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An analysis of a particular type of multiserver, multiqueue system is
presented in which each queue has a finite number of waiting positions
and the waiting positions are not vacated until service is completed. Thus,
several customers in one queue can be served simultaneously. The steady-
state distribution of stales is derived and is used to obtain the probability
of loss for each queue and the average delay of the system. This analysis is
then used in the development of a design procedure to determine the
minimum-cost configuration of wailting positions and servers to meel
specified single-hour grade-of-service constraints. The results are applicable
to the design of systems that utilize automatic call distributors. While this
model does not include such effects as day-to-day variation and noncoinci-
dence of peak loads among trunk groups, nevertheless the results properly
reflect for the first time the interactions among the trunk groups terminated
on the automatic call distributor and the atiendants at the automatic call
distributor.

I. INTRODUCTION

The purpose of this paper is to present an analysis of a particular
type of multiserver, multiqueue system in which each queue has a
finite number of waiting positions and the waiting positions are not
vacated until service is completed. In particular, the steady-state dis-
tribution of states are derived, and expressions for the probability of
loss for each queue and the average delay are given. It is shown that
the queuing model described is representative of systems characterized
by a finite number of trunk groups that carry calls to a group of
attendants who then perform some service for the caller. (One such
system is used in the directory assistance service provided by the
telephone company.) Results are given to illustrate the effects of vary-
ing the number of servers and number of positions in each queue.
Finally, a design procedure to determine the minimum-cost configura-
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tions for such systems under various grade-of-service constraints is
developed. This procedure ignores such effects as day-to-day varia-
tion, noncoincidence of peak loads among incoming trunk groups, and
retrials of blocked calls, which should be investigated in the develop-
ment of procedures for traffic engineering and administration. However,
as in most cases, it is difficult, if not impossible, to obtain analytical
results with these effects included. This paper should provide useful
insight that can later be incorporated in a complete traffic engineering
procedure.

The system analyzed consists of I input queues each with a finite
number of waiting positions, N; (z = 1, - - -, I), which have full access
to M servers. When an arrival seizes one of the M servers, it does not
vacate a waiting position, but remains in the position until its service
has been completed. This characteristic, which allows calls that are
not at the head of a queue to be in service, distinguishes this system
from the usual queuing system. In particular, the system is no longer
completely described by the number of calls in each queue since a
record of the number of calls from each queue that are in service must
be kept. An arrival that finds all the waiting positions for its queue
occupied is cleared or lost from the system. An arrival finding no idle
servers but at least one vacant waiting position in its queue enters the
queue and is delayed until its service begins. In the context of directory
assistance systems, the input queues are the trunk groups and the
waiting positions are represented by the trunks. The information
operators are the servers.

In telephone traffic theory, the described system has been referred
to as a combined loss-and-delay system. Previous work in this subject
can be segmented into three parts:

() One input flow—one queue.!—?
(¢2) Several input flows—one queue.*!
(772) Several input flows—several queues.!*~*

The last segment, of which this analysis is a part, has been investigated
by Kiihn. He analyzed systems with g > 1 queues, each with a finite
number of waiting positions s; (1 = 1, 2, - -+, g). Associated with each
queue is a Poisson arrival process with mean rate \;, which is assumed
to be independent of the others. An arrival that finds all waiting
positions in its queue occupied is lost. Arrivals that are not cleared from
the system are served by one of n servers. The service time distribution
for the 7th server is exponential with a mean rate ¢;. When a server
becomes idle, queue ¢ is chosen to receive service with probability p..
Within a queue, calls can be selected randomly, first-come, first-served,
or according to a priority scheme.
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As Kiihn indicates, analytical solutions to these systems exist only
for special cases. In general, the linear equations representing the
equilibrium conditions must be solved numerically for the particular
values of the parameters. However, Kiihn gives a solution to one
particular system, which will now be discussed. In this system, it is
assumed that the service rate for all servers is identical (e; = ¢) and
the interqueue discipline is defined by the p,’s that are

Z;

a
2 Zy
=1

p; = (J=1,---,9,

where Z; is the number of waiting positions occupied in the jth queue.

The system analyzed in this paper is an extension of the one ex-
amined by Kiihn, since an arrival does not release a waiting position
until his service has been completed. This complicates the state
analysis, since it is now not sufficient to know the number of servers
that are busy to determine the equilibrium equations; information as
to the number of calls from each queue that are in service must be
included.

Kiihn indicates also that, for the above interqueue discipline, the
waiting time distribution can be found numerically only for small
systems. The calculation of the waiting time is complicated by the
fact that an arrival’s waiting time is influenced by the number of
arrivals that occur after it has entered the system. More is said about
this difficulty later.

