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Two techniques for designing a class of low-sensitivity, follow-the-
leader, feedback-type active filters have been introduced by Hurtig and
Laker-Ghausi. The FLF configuration consists of a cascade of second-
and/or first-order sections, with feedback from each section back to the
Jfirst. This paper presents an approach for designing FLF-type realization
Jor all classes of filter functions. The technique is based on a shifted-com-
panion form of the associated-state equations. Some salient features of
Hurtig’s primary resonator block, Laker-Ghausi’s follow-the-leader feed-
back, and the shifted-companion-form techniques are presented below.

(7) Hurtig's PRB realizes any all-pole (no finite transmission zeros)
filter function. This includes the low-pass, high-pass, and sym-
melrical bandpass filters without finite zeros. Explicit design
equations are available, and the individual sections in the array
are identical.

(¥) Laker-Ghausi’s FLF realizes any symmetrical (including finite
transmission zeros) bandpass filter function. The sections are
not constrained to be identical, which allows optimization using
this degree of freedom. Finite zeros are realized by a summation
technique.

(vi7) The SCF realizes all types of filler functions, i.e., low-pass,
high-pass, bandpass, all-pass, or band-reject filters. Explicit
design equations are available. The first section can differ from the
rest, thus allowing some optimization with standardization. Feed-
forward as well as summation techniques can be used to realize
the finile zeros.

Two bandpass design examples using SCF, PRB, and/or Laker-Ghausi
FLF techniques are given and compared with the low-sensitivity coupled
(leapfrog) biquad, the conventional cascade biquad, and the passive
ladder filter designs. The comparison shows that the passive filter gives
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the best performance with respect to sensitivity to element deviations. All
the coupled designs are significanily better than the cascade design in the
passband, with the coupled biquad (leapfrog) design the most signif-
icantly better. In the stopband, cascade and coupled designs perform
roughly the same.

I. INTRODUCTION

Recently, Hurtig!? introduced a low-sensitivity, multiple-loop-feed-
back active rc filter configuration for the realization of greater-than-
second-order voltage transfer functions. The configuration has been
found to exhibit greatly improved stability over cascaded designs.
For symmetrical bandpass filters, Hurtig’s structure [called the pri-
mary resonator block (PRB) configuration] consists of a cascade of
identical biquadratic bandpass sections (i.e., same pole-frequency and
pole-Q) with feedback from each section (except the first) back to the
first section. More recently, Laker and Ghausi®* extended Hurtig’s
configuration to include symmetrical bandpass filters with finite
transmission zeros, e.g., elliptic-type filters. In Laker and Ghausi’s
approach [called the follow-the-leader feedback (FLF) technique],
different pole-Q values can be allowed for the biquadratic bandpass
sections.

For the prB technique, Hurtig has given a set of explicit equations
expressing the biquadratic bandpass transfer function and the feed-
back factors in terms of the coefficients of the all-pole prototype low-
pass transfer function.? In the rLr approach, Laker and Ghausi used
a coefficient-matching technique. Because of the nonuniqueness of
solutions in the FLF approach, Laker and Ghausi further proposed a
method of choosing the pole-Q values for an optimum design.

In this paper, we present yet another approach based on a shifted-
companion form of state variable representation of the voltage transfer
function for the design of symmetrical bandpass and band-reject
filters with this structure. In the bandpass case, using the proposed
method, each biquadratic bandpass section in the cascaded array must
be identical, with the possible exception of the first. Hence, it in-
cludes the Hurtig PrB configuration as a special case, but does not
encompass the Laker-Ghausi cases having three or more different
values of pole-Q. As in Laker-Ghausi’s approach, the design of sym-
metrical bandpass filters with finite transmission zeros is included in
the discussion of the shifted-companion form. Similarly to Hurtig’s
approach, the shifted-companion form also gives explicit design
formulas as opposed to the coefficient-matching technique used by
Laker and Ghausi. Furthermore, in the shifted-companion-form
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design, different realizations (with the same configuration) can be
obtained by varying the value of a shift parameter. The standard
companion-form representation® corresponds to the case in which the
value of this shift parameter is equal to zero.

