
times. Thus, we establish the convention that if X is a complex, X?
is XX as defined above; but if X is a group, then X* means the k-fold
direct product of X with itself.

It is readily seen, and has been pointed out before,? that a stage
of square switches realizes an imprimitive subgroup of permutations.
For example, the column of r n X n switches shown in the top half
of Fig. 2 realizes the (imprimitive) subgroup that permutes the first
n inlets among themselves, the second n among themselves, ete., up
to the last n among each other. This subgroup is isomorphic to the
direct product of S, with itself r times, that is to (S,)", and will be
denoted by the same notation. In short, if » is a stage of r n X n
switches, then P(») = (S.)".

EXAMPLE:n=3,r=2

1
14 L1
2-%—2 ~ (123)
3 L3

2

(123) 2
Y] "2 € (S3)

1+ =1
2 —2 v (12)
3 3

Fig. 2—Direct product group interpretation of a stage of square switches.
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Fig. 3—Manner in which the three-stage network factors group Sa, with H=(S,)"

Passing now to the three-stage network depicted in Fig. 3, we recall
that by the classical result? of Slepian and Duguid, it is a rearrangeable
network. We denote by ¢ the permutation corresponding to the
standard cross-connect field between stages that defines a frame,
namely,

e:j—=1+[(G—1)/n]+r((j—Dmodn) j=1, -, n0n

and we see that in Fig. 3 the middle and right stages have ¢ between
them. (An alternative description of ¢ is that it takes the jth outlet
on switch ¢ into the sth outlet of switch j, for j =1, -+-, n and
i=1, -, r.) The original rearrangeability theorem can now be
stated as a factorization, as follows (Fig. 3):

Classical Theorem (Slepian and Duguid): The symmelric three-siage
network of square switches, in which switches on adjacent stages are
connected by ezactly one link, is rearrangeable and corresponds to a

factorization
Sar = (8a) e S 0(8n)". (1)

The three middle factors above define a conjugate subgroup, so we
have factored S,, into a product of three subgroups. The remaining
sections of this paper are devoted to finding alternative factorizations
of S,, that are associated with rearrangeable networks. We prove a
factorization like (1) but with ¢ replaced by P(») for suitable », and
then describe some applications.

Il. SWITCH PERMUTATIONS

Now the essence of Duguid’s proof of Slepian’s result from Hall’s
theorem is contained in what we shall call a swilch-permutation: he
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decomposes any nr-permutation into a union of n submaps, each of
which, because it corresponds basically to permuting outer switches,
can be realized on a single middle switch. This idea is made precise as
follows: define the function

sw: {1, ---,mr} —> {1, -+, 1}
by
sw; = the switch (inlet or outlet) 7 is on in a stage of r n X n switches
=thek(l £k Sr)suchthatnk —n+1 =217 £ nk.
Let = be a permutation of S.,. A Hall decomposition of m is a partition

7 = U~ p; of 7 into n submaps p, such that forl = 1, - - -, n, the set

@ = {(swi,sw)): (4, 7) € pi}

is an r-permutation, i.e., g; € S,. The intuitive meaning of this
property of the p; is that each one maps exactly one inlet from each
consecutive set of n onto outlets that are on distinet consecutive sets
of n outlets. Hall’s theorem on distinet representatives of subsets
implies:

Fact: Every = € S,, has a Hall decomposition.

We can now define the switch-permutations generated by a network
» as follows: an element
/51
e S)
qn

is a switch permutation generated by » iff there exists # & P(») with
a Hall decomposition = = (J?-, p; such that

g = {(swy, swy): (2, ) € pi}. (2)
731
Remark 1:1f| : )is a switch permutation generated by
qn
v, then so is
g=m

, for any = € S..
r(n)
Intuitively, the ¢; associated by (2) with the p; of a Hall decomposition
are just the settings of the successive middle switches that come out
of Duguid’s rearrangeability argument. The remark above is a reflec-
tion of the fact that submaps p; of the decomposition can be assigned
to the middle switches in an arbitrary way.
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IV. FACTORIZATION

We let D(v) be the set of switch permutations generated by ». The
new factorization-rearrangeability result we prove is as follows:

Theorem 1: If u and v are networks with nr inlets and nr outlets, such that
(8" S D(»)D(u),

then the metwork (Fig. 4) obtained by cascading v and p alternately
between three stages of r n X n switches is rearrangeable, and corresponds
to a factorization

Snr = (82)"P(») (Sa)"P(r)(Sa)".