Il. MATHEMATICAL FORMULATION

In this section, a mathematical model of the queuing system is
formulated. Equilibrium equations are given and their solutions
derived.

2.1 Queuing model

The queuing system consists of [ input queues, each with a finite
length denoted by Ni, 7 = 1, 2, ---, . Requests for service arrive at
queue ¢ according to a Poisson distribution with mean rate, A;. If we
let A;(t) denote the number of arrivals at queue 1 in (0, ), then

()
PLA:(t) = k] = *7 3¢ (k=0,1,2 ). (1)
The arrival process at queue 7 is assumed to be independent of the
arrival process at each of the other queues. Arrivals from each queue

have full access to a group of M servers. The service time distributions
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of the servers, denoted by H(t), are independent and identical ex-
ponential distributions with mean service rate g, i.e.,

1 — e»t (t=0)
2O =10 t <0). 2)
Since the arrival process is Poisson and the service process is ex-
ponential, the queuing model is a multidimensional birth-death process.

Arrivals to queue 7 that find N; waiting positions in queue ¢ occupied
are not allowed to enter the system. If an arrival to queue ¢ finds at
least one unoccupied position in queue ¢ but all M servers busy, it
enters the queue and waits as long as necessary for service. Within
queue i, arrivals enter service on a first-in, first-out (r1ro) basis. An
arrival that finds at least one unoccupied position in its queue and at
least one free server immediately enters service. When an arrival
enters service, it does not release a waiting position but remains in
the queue until its service has been completed. Hence, the word
“queue” is being used in a nonstandard manner and refers to the
number of calls waiting for service and in service. As discussed earlier,
an example of such a queue is a group of trunks that carry calls into
a switchboard.

The interqueue service discipline—the order in which the queues
receive service—is characterized by the number of calls waiting for
service. When a server becomes free, queue % receives service with a
probability, p:, which is the proportion of queue-:i calls waiting for
service. If we denote the number of calls in queue 7 by n; and the
number of calls in queue 7 that are in service by m;, then this prob-
ability, which is dependent on (ni, na, - -+, Ny, My, -+ -, my) = (n, m),
can be expressed as

. — . R . 1
pi(n, m) = T~ T T ( romz M+ 1)
.121 (nj — my) _Zl nj — M -
= =

G=12"--0. 3

The effects of other interqueue service disciplines have been in-
vestigated, but will not be discussed here.

The fact that arrivals remain in the queue during service dis-
tinguishes this queuing system from the standard system, since the
amount of information required to fully describe a state of the system
is increased. The system is also complicated by the fact that the inter-
queue service discipline is state-dependent. However, as is shown in
later sections, this “complication’ leads to a closed-form solution of the
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equilibrium equations, which is generally not the case for such systems.
The equations of equilibrium are given in the following section.

2.2 Equilibrium equations

The system described in the previous section is characterized by a
finite number of states that indicate the number of calls in each queue
and, of these calls, the number receiving service. We denote by (n,, na,

-+, g, my, -+, my) the state in which there are n; calls in queue 1
with m; of these calls in service. For notational simplification, we also
refer to the state in vector notation as (n, m). In this notation, (n;,, m)
represents the state (ny, ne, -+, ni 4+ 1, --+, nyy, my, ---, m;) and
similarly (n;, m) = (n;, -+, n;s — 1, - - -, my). It should be clear that,
if the total number of calls in the system is less than or equal to M,
then n; = m; for all 7.

Assuming stationarity, let P(n, m) be the probability that at an
arbitrary instant of time the system is in state (n, m). Moreover, if the
arrival processes to the system are Poisson, the equilibrium-state
distribution {P(n, m)} at an arbitrary instant is equal to the equilib--
rium-state distribution at the instant of an arrival. By equating the
rate into a state to the rate out of a state, we can write the equilibrium-
state equations where we have introduced the funection

1 z>0
u(x) = 0 2 <0

to include the boundary conditions and a; = A\;/u:
1
| % Cau¥: = nj + 0} P@,m)
=1
] ]
= Y aun)P(n,, m; ) + Zl (ni + Du(N: — ni) P(niy, myy)
=1 1=

(.)i:ln"<ﬂf[) (0 =n; =N) i=1,2 ---,1 (4
{ }; Leu(¥: —ni) + mil] P(n, m)
= }i‘_la.-u(m)P(n;_, m; ) + ilm‘.u(N‘. - n;)P(n‘-+, m)

+ 5 5 (mi+ Du(V: — nu(m)P(@, mi.)

i=1j =1
i

(.izlni=M) 0=n: =Ny i=12 ---,1 (5
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[ g [au(N: — ni) + mi]] P(n, m) = Zi‘,l au(ng)P(n,_, m)

+ i m.(n. +1- u(N; — n) P(n;y, m)
,=|( z ng+ 1 — )

by oy MAEDOFL=M) v nyuim) P, mi)
z-l.g;li (kglnk-l—l—“ )

(_i;ln.->M) O<n<N) =12 -1 (6

Equations (4) to (6), together with the normalization condition

N N1 min (M,N:1) min (M,N1)
)INEEEED 2 e X P, m) = 1, )
=0 nr =0 my1 =0 mi =0
where all nonexistent states, such as states in which both n; = 0 and
m; > 0, in the sum are assumed to have probability zero, determine the
equilibrium-state distribution.