In the next section, the shifted-companion-form representation of a
voltage transfer function is presented. A brief discussion on the optimal
choice of the shift parameter based on our design experience is given
in Section III. Two design examples, a three-section Butterworth
bandpass filter and a three-section elliptic bandpass filter, are given in
Section IV. The section also compares the sensitivity performance, in
a Monte-Carlo sense, of the shifted-companion-form designs to the
cascade biquad and the coupled biquad®? as well as to the passive
designs.

Il. SHIFTED-COMPANION-FORM REPRESENTATION OF VOLTAGE

TRANSFER FUNCTION

The design technique for the proposed shifted-companion-form
representation of a voltage transfer function is obtained as follows.
First, a shift is introduced to the complex frequency variable by adding
a variable constant « (shift parameter) to the complex frequency
variable. Second, the resulting shifted-transfer function is represented
by the standard companion form® and its corresponding block diagram,
which has the desired structure. Third, an inverse shift operation is
made on the standard companion form to determine the proper values
for the parameters of the structure.

2.1 Representation of voltage transter function by a shifted-companion form
Let the voltage transfer function be given by

M( ) = AmP™ + Nmap™ ' 4+ -+ + nup + 0
Via P Pt duap™ + - + dip + do

+ 4,
for m <n. (1)
Let the following shifting be made in the complex frequency variable
of (1):
P=8—a (2)
where a, the shift parameter, is a real number. Substitution of (2) into
(1) results in the following shifted-transfer function (see Appendix A):

i bm_‘,sm—i
() = —=2 + d, (3)

n
8"+ 3 an_is"d
=1

Vour
Vln
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where

Cd . (n — k)!
ani = Z U7 G — 1 e

J=12 - n
) (3a)
i ik k)]
EO(_I) (’!' _(T;:) |(m — 1’)1 knm—k)

1=0,1,:---,m

bm—i

Note that d, = 1. Alternatively, the a’s and b’s can also be obtained
by the following implicitly recursive formula:

a, =1
z (n—k)! .
dn_‘= k"_, =1,2,...
= ¢y T Rl ™1 (3b)
s = i (m - k) . a‘_kbm—k, i= 0, ]_’ cee,m

o (i — k)!(m —9)!

It is well known that a voltage transfer function (with degree n) can

be represented by a set of state equations in the (standard) com-
panion form,® i.e.,

x = AX + boi,

Ygut = CX + dﬂi“l

4)

where the state matrix A is of dimension n X n. In the case of eq. (3),
we have

X = (x4, g, -+, Tp)t
—@n_1 —Gpz —Gn-g '+ —G1 —Go B1
1 0 0 --- 0 0 b | B
A= 0 1 0 e 00 |, Py (B
: B
0 0 0 -1 0
c= [711 Y2, "7y 7"]' J

There are two special cases for eq. (5), A and B.

Case A: Transmission-zero forming by an input feed-forward tech-
nique:

c=[00---1]

b=_[f182 " Bl
and

i—1

Bnti—i = bni — 21 QnigBriry =12, mn  (5a)
=
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Case B: Transmission-zero forming by summation-of-state-variables
technique:
b=[10---0]

¢ = [batbas - bol. (5b)

To obtain the shifted-companion-form representation of the voltage
transfer function of eq. (1), the inverse shift operation, i.e., s = p + a
is applied to eq. (4). This is equivalent to the following operation:

time domain frequency domain ‘time domain
% & K 2 (p + )X & X + X, (6)
s=p+ta

where I is the n X n identity matrix. Hence, a shifted-companion-form
representation of eq. (1) is*

y = A’y + bvia
Uout = €Y + dvip,
where
—Qp-1 — A —Up—2 —QAn_3 '+ —a1 —Q
1 —a 0 e 0 0
A=A o = 0 1 —a - 0 0 , (7a)
0 0 0 - 1 —a

and the vectors b and ¢ are as given in eqs. (5a) or (5b).