Proof: Take m € S., to be realized. It has a Hall decomposition
7 = |Ji, p; inducing a switch permutation

Q1
€ (8)" S D(»)D(n)
Qn

via @ = {(sw;, sw;): (¢, j) € pi} as before. Thus, for each
I =1, ---, n there exist ¢; and b; each in S, such that ¢; = b;a;, with

ai bl
a=| i )€EDwandp=|: )€ D@).

Qn bn

The desired permutation can now be obtained by setting p and » to
generate switch permutations « and 8, respectively. For (z,7) € m
we look at how sw; and sw; are connected to the middle stage and claim
that they are connected to the same middle-stage switch! This is .
because u connects sw; to a;(sw;), and » connects sw; to b;~!(sw;).

. s s
<
=

. -
r . - r
. -

.
“es
-

REARRANGEABLE NETWORK WHEN (S()"SD(v) D(i) YIELDING FACTORIZATION

Snr=(Sn) " P(¥) (Sn) " Pl) (Sp)"

Fig. 4—Rearrangeable network when (S,)»C D(v) D(u), yielding factorization
Snr = (82)"P(¥) (Sn) P () (Sn).
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Since, by construction,

sw; = qi(sw;)

bilai(swi) ],

we have a;(sw;) = b7 '(sw;). It remains to route 7 to a(sw;), to route
7 to b7 l(sw;) and to complete the connection in the middle switch.
This recipe works for all pairs (7, j) € r, and the theorem is proved.

Il

We next note that the hypothesis (S,)» € D(») D(u) of the
theorem can be replaced by a stronger, more complicated condition
that is less work to verify by calculation.

Remark 2:1f M, N are subsets of D(u), D(»), respectively, such that for
any g, - -+, g» & S, there is some ¢ & §, such that

Ge(1)
: E NM, (3)

Qo(n)

then (8,)» € D(»)D(u). For if (3) holds, then there are a; b; in
M, N, respectively, and, hence, in D(») such that ¢q,q, = bay, i.e.,
@ = by, ya, ). But

Qp™1(1) be1q1)
: € D(w), : € D)
Ty~ (n) be-t(ny

by the remark following the definition of switch permutation. Hence,

d1
( : )6 D (v)D ().
Gn
V. EXAMPLES

Figure 5 and Tables I through III illustrate an application to the
network of Fig. 1 to prove it rearrangeable. Here u = », the network
v being just a stage of three 2 X 2 switches preceded and followed by
the permutation (13) (25) (46) induced by the cross-connect field that
links successive stages. Figure 5 illustrates two of the switch permuta-
tions generated by a copy of »; the three stages shown in Fig. 5 are
either the first three or the last three stages of the network of Fig. 1.
Table I gives all eight possibilities ; these form sets M, N (with M =N)
of the form described in Remark 2, as can be verified from the product
table, Table I1I, using the multiplication table for S; given in Table
II. The entries of the product table that are shown form a subset C
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3 a|l
23
1 1
J 32
1 {23) (12)
2 2 [rvgg Vit O @
4 A |
12
3 3 5

Fig. 5—Switch permutations generated by states of the middle stage.

a b
( b ) o (a)
belongs to C for any choice of a and b in Ss; thus, property (3) of
Remark 2 holds, and Theorem 1 is applicable.
Tables IV and V show the same kind of calculation for the network
with a cyclic cross-connect field (Fig. 6) that induces the permutation