2.3 Steady-state solution

Since the process described by the equilibrium equations is a
finite-state birth-death process in which the arrival rate into the
system is always less than the service rate of the system as a result of
overflow from the finite queue, a unique solution to eqgs. (4) to (7)
exists, and the solution is a genuine probability distribution.!® This
solution is given in terms of P(0, 0) by

r 1 i 1
1&reo (Zmsn) ®)
i=1 Ml i=1
1 1
P(a, m) = 4 S - M M I ap
i=1 =1
N1 — My, * -+, Mg — M) (M1, Mg, -+, M
’ MM P(©, 0)

l
(Zn>u), ©
i=
where P(0, 0) is determined from (7). The general solution was de-
termined from examination of various small systems. By substitution,
it can be shown that this solution in fact satisfies the equilibrium-
state equations (4) to (6).

When the number of calls in the system is less than or equal to the
number of servers, no one is waiting for service and the queues have no
interaction. This fact is shown in (8) by the product form of the solu-
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tion. However, as the number of calls increases to the point where calls
are waiting in more than one queue, the queues no longer are acting
independently.

Since the queues behave independently as long as there are free
servers, we would expect that, as the number of servers was increased,
the system would approach [ independent loss systems. By examining
the marginal probabilities, it can be shown that this is, in fact, true
when M = }!_; N.. That is, the marginal state probability of n.
calls in queue 1 is

Piw) = £ -+ £ P, m) = g/ (10)
= 3 ai/k!

which is identical to the state probability for a pure loss system.

If no calls were blocked from the system, then the system would act
as a pure delay system with the offered load a = ¥ !_; a;. This is
easily shown by taking the limit of (8) and (9) as N; —w for all
i=1,2 -1

We first consider the case in which >_!_; n; £ M. Since the number
of calls in each queue is unrestricted, it is easily seen that the multi-
nominal expansion of (a1 + --- + a:)%" divided by (X !_, n:) ! can be
obtained from (8). That is,

lim 3 P(n, m) = (a; +

.. k 1
s P(n, + 3" b0, 0) ( Y n < M)-
i=12,ee 0 k! =

Hence,
] k
P ( > ni = k) = % P(0,0) (k< M). (11)

For the case in which > !_, n; = M, first note that, by the Vander-
monde convolution of multinomial coefficients,

]

>ni— M M
z X o
ml mi

Ny — My, *- -, Mg — M) My, -, My
>
i
= = - (12)
nl, nz, sy ng

Therefore,

(£0) 2y
P(n)—ZP(n m)*iﬂ : P(O 0)

M T IER N
(‘gl ne = M), (13)
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and thus we can denote this state probability by

] _ _ k' 1 a;h‘
P(iglni B k) a Z‘% - Zjll({"'“/‘r":_M:l;Ilm‘P(o,I 0)
i=k

n
i=1

i

(k= M). (14)

Consequently,

! k
Am P(El ni = k) = e P00 (k= M). (15)

i=1,-

The normalization constant is then expressed as

©

p M1 ak ak -1 <
0 = [Eok_!*Lk:ZMM!M'«—M] ©=a<d). (6)
Hence, comparison of (11), (15), and (16) with the pure delay system
completes the proof.

2.4 Blocking and delay probabilities

In the analysis and design of queuing systems, performance mea-
sures for each configuration must be calculated. In telephone traffic
theory, these performance measures are generally referred to as
“grades of service.” Two such measures of the grade of service are:

(3) For loss systems, the blocking probability or probability of loss.
(#1) For delay systems, the average delay experienced by calls that
enter the system. The average delay W (s, a) for a pure delay
system is expressed in terms of the Erlang delay formula as

C(s,a)
(s — a)p

In the system described in Section 2.1, the blocking probabilities
for each input queue, the average delay experienced by calls that enter
the system, and the average delay of only those customers who experi-
ence a positive delay are important characteristics to be examined. The
latter is not used in the remaining analysis.