At this point, it is desirable to change the relative level of the state
vector y to obtain more convenient values for the gain (i.e., close to
unity) of the individual biquadratic sections. Mathematically, we let

y = Kx, (8)

where K is a nonsingular diagonal matrix. It has been found convenient
to choose K to have the following form:

K = diag [a™! a*? -+ a 1]. (9)

Substituting (8) and (9) into (7) and (7a), the following shifted-
companion-form representation of eq. (1) is obtained:

X = AX +i)!)in

10
Vout = ex + dvin, ( )

* The state vector is changed from x to y.
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where

—a _ _ Qn An—3 _
n—1 « o a? an2
i _ R-ATR — a —a 0 0
A=KAK 0 N — 0
0 0 0 o
2 Br B B ¢
= =1 = —
b K-'b [anfl a2 a ﬁ“]
t=cK=[0 0 0 1]
or
- 1 ¢
b=Kb = [ — 0 --- 0 0]
a
6 = CK = [a"_lbn_[ a"_zbnﬁg e abl bo]

(11b)

Equations (11a) and (11b) correspond to the cases where the trans-
mission zeros are formed by the input feed-forward and the summation

techniques, respectively.

2.2 Block diagram representation of the shiited-companion form

Transforming eqgs. (10), (11), and (11a) into the frequency domain,
the following set of transfer functions representing the shifted-com-

panion form is obtained.

- 1 iy By ]
) = p+ (@1 + a) [ .1;2 ot Xip) + ant Vm(p)]
1 i
Xp) = s [oXes) + 25 Vet | -
for 1=2,3, -, n
Vou(p) = Xa(p) + dVin() )
Similarly, by transforming egs. (10), (11), and (11b), we have
1 = Gn—j xr o v L . ]
Xi(p) = P PR [" ;};ch Xi(p) + =1 Vm(P)]
1 .
Xip) = sy [eXea@] for i=2,3,-,n L.

Vou(p) = Ea“ﬂ“bn_ixe(p) + dVia(p)

4

(12)

(13)

Equations (12) and (13) are shown in block diagram form in Figs. la

and 1b, respectively.
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2.3 Block diagram representation of symmetrical bandpass filters via the
shifted-companion form

For geometrically symmetrical bandpass filters, eq. (1), eq. (12) or
(13), and Fig. 1a or 1b can be taken as the transfer function, the shifted-
companion-form representation, and the block-diagram representation
of the corresponding low-pass prototype, respectively. To obtain the
block diagram representation of the symmetrical bandpass filter
transfer function, we can apply the well-known low-pass to bandpass
transformation:

~ ot (14)

p = complex frequency for the normalized low-pass function
s = complex frequency for the actual bandpass function

wo = center frequency of the bandpass filter (in radians/s)

= passband bandwidth of the bandpass filter (in radians/s)

t
I

to Figs. 1a and 1b. The resulting block diagram representations are
shown in Figs. 2a and 2b.

2.4 Block diagram representation of symmetrical band-reject filters via the
shifted-companion form

To obtain the block diagram representation of the symmetrical
band-reject filter transfer function, similarly to the development of
Section 2.3, we can first apply a low-pass to high-pass transformation,
then follow with the usual low-pass to bandpass transformation, eq.
(14). Specifically, this results in the following transformation to Figs.
la and 1b:

B S & + wh (15)
p+a a8+ (Bla)s+ o}
where
p = complex frequency for the normalized low-pass function
s = complex frequency for the actual band-reject function

wo = Vwaw: (in radians/s)
B = w; — @ (in radians/s)
w1/w; = the lower/upper passband edge frequencies of the band-reject
filter.

Il

The resulting block diagram representation can also be shown as in
Fig. 2, except that

2

Ty(s) = s? + wi

@n1 + a § + [Bs/(an1 + @)] + i
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and
_ 1 8+ of .
Ti(s)_as’-{—(B/a)s—I—wﬁ’ '&—2,3, y M
In passing, we note that Fig. 2 can also represent the symmetrical
band-reject filter provided the parameters in Fig. 2 are determined
by making eq. (1) the transfer function of the band-reject’s correspond-
ing high-pass prototype.

lll. OPTIMAL CHOICE OF THE SHIFT PARAMETER, «

For symmetrical bandpass filters (Fig. 2), it is seen that all the
biquadratic sections, with the possible exception of the first section,
have a pole-Q value equal to wo/Ba. The pole-Q value for the first
section is

wo wWo

Blai:i+ta) & Bldia— (n— Da]

The value of these @’s versus « is illustrated in Fig. 3.