(5432). Tables VI and VII show the same results for the network
(Fig. 7) based on (23) (45). Asterisks in Table VII define a subset

of M such that either

Table | — Direct product elements corresponding to switch
settings for cross-connect (13) (25) (46) used in Fig. 1
sw #

1st 22 23 22 22 23 23 22 23

8 33 32 33 33 32 32 33 32

ond 11 11 13 11 13 11 13 13

33 33 31 33 31 33 31 31

ard 11 11 11 12 11 12 12 12

22 22 22 21 22 21 21 21

Elementsof K | T  (23) I (12 (13 (23  (13) (123)

I I (13) I (2 (12 12 (132)

1 2 3 4 5 6 7 8
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Table Il — Multiplication table for S;

1st Operator

I (12) (13) (23) (123) (132)

I I (12) (13) (23) (123) (132)

(12) (12) I (132) (123) (23) (13)

(13) (13) (123) I (132) 12) (23)

(23) (23) (132) (123) I (13) (12)

2nd
Operator  (123) (123) (13) (23) (12) (132) I

(132) (132) (23) (12) (13) 1 (123)

with the property (3) of Remark 2, except that neither

(13) (132)
132) " 13)

is in the subset; nevertheless (S;)? C D(»)%
Table Ill — Partial table of M* for cross-connect corresponding

to the permutation (13) (25) (46) and showing that
condition of Remark 2 is satisfied

M
1 2 3 4 5 6 7 8
I
1 I
9 (23) (123) (13)
I (12) | @132)
3 I @3) | (3)
(13) (123) | (123)
4 (12) (132) (132)
I (23) (12)
M
5 (13) (132) 1 (12)
(23) (132) | (132) (12)
6 (23) (123) (13)
(12) (123) (13)
7 (13) I
(12) (123)
8 (123) (23)
(132) (23)
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Table IV — Direct product elements corresponding to switch
settings for cyclic cross-connect (5432)

sw #
1st 11 21 11 21 11 21 21 11
23 13 23 13 23 13 13 23
ond 21 31 31 21 21 31 21 31
32 22 22 32 32 22 32 22
3rd 12 32 12 32 32 12 12 32
33 13 33 13 13 33 33 13

Elements of M | (12)  (132) I (132) (23 (13) (12) (13)
(23) (13) (123) (132) (132) (12) (132) (23)
1 2 3 4 5 6 7 8

VI. CONJECTURE ABOUT NUMBER OF STAGES NEEDED TO GIVE

REARRANGEABILITY WHEN A GIVEN CROSS-CONNECT

FIELD IS USED

From Fig. 1 it is evident that an input switch on the left does not
reach all the switches of the second stage, but can reach all the switches
of the third stage by passing through the second stage. Thus, regarding
switches as vertices and links as edges, we can say that no input
switch is farther away from a third-stage switch than d = 2 units, in
the usual metric of the graph defined by the vertices and edges.
Furthermore, the number R of stages necessary and sufficient for
rearrangeability is 5 = 2d + 1. Similarly, in the three-stage network
of Fig. 3, the distance from any input switch on the left to a middle

CROSS-CONNECT (5432) — __
~

2x2
—1 N

3

Fig. 6—Network based on cyclic cross-ronnect field corresponding to the permuta-
tion (5432).
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Table V — Partial table of M* for cyclic cross-connect,
showing that condition of Remark 2 is satisfied

M
1 2 3 4 5 6 7 8
. 1 (13) (132)
I (123) (132)
. | @ @3)
(132) 23)
5 (12) I
(12) (132)
.| e [ azm | am)
a3) | a2) | a2
M
s | (82 (23)
(13) I
(123)
6| (123
, I a3 | a2
as) | a2 | 1
o | 029 | @8 | 03 | @3 | (s
I (123) (13) (12) (12)

switeh is, of course, d = 1, and the number of stages R (necessary and
sufficient for rearrangeability) is 3 = 2d + 1. This leads us to suspect
that there is a connection between the number of links one must go
through to reach all switches of a stage and the number of stages
needed to get a rearrangeable network.