The blocking probability for queue 7 is defined as the probability
that an arrival to queue 7 finds N; calls in the queue. This probability,
which is denoted by B;(N, M, a), is a function not only of the number
of positions in queue 7 and the offered load to the queue, but also of
the traffic load offered to each of the other queues, the number of
positions in each of these queues, and the number of servers. Recalling
that, for systems with Poisson input, the state probabilities at an
arbitrary instant are equal to the state probabilities at arrival times,

W(s, a) = a7
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Bi(N, M, a) is calculated from the marginal distribution for queue
1 as

BN, M, a)
=nz."',?§.,§l”'§.”'§,P(”" -, Ny ---, my,m). (18)

The average delay experienced by calls that enter the system (suc-
cessfully occupy a waiting position in their queue) is denoted by
D(N, M, a). The delay calculated for this system is the overall mean
waiting time measured from an arrival’s entry into its queue until its
service begins. Hence, it does not include service time of the call. It
should also be noted that arrivals into the system that find at least one
free server experience no delay.

Since the average number of calls waiting for service must be finite
and the mean waiting time is finite as a result of the loss structure of
the system, the well-known equation of Little,'® L = AW, can be used
to calculate D(N, M, a). In particular, we must define our “queue
length” as the total number of calls waiting for service and “\” is
defined as the effective arrival rate into the system. Hence,

3
szfg };‘[(Eln.--M)P(n,m):I
Zn>
D(N, M, a) = —— ; - (19)
> M1 — Bi(N, M, a)]

Calls that are blocked from the system do not enter the queue and
hence do not affect the average queue length. Consequently, they are
not included in the arrival rate tnfo the system. The numerator of (19)
is the average number of waiting calls. It should be apparent that the
average delay for any particular queue can easily be obtained by using
the appropriate marginal probabilities. Also, the conditional average
delay, the average delay experienced by only those that must wait,
is found by dividing (19) by the probability of being delayed.

For some design purposes, it might be deemed necessary to constrain
the probability of waiting longer than some time, f,, to be less than a
specified value. In this case, the waiting time distribution for each
queue must be obtained. For the interqueue discipline examined for
this system, the calculation of the waiting-time distribution is ex-
tremely difficult. (Kiihn'® mentions that, for his problem, numerical
techniques can be used for very small systems, after which approxi-
mate methods must be formulated.) The difficulty in determining the
waiting-time distribution lies in the fact that the time a particular call
must wait for service is not just a function of the number of ecalls in
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the system when it arrives, as is usually the case. In particular, the
waiting time of a call is related to the number of calls that arrive after
the particular call enters the system, since queues are chosen for
service according to their queue lengths at a service completion, so
that later calls can “pass” earlier ones. For this reason, the waiting
time distributions are not calculated in this study.

2.5 Macrostate analysis

As discussed in the previous section, blocking probabilities and
average delay values are of interest to system designers. Using the
state probabilities given in (8) and (9), it is possible to obtain not only
the overall average delay, D, as shown in (19), but also the average
delay, D, for queue 7. In certain types of design, we might want to
engineer the system so that the average delay in every queue is less
than a specified level. In such cases, D; would be needed. However, for
this study, we consider only the overall average delay.

Therefore, it is apparent from (19) that, for computational purposes,
we only need to know the number of calls in each queue without dis-
tinguishing between those in service and those waiting. If we denote
by n the state (ny, ns, ---, ni), we can find the steady-state prob-
abilities P(n) from (8) and (9). Of course, we could have written the
state equations directly and solved this easier set of equations.!?
However, for further studies, it is essential to know the probabilities
P(n, m).

Since the state probabilities for (n, m) in which X}_; n: £ M are
independent of m, P(n) = P(n, m). To obtain P(n) for 32i-, n: > M,
we sum P(n, m) given by (9) over all possible values of m. Using the
Vandermonde multinomial convolution, we find that

(5"

P(a) = ¥ - £ P@,m) = gryymew 1L o5 L PO, (0
where P (0) is the normalization constant. We can calculate the block-
ing probabilities and the average delay as before. The number of
states is JTi<, (Wi 4+ 1).

It should be repeated that the macrostate probabilities are of use
only if one is interested in the overall mean delay. To calculate the
individual average delays, one must use the microstate probabilities.

lll. RESULTS

In this section, we investigate the effects of varying N; and M on
the blocking probabilities for each queue and the overall average delay
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of a call. In particular, these effects are illustrated by comparing the
results obtained from the analysis presented in this paper, for a partic-
ular example, with the results obtained if independence is assumed.
This ‘“‘independence assumption” is often used in practice to deter-
mine the number of positions for each queue and the number of
servers needed. In essence, this assumption permits a designer to
design each queue (trunk group) independently of the other queues
and the number of servers, and the number of servers is determined
assuming that no calls are blocked in the queues. It is shown that this
assumption is generally not even a good approximation. Finally, four
properties that are used in a design procedure established in the next
section are postulated.