Before we proceed with a discussion on the optimal choice of e,
two special cases are pointed out. The first is the standard companion
form which corresponds to the case where a = 0. From Eq. (3a),

@ny1 = dn_1 — Na. (16)

Letting @ = du_1/n, an_1 = 0. With this value, (da—1/n) for «, a
second special case is obtained where all the biquadratic sections (in-
cluding the first) will have a pole-Q value equal to wo/B-n/(da—1). For
simple symmetrical bandpass filters, this special case reduces to
Hurtig’s PrB configuration, and Hurtig’s design formula? is identical
to that given by eq. (3b).

Since an infinite number of realizations, depending upon the choice
of @, can be obtained for the shifted-companion-form representation,
is there an optimal choice of @? This optimal choice would, perhaps,
depend also upon the performance criterion chosen. Laker and Ghausi
have proposed an optimization scheme for their configuration based
on a minimization of a certain statistical multiparameter sensitivity
measure.?* Their scheme can also be used here for the determination
of an optimal a with respect to their performance criterion. In the
following, we present two observations based on our limited design
experience with bandpass filters using the proposed shifted-companion
form where minimizing the filter’s passband sensitivity is of primary
concern. In our discussion here, the filter designs are subjected to a
computer-simulated Monte-Carlo analysis and sensitivity is examined
from the standpoint of standard deviation (dB) vs frequency.
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Fig. 3—Biquadratic sections @ vs shift parameter «.

(z) It appears that a broad range of values exists for « where the
improvements* over the cascade biquad design are relatively
constant. This range includes Hurtig’s design, i.e., a=d._1/n.

(77) Performance of the standard companion-form (i.e., @ = 0) de-
sign is about the same as that of the cascade biquad design.

The above empirical rule (¢) is observed in the design examples to
follow.

IV. DESIGN EXAMPLES

Two examples given here illustrate the shifted-companion-form de-
sign technique as well as demonstrate its performance relative to that
of the cascade biquad, coupled (leapfrog) biquad as well as to passive
ladder designs. Comparisons among these designs are based on a
Monte-Carlo analysis of the filters with passive components selected
randomly from a uniform distribution within a given tolerance interval.

* Improvement is to be broadly interpreted as less sensitive or having a smaller
standard deviation.
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4.1 Example 1—A three-section Butterworth bandpass filter*

The normalized transfer function of a third-order low-pass Butter-
worth filter is given by

Vout () = ! :

Vin P+2p+2p+1

Let the desired bandpass filter have center frequency (fo) of 1 Hz
and 3-dB bandwidth (B/2x) of 0.04 Hz. The prB version of the shifted-
companion form is designed here. Hence,

_ dn—l 2
n

(17)

From eq. (3a), we obtain

as =0, a; = 0.66666667, ao
by=by =0, bo=1.

And from eq. (5a),
B =1, B2 = 0, Bs = 0.

For this simple bandpass filter, the output summing amplifier (Fig. 2)
is not needed. Furthermore,

0.087(%)s

0.25925926

aT(s) = =¥ 0.08x(8)s + @n)* 1=1,2,3.
Note that
2r 3 .
Q; = 0.08: 2 = 37.5 for i=1,23.

For this example, each of the 7';(s) is chosen to be realized by the single-
amplifier biquad (saB) configuration of Ref. 8. The complete con-
figuration' is shown in Fig. 4, with the element values tabulated in
Appendix B. The element values as well as circuit topologies for the
cascade saB, coupled sas (or leapfrog saB),! and the optimized Laker-
Ghausi design® are also given in Appendix B. Each of the three bi-
quadratic bandpass sections in the shifted-companion-form, Laker-
Ghausi, and coupled-biquad designs has a pole frequency of 1 Hz;
whereas for the cascade design, the pole frequencies are 1, 1.01747,
and 0.982828 Hz. The pole-Q values for these four designs are tabu-

* This example can also be found in Ref. 3.

t The inverting amplifier A can be eliminated by feeding the output of section 3 to
the positive input terminal of the summing amplifier 4,. This has not been done in
the example.