To pose the question another way, let § be a stage of square switches,
and ¢ a cross-connect field (permutation), and consider the natural
sequence of networks such that

P(vs) = 88
P(v;) = 8¢8¢8
P(vy) = 808088

We ask for what value s = R will », first be rearrangeable, and how
does this number B depend on ¢?

Going back now to the graph defined by the switches as vertices and
the links as edges, we shall say that an inlet switch or vertex has
access to a switeh in a given stage iff there is a path on the graph from
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Table VI — Direct product elements corresponding to switch
settings for cross-connect represented by (23) (45)
(see Fig. 7)

sw #

1st 11 12 11 11 12 11 12 12

22 21 22 22 21 22 21 21

ond 11 11 13 11 13 13 11 13

33 33 31 33 31 31 33 31

3rd 22 22 22 23 23 23 23 22

33 33 33 32 32 32 32 33
Elementsof M | 1 I I I (123) (23) (12) (12)
1 (12) (13) (23) (132) (13) (23) (13)

1 2 3 4 5 6 7 8

Table VIl — Complete table of M* for cross-connect
corresponding to the permutation (23) (45)

M
1 2 3 4 5 6 7 8
. I I I* I* | a2 | @) | az| a2
I a2) | @3 | @) | a32) | (13 | @) | (13)
9 1 I I o aze) | @) | a2 | a2°
(12) I (132) | (123) | @3) | 182) | (128) | (132)
3 1 1 1 I azs | @3 | 2| 12
(13) | (128) I (182) | (23) I (132) I
. 1 I I I 23 | @3 | a2 | 12
o (23) | (132) | (123) I 12) | (123) 1 (123)
s | (123) | (123) | (123) | (128) | (132) | (12)° | (13)"| (13)
a32) | @3 | a2 | w3 | 2 | a2 | @3 | @2
6 23) | @3) | @3 | @) | @3) I (132)* | (132)
(13) | (123) I (132) | (28) I (132) I
. a2 | a2 | a2 | 2 | @) | @223 | I 1
(23) | (132) | (123) I 12) | (123 I (123)
8 (12 | 12 | 12 | a2 | (@3*| 123 I 1
(13) | (123) I (132) | (23) I (132) I
(13)  (132)

Note: Neither oceurs, so that condition of Remark 2 fails, although

(132) "% (13)
condition of Theorem 1 holds because

I (13) _ (13)
(13)°(23) = (132)
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CROSS-CONNECT (23)(45) —_ __

~
— — \w\

2x2

3

F;ig. 7—Network based on cross-connect field corresponding to the permutation
(23) (45).

the first switeh to the second containing exactly one switch from every
intermediate stage. Typically, the set of outlet switches to which an
inlet switech has access will grow with the number of stages, and, for
rearrangeability, it is, of course, necessary that every inlet switch have
access to every outlet switch. Roughly speaking, the more access the
field ¢ provides for switches from one stage to those of the next, the
smaller will be the number of stages required for rearrangeability. It
would therefore be of interest to relate this “amount of access’ avail-
able with a given number of stages to the number of stages required
for rearrangeability.

To this end, let us say that », has “full access” if every inlet switch
has access to every outlet switch, and define

d = min {s: v,;, has full access}
R = min {s: v, is rearrangeable}.

To return to the examples, if ¢ is the permutation (13) (25) (46)
corresponding to the cross-connect field of Fig. 1, and § is a stage of
three 2 X 2 switches, then d = 2 and R = 5 = 2d + 1. In Fig. 3, ¢
consists of a link between every pair of switches in successive stages,
and so d = 1 and clearly R = 3 = 2d + 1. Again, in Fig. 6, using the
cyclic cross-connect corresponding to (2345), it can be seen that d = 2
and R =5 = 2d + 1.

All of these cases induce the following conjectures:

(%) veay1 is rearrangeable.
(#7) R = 2d + 1.
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It is easy to find additional confirming examples, especially necessity
arguments for B = 2d + 1, but to give a general proof seems to be
very difficult.
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