3.1 Comparison of results with independence assumption

In the engineering of automatic call distributor systems, a traffic
engineer generally dimensions each trunk group using the Erlang loss
formula (assuming that it is independent of the other groups and the
number of attendants) and often determines the number of attendants
required from the Erlang delay formulas using the total offered load
to the queues (assuming no blocking in the queues). This procedure is
clearly invalid, but up to now an exact procedure has not been avail-
able. As a means of illustrating the significance of the results presented
in this paper, we now compare, for a particular system configuration,
the system characteristics that a traffic engineer would expect to
obtain using the independence assumption and what he really will
find. Of course, the interqueue service discipline will affect these
results in a way that will be described in later work. The actual opera-
tion of such systems is quite complicated, and is not readily character-
ized by any of the disciplines usually used such as first-in, first-out,
random, and last-in, first-out. However, the results of simulations
indicate that the discipline presented here is a good approximation of
the actual method of operation.

For purposes of this comparison, we assume a simple system with only
two queues: the first with an offered busy-hour load of 10 erlangs; the
second, 5 erlangs. It is further assumed that the queues have coincident
busy hours and that the average holding time per call is 30 seconds.
Assuming that a P.01 grade-of-service constraint has been placed on
each group, the number of trunks required, if independence is assumed,
would be N; = 18 and N: = 11. (These numbers can be found from
tables of the Erlang B formula.) If it is then required that, on the
average, no call must wait longer than 3 seconds for an answer, we
find, from the Erlang delay formula, that M = 19 (assuming no
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blocking in the groups). The traffic engineer would expect this system
to have the following characteristics:

Blocking probability for group 1 = 0.0071.
Blocking probability for group 2 = 0.0083.
Overall average delay = 1.83 seconds.

However, analyzing this system configuration with the results of this
paper, we find that the service levels (which stated above are approxi-
mations to the actual levels) would be

Blocking probability for group 1 = 0.014.
Blocking probability for group 2 = 0.013.
Overall average delay = 0.949 second.

The directions of the changes are intuitively obvious, since longer
holding times in the queues result in more blocked calls and the higher
blocking levels decrease the load to the servers, which in turn results
in a lower average delay. It should be noted that the trunk groups
are performing at unsatisfactory levels, but the overall average delay
has been decreased and is considerably under the required level. Often,
customers who have such systems measure only the delay or speed
of answer and periodically remove attendants if they feel that the speed
of answer is not above the required level. Unfortunately, such a
customer generally does not realize the effect of removing attendants
on the blocking probabilities on his incoming trunks and consequently
on other network customers.

As an example of customer behavior, consider the system discussed
above. The customer, having measured the average delay and finding
it to be considerably under his required level, would most likely re-
move two attendants. The average delay would then become 3.01
seconds, but the blocking probabilities increase to 0.028 for group 1
and 0.023 for group 2. Hence, even though the delay constraint is
essentially satisfied, the probabilities of loss are more than double their
desired levels.

If, instead of the P.01 service level, P.05 or P.10 had been chosen
for the above delay constraint, the independence assumption would
generally give a configuration that would satisfy all service con-
straints. The reason for this is that the higher blocking levels decrease
the offered load to the attendants, and consequently a very small delay
results. This delay is small enough that it has little effect on the hold-
ing time of the calls and, hence, the offered load to queue ¢ is ap-
proximately a;. Therefore, the resulting blocking probability, although
larger than the Erlang loss probability, is generally in the acceptable

606 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1975



range. However, the configuration would not be optimal because too
many attendants are provided. In summary, as the blocking prob-
abilities increase, the discrepancies between the Erlang loss formula and
the formula given by (18) decrease, but the discrepancies between
average delays increase.

Several variations in the procedures to engineer these systems exist
in practice. Generally, in determining the number of attendants, the
measured offered load into the attendants is used. This load accounts
for the blocking in each trunk group. For the above example, the
measured offered load would be 14.79 erlangs (if we assume that the
assumptions made in this analysis are valid) and, from the Erlang
delay formula, an average delay of 1.58 seconds results, which is still
higher than the actual delay. The reason for the discrepancies is that
the offered load to the attendants is no longer Poisson as a result of
the blocking in the groups. In fact, the variance of this offered load will
be lower than that of the Poisson load, since the peakedness of the
traffic has been decreased by clipping. Hence, since the actual average
offered load and variance of the load are lower, this leads us to postulate
the following property :

Property 1:

_ _ !
W(M,a) =2 D(N, M,a) where a =} a.

=1

This property is illustrated in Fig. 1. The equality holds in the limit
as N;—ow forall ¢ =1, ---, I, as shown previously. The significance
of this property is that we now have a method of obtaining an upper
bound on the average delay for the combined system.