! For symmetrical bandpass filters derived from an all-pole low-pass prototype, the
coupled biquad and the leapfrog designs can be made identical.
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Fig. 4—Configuration for the three-section Butterworth bandpass filter.

lated in Table I. These four realizations of the Butterworth filter as
well as the passive ladder realization were compared by a Monte-Carlo
study (with 200 trials) using the computer program BELTAP.® The
following assumptions are made:

() The operational amplifiers are ideal.
(27) All passive components have the same tolerance with a uniform

distribution.
Table | — Pole-Q values for the three-section Butterworth filter
Pole-Q Section
0
Filter T’

ilter Type . 9 3
Shifted-companion form (prB) 37.5 37.5 37.5
Laker-Ghausi (FLF) 442 442 28.8
Cascade biquad 25.0 50.0075 50.0075
Coupled biquad/leapfrog 25.0 @ 25.0
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Fig. 5—Simulated variations of the threesection Butterworth bandpass filter
(0.1732-percent passive components tolerance).

Two different tolerances were simulated, the first having a realistic
tolerance of =0.1732 percent and the second a large tolerance of
+1.732 percent.* The resulting comparisons based on the standard

* Realistic in the sense that the statistical variation of the filter response is within
a reasonable bound from the nominal. The large tolerance corresponds to a component
standard deviation of 1 percent, which was used in the example of Ref. 3.

558 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1975



deviations of the transfer function (dB) of the various designs plotted
vs frequency (Hz) are shown in Figs. 5 and 6.

It is observed that, over most of the passband (between the 3-dB
points), the coupled biquad,/leapfrog, Hurtig’s prB/shifted-companion
form, and Laker-Ghausi FLF designs show roughly the same improve-
ment (3-to-1 reduction in standard deviations) over the cascade
biquad design. The passive filter is, however, seen to be the least
sensitive.

5.0

4.0

w
o

STANDARD DEVIATION IN dB
)
=)

——SHIFTED -COMPANION -

FORM DESIGN /

- / (HURTIG PRB) / \

/ )
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~
~~f—_CcoupPLED BIQUAD
! DESIGN

| PASSIVE LC———

LADDER DESIGN
B N———

L ] I ] ] ] |
fo— faw fo— %faw fo fo+ %faw fo + faw

FREQUENCY IN Hz

6—Simulated variations of the three-section Butterworth bandpass filter
(1 732—percent passive components tolerance).
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4.2 Example 2—A three-section elliptic bandpass filter*

A sixth-order elliptic bandpass filter with center frequency (fo) at
2805 Hz, 0.1-dB passband ripple with bandwidth (B/2x) of 90 Hz,
and a minimum 30-dB loss below 2694.8 Hz and above 2919.8 Hz is
desired. The corresponding third-order normalized low-pass prototype
transfer function is given by

Vuuh _ M
Vin (p) - D(p)’

where
N(p) = 0.214115(p* + 8.158500)
D(p) = p* + 1.897376p* + 2.543168p + 1.746858.

Once again, the Hurtig criterion is used for the shifted-companion-form
design. Hence,

a = % = 0.6324587.

From eq. (3a),

as = 0, a, = 1.3431556, ao = 0.64438116
b, = 0.214115, by = — 0.2708378, bo = 1.8325041.

And from eq. (5a),

B = 1.5449143, B: = — 0.2708378, Bs = 0.214115.
The feed-forward zero-forming configuration (Fig. 2a) is used for the
realization' where

180s .
s? + 180x(0.6324587)s + (27 2805)"

Ti(s) =

For this example, each of the T(s) is chosen to be realized by the
three-amplifier biquad configuration.® The complete configuration is
shown in Fig. 7 with the element values tabulated in Appendix C.
The element values for the cascade biquad and coupled biquad designs
are also given in Appendix C.} A leapfrog design is also available," the
performance of which is similar to but slightly inferior to the coupled
biquad design. Once again, a Monte-Carlo study was made on these

* This example can also be found in Ref. 6.

t It was found, for this example, that the design with the feed-forward zero-
forming t.echniﬁe outperforms the summation zero-forming technique deei{t.

t With the three-amplifier biquad sections, it is possible to eliminate the i.ngut.
summing amplifier A, by using node 1 of section 1 as the summing point. This has
not been done in the example.

§ Without the availability of a computer program to choose an optimized Laker-
Ghausi circuit, no rLr design is included in this example.
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Fig. 7—Configuration for the three-section elliptic bandpass filter.

designs as well as a passive ladder design. The resulting comparisons
are shown in Figs. 8 and 9, where a 0.25-percent tolerance (with
uniform distribution) is assumed for all passive components.

It is observed that, in terms of standard deviation, the passband
improvements over the cascade design are noticeably less for the
shifted-companion-form (e chosen by Hurtig’s PBR criterion) design
than the roughly 4-to-1 improvement of the coupled biquad design.
Once again, the passive filter outperforms its active counterparts.

V. CONCLUSIONS

The rLF/PrB multiple-loop feedback active filter structure is known
to have better sensitivity performance than the popular cascade ap-
proach. This sensitivity improvement is particularly acute in high-Q
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Fig. 8—Simulated variations of the elliptic bandpass filter.

bandpass filter designs, as exemplified in the two examples given. With
the described shifted-companion-form representation of the filter
transfer function, it is straightforward to obtain explicit design formulas
for this feedback structure as contrasted to the coefficient matching
technique used by Laker and Ghausi. In practice, the shift parameter
can be chosen such that identical biquadratic blocks (i.e., the extended
PRB version)* are used. The proposed shifted-companion-form design
has the following advantages over the optimized FLF design. First,
no matrix inversion and involved sensitivity minimization routine
are needed. Second, all sections are identical, and the sections’ pole-Q
can be much lower than the highest pole-Q required for the FLF design.
Furthermore, little difference is usually observed for this shifted-

* Hurtig's prB does not treat the cases with finite transmission zeros.
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Fig. 9—Simulated variations (passband) of the elliptic bandpass filters.

companion-form design and the optimized FLF design. On the other
hand, the two examples also show that the coupled biquad and leap-
frog designs may have better sensitivity performance than the cor-
responding shifted-companion-form designs. However, for those types
of filter functions having finite transmission zeros, the designs of
coupled biquad and/or leapfrog require extensive computer aids
that are not yet generally available. Hence, the proposed shifted-
companion-form technique may provide an alternative to the coupled
biquad/leapfrog active filter design techniques.
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APPENDIX A
Derivation of the Shifted Transfer Function

Let the polynomial P(p) be

P(p) = 3 du-ip™™, (18)

and let
p=3s— o (19)

Then
P(s) = 3. duils — )"

=Sy (") smrian (20)

where

n—1%Y _ (n—2"!

( r )7r!(n—1}—r)! (21)

Equation (20) can be rearranged in decreasing power of s as follows:

P(s) = dus™ + s+ [ i (71% _ :) (—“)Hd"—']

B

i i ( T) (—e)™"duns

r
L n - T n—r,
+ rgo ( n — T) (—a) dn—r-
Or
P(s) = i gn—i [ i (—1)Fr ( n= T) a"_"d,._,]
=0 r=0 1=
= i a,._iS"_i, (22)
i=0
where _
: i—r n—r i—r
An_i = rgﬁ(—l) (i—?‘)a dn_s,
or

oy (mpyir =Dt e
= X DT e yTm (23)
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Equation (23) can be used to obtain the coefficients of the shifted
polynomial P(s) from the coefficients of the polynomial P(p).
Similarly, if we start with the polynomial

and let

then we obtain

where

APPENDIX B

Element Values for Example 1 (Fig. 4)

P(s) = 3 Gu_ss™

§=p+ae

P(p) = Z dﬂ—ip"‘ij
=0

i

(n— 17!

e ry:o('i—r)!(n—-i)!

at*” TQn_y.