Another variation that is sometimes used is to add the speed of
answer into the offered load to each group. If we add the average
delay of 0.949 second to each call and use this new offered load in the
Erlang loss formula, the blocking probabilities that result are 0.0091
and 0.01, for groups 1 and 2, which are still lower than the actual
blocking.

The discrepancies result because the Erlang loss formula assumes
exponential holding times on the trunks but, in fact, the holding time
for the combined system is the sum of an exponential distribution and
the delay distribution. Also, the holding times of calls in the system
are no longer independent (unless 3"%_, n: < M). The variance of this
new service time distribution is higher than that of the exponential
service time distribution and, of course, the mean is larger. Therefore,
one would expect the average queue length to be larger which, in
turn, implies an increase in blocking.
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Fig. 1—Average delay as a function of number of positions in one queue.

With these facts in mind and as a result of empirical evidence, we
postulate a second useful property :

Property 2:
B(N; a;) < Bi(N,M,a) (=11,

where B(N;, a:) is the Erlang loss formula for N; servers and an offered
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Fig. 2—Blocking probability as a function of number of positions in the queue.

load, a:.. The equality holds when M = ZN,, since the queues then
behave independently (there is no delay, so in fact the holding time
per call is exponential). This property is illustrated in Fig. 2. In-
tuitively, one would expect B:(N, M, a) to be larger since, as a result
of a positive delay added to each call, calls hold the trunks longer,
therefore increasing the probability of an arriving call finding all
trunks busy. The significance of Property 2 is that a lower bound on
the number of trunks required for a given service level can be found
using the Erlang loss formula.

MULTISERVER, MULTIQUEUE SYSTEM 609



3.2 Effects of varying N. and M

For a given input process and service time distribution, the designer
can affect the blocking probabilities for a queue or the average delay
by changing the number of positions, N, in a queue and/or changing
the number of servers, M. We first investigate the effects of varying
the number of servers, M. As noted earlier, when M has been increased
to the point where X} i_; N: = M, the average delay becomes zero
and the queues behave independently. The blocking probability for
each queue is then given by B(N,, @) which, by Property 2, is a lower
bound on the blocking for any value of J/. What is of importance,
however, is: Do the blocking probabilities and the average delay
monotonically decrease to their lower bounds as we increase M to the
value 3°i_; N;? Empirical evidence, such as shown in Figs. 3 and 4,
indicates that the answer to this question is yes. We postulate this
property as:

Property 3:

BN, M + 1,a) < Bi(N, M, a) G=1,---,1
D(N, M +1,a) < D(N, M, a).

Intuitively, one would not expeect that increasing the number of
servers in a system would increase the average delay. Moreover, a
decrease in the holding time of calls would imply that the average queue
lengths would decrease, which would result in a decrease in the blocking
probability for that queue. However, this decrease in blocking results
in an increase in offered load to the servers but, as we postulate, this
increase is less than the marginal carrying capacity of the added server.
The significance of this property is that, with added servers, not only
is the average delay decreased but also the blocking probabilities are
decreased ; that is, adding servers improves the service performance of
the servers and of the queues (trunk groups).

The other system parameters that may be varied to improve system
performance are the numbers of positions in each queue. Supported by
quantitative evidence, such as given in Figs. 1 and 5, and by intuition
we postulate the following:

Property 4:
BN, M, a) < B;(N, M, a)
B;(Niy, M, a) = B;(N, M, a) j#FEe.
DN, M,a) = D(N, M, a)

The first part of this property states that, if we increase the number of
positions for calls to occupy in a given queue, then the probability of
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Fig. 3—Average delay as a function of number of servers.

loss for that queue is decreased. (This, of course, is true in pure loss
systems.) The intuitive argument is that calls that previously found
N calls in queue 7 were blocked, but now are not. Therefore, the
number of calls blocked is decreased. However, as the third part of
this property implies, the average delay of calls is increased as a
result of this increase in calls from queue ¢. The intuitive counter-
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argument is that this increase in holding time per call might result in
an increase in blocking for queue 7. But we postulate that the increase
in delay is not substantial enough to eliminate the increased efficiency
obtained in queue 7 by the addition of a position.

However, for the other queues, the number of positions remains
fixed, and this increase in average delay results in a larger traffic level
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per position being placed on the queues. Hence, this increase in load
causes the average queue length to increase and, consequently, causes
the blocking probabilities to increase. This fact is stated in the second
part of Property 4 and is illustrated by the example given in Fig. 5.
Equality in the three statements holds only in the limit as N goes to
o foralli=1,2, ---, L

The significance of Property 4 is that the loss probability for a
given queue cannot be reduced by adding positions to any other queue.
Therefore, by Properties 3 and 4, we see that the loss probability for a
given queue can be reduced only by increasing the number of servers
or by increasing the number of positions in that queue.