(24)

(25)

(26)

For the various realizations, resistors are in kilohms and all ca-
pacitor values are 10 uF.

B.1 Shifted-companion-form (Hurtig’s) realization

Section
Eleme% 1 2 3
Ra 128.5 128.5 128.5
R, 613.2 613.2 613.2
Rs 1.977 1.977 1.977
Ry 73.07 73.07 73.07
R4 2.0 2.0 2.0
R, ® ) w©
and Rin = 2963, sz = 6667, R;s = 11.43.
B.2 Laker-Ghausi realization
Section
Elemeh 1 2 3
R 128.5 128.5 127.7
Ry 722.3 722.3 470.9
Rs 1.976 1.976 1.993
R, 71.77 71.78 74.73
Ry 2.0 2.0 2.0
Rc o0 o o0

and Ri, = 2.781, Ry, = 4.600, R;; = 23.73.
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B.3 Cascade realization

The summing amplifier A, and inverter 4, are not needed, and the
input goes directly to node 1 of section 1.

Section

Elemek 1 3 3
R, 128.5 126.3 130.8
R, 408.1 409.1 409.1
Rs 1.981 1.946 2.015
Ry 77.76 70.93 70.93
Rq4 2.0 2.0 2.0
R 0 © 0

B.4 Coupled biquad realization

The summing amplifier A, and inverter A, are not needed, and the
input goes directly to node 1 of section 1.

Section

Elemem 1 2 3
R, 128.5 128.4 128.5
Ry 204.1 820.2 408.1
Rs 1.990 1.977 1.981
Ry 77.39 64.98 77.76
R 2.0 2.0 2.0
R, 414.1 829.8 0

In addition, node 1’ of section 1 is connected to node 2 of section 2 and
node 1’ of section 2 is connected to node 2 of section 3.

APPENDIX C

Element Values for Example 2 (Fig. 7)

Tor the various realizations, resistors are in kilohms and all ca-
pacitor values are 0.01 pF.

C.1 Shifted-companion-form (Hurtig’s criterion) realization

Section

Elemeh 1 2 3
R, 279.6 279.6 279.6
R, 5.674 5.674 5.674
R; 5.674 5.674 5.674
R, 279.6 279.6 279.6
Rﬁ -] oc -]
Rs P w0 w©
R, 10.0 10.0 10.0
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and
R = 2.978,
Rinl = 1638,

K = 3.926
Rin2 = 4130, Rin3 = - 8259‘

C.2 Cascade realization

The summing amplifier A, and all input feed-forward paths (R;.’s)
are not needed. The input goes directly to node 1’ of section 1.

Section
Elemek 1 2 3

R, 167.5 428.6 412.2
R, 5.674 5.786 5.564
R, 5.674 5.786 5.564
R, 167.5 1190.0 732.2
R; w0 16.93 9.378
Rs 0 27.75 17.76
R; 10.0 10.0 10.0

C.3 Coupled biquad realization

The summing amplifier A, is not needed. The input, Vi, goes
directly into node 1’ of section 1 and nodes 1 of sections 2 and 3
through the feed-forward resistors Ri.. and Rin.s, respectively.

Section

Elemeh 1 2 3
R, 311.5 % 133.0
Ra 5.674 5.674 5.674
R 5.674 5.674 5.674
Ry 97.92 o o
Rs o0 ) oo
R o 0 )
Rq 10.0 10.0 10.0

and Ri,. = 1324.0, Ri.; = 825.9. In addition, the following resistors
are needed with value and connections noted.

(7) 180.5 k@, node 2 of section 1 and node 1 of section 2.
(#7) 180.5 kQ, node 1 of section 1 and node 4 of section 2.
(247) 194.3 kQ, node 2 of section 2 and node 1 of section 3.
(tv) 194.3 kQ, node 1 of section 2 and node 4 of section 3.

*In practice, with the following modifications of Fig. 7, Ri.; = 825.9 is used.
Change the connection of sections 2 and 3 to between node 2 (section 2) and node 1’
(section 3); the connection of Ry remains unchanged. Change the connection of

Ry to between node 2 (section 3) and the summing amplifier 4.
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