The four properties postulated indicate relationships between the
system parameters and the system characteristics. Proofs for the
simplest cases (i.e., { = 1 for all the properties except for the second
part of Property 4 for which I = 2) are given in Ref. 18. The proofs
for the general cases have not been constructed because of the dif-
ficulties involved (e.g., the proof of the second part of Property 4
required 17 pages for I = 2). However, based on the intuitive explana-
tions given, empirical evidence, and these proofs, I feel that the
properties are valid in the general case of [ queues. To obtain an optimal
configuration (minimum cost), one must balance the cost of servers
against the cost of positions for the queues in such a way that all
required service levels are met. These properties are used in the next
section in the development of a procedure to determine this optimal
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configuration. The algorithm and proof of convergence given below
assume the validity of these properties.

IV. SYSTEM DESIGN WITH GRADE-OF-SERVICE CONSTRAINTS
4.1 The design problem

In determining the optimal design of a queuing system, one is
generally interested in minimizing the operating costs in such a way
that specified grade-of-service constraints are met. These constraints
are a function of the particular queuing system under study. In the
pure loss system, the grade of service is measured by the probability that
a call is lost or blocked. Hence, the optimal system configuration is the
minimum number of servers that satisfies the constraint, B(s, a) = b.

In delay systems, at least three measures of service are useful. The
first is the average delay experienced by a eall in obtaining service.
The second measure is the “‘extremal”’ delay—the probability that the
delay for any call exceeds a specified limit. Finally, the average delay
of only those customers who experience some delay is a useful measure.

However, in the combined loss and delay systems described in Sec-
tion II, the determination of an optimal configuration is not as straight-
forward. We will measure the grade of service of the system by

() The blocking probability for each queue.
(#2) The average delay of all calls that enter the system.

The blocking probability for a particular queue is dependent on the
number of positions in each queue and the number of servers, and the
average delay depends on these same variables. A procedure must be
developed to balance these measures of congestion in such a manner
that the costs of the system are minimized.

More formally, the problem can be expressed as the following
nonlinear problem in integer programming. We denote the monthly
cost of a waiting position in queue 7 by C; and the monthly cost of
each server by C. It is assumed that C; and C are positive, finite
numbers. The blocking objective for queue ¢ will be denoted by b; and
the average delay objective by d. The following assumptions have been
made: The system is engineered for the system busy-hour traffic load
and the busy hours for the queues are coincident. The optimization
problem is then expressed as:

Minimize the cost

Z =Y CN:i+ CM

=1
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subject to
D Bi(N,M,a) =b: (=12 -1 (21)

D(N,M,a) =d (22)
Nii=1,2, ---, D), M = 0 integers.

Since no efficient algorithm to solve a general nonlinear integer-
programming problem exists, a procedure was developed that utilizes
- the four properties stated in Section I1I.

4.2 Optimization procedure

In this section, a procedure is developed that determines an optimal
solution to the nonlinear integer-programming problem expressed by
(I). The procedure is a direct-search routine based primarily on the
properties presented in the previous section. A description of the
procedure is now given and is followed by a concise summary of the
algorithm. Figure 6 is a flowchart of the algorithm.

The first step in the algorithm, as in most mathematical program-
ming algorithms, is the determination of a feasible solution to the
problem. To obtain an initial feasible solution to (I), we utilize Proper-
ties 2 and 3 of the previous section. In particular, by Property 2, we
know that the minimum number of waiting positions for queue ¢ can
be determined from the Erlang loss formula, which is easily computed
from a recurrence relationship.!® We begin the search for an initial
feasible solution with

N® = min {n|B(n, a;) = b;},

since it has been shown that, in fact, a feasible solution to (I) exists.
That is, (N©®, M), where M = Y !_, N, is a feasible solution since
D(N® M, a) = 0and B;(N®, M, a) = B(N®, a;) fori = 1,2, ---, L
However, since this solution will generally not be near the optimal
solution, the search will not begin at /7 but instead with M (), which
is the minimum value of M that satisfies the constraint:

WM, a) < d. (23)

M ) is the number of servers that would be selected if the Erlang
delay formula with an offered load @ = }_{., a: were used. By Property
1, it is seen that if (23) is satisfied, then (22) will also be satisfied.

Using the set of parameters (N©, M (), the system characteristics,
{B{(N® My, a)} and D(N®, M, a) are determined. One of two
results occurs:
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() The parameters (N®, M) satisfy the constraints of (I), in
which case an initial feasible solution has been determined. We then
proceed to find the feasible solution of minimum cost.

(7%) At least one of the blocking constraints (21) is violated. (As
noted above, the delay constraint will be satisfied.) By Property 3,
we know that the addition of a server will reduce the blocking prob-
ability for each queue and that, by the addition of enough servers, a
feasible solution can be obtained. We denote this initial feasible solu-
tion by (N©@, M ©®) and note two interesting properties of this solution.

(a) By Property 2, N is the mingmum number of positions that
must be considered for queue <.

(b) M@ is the maximum number of servers that must be con-
sidered. This is true since a further inerease in the number of
servers can be justified only if some waiting positions can be
eliminated, and the positions are already at their minimum
levels, N,

The next step in the algorithm is to attempt to improve the initial
feasible solution. Since by construction we are initially at the maxi-
mum number of servers, we attempt to decrease the costs by decreas-
ing the number of servers while maintaining feasiblity. To maintain
feasibility, it may be necessary to add waiting positions to certain
queues. If a feasible solution is found, then it will be an improvement
only if the accumulated cost of those servers removed (since the last
feasible solution) is greater than the accumulated cost of all waiting
positions that have been added to maintain feasibility. Hence, as we
remove servers, one of three things results.

(2) All the constraints of (I) are satisfied. If the accumulated cost
of removed servers is greater than the cost of all waiting positions that
have been added, this new feasible solution represents a cost improve-
ment and should be stored as the tentative ‘“optimal” solution. The
accumulated costs are set to zero, a server is removed, and the search
continues. If the cost of servers is less than the cost of positions, then
we reduce the number of servers by one and continue the search for a
solution with lower cost.

(#7) The delay constraint (22) is violated. In this case, we stop the
search and the tentative optimal solution is the global* optimum. (A
justification for stopping the procedure is given later.)

(773) At least one of the blocking constraints is violated. In this case,
we add one position to each queue in which the corresponding block-

*I have taken the liberty of using “global’’ since, in fact, the procedure does
produce the global optimum i#f the four properties are true in the general case.
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Fig. 6—Design procedure.

ing constraint is violated and increase the accumulated cost of added
positions appropriately. If the cost of the additional positions is less
than the accumulated cost of the servers that have been removed, we
determine if this solution is feasible. If it is feasible, we proceed as in
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(2). If it is not feasible, either (4z) or (74Z) must be true. If the cost of
the positions is more than the cost of servers, then no feasible solution
with lower cost can be obtained with this number of servers and, hence,
we reduce the number of servers by one and calculate the system char-
acteristics with the new set of system parameters. Then either (7),
(#7), or (472) must be true, and the appropriate action is then taken.

In summary, the procedure removes servers until either the delay
constraint is violated, in which case it terminates, or a blocking con-
straint is violated. If a blocking constraint is violated, waiting posi-
tions are added, and an additional server may be removed, depending
on the inecremental costs and on the feasibility of the tentative solution.

A justification of the procedure is in order. We first discuss the case
in which at least one blocking constraint has been violated. To reduce
the blocking probability for each queue whose constraint has been
violated, a position must be added to this queue (by Property 4). The
only other way to reduce the blocking probability is to add a server,
but this branch has already been terminated. Assume that NS servers
have been removed since the last ‘“‘optimal”’ feasible solution and that
the cost of all the positions added since the last ‘“‘optimal’’ feasible
solution is G. If @ > NS X C, then the new parameters cannot give
a lower cost solution and, by Property 4, no lower cost solution for
this M exists. Therefore, we terminate the branch with 3 servers and
begin the search of the branch with M — 1 servers (increment NS by
1) with the present number of positions. At least this number of posi-
tions must be considered, since, by Property 3, the reduction of M
results in an increase in the blocking probabilities. If G = NS X C,
this set of parameters may be a lower-cost solution. Therefore, we
determine the system characteristics and see if the solution is feasible.

We now prove that the procedure converges in a finite number of
steps to a global optimum.

Lemma 1: If a feasible solution for a given M has been found, the branch
corresponding to that M can be terminated.

Proof: Trivially, any further feasible solutions with that M must be
more expensive, since these solutions must have more waiting positions.

Q.E.D.
Theorem 1: The algorithm terminates in a finite number of steps.

Proof: First, we know that an initial feasible solution can be obtained
in at most

[ .}i:l N — M(o)]+
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steps, as discussed earlier, where [2]+ = max (0, z). Second, for any
given M, the corresponding branch of the solution tree will be ter-
minated in a finite number of steps. That is, since C is finite and C; is
nonzero for all 7, then in a finite number of steps we will either find a
feasible solution for this M, reach the point where the cost of the posi-
tions added for this M exceeds C, or violate the delay constraint. In
the first case, by Lemma 1, we know that we can terminate this
branch. In the second case, since none of the positions can be removed
and feasibility be maintained, no feasible solution of lower cost exists
for this M. In the latter case, the procedure terminates. The number of
iterations performed for a given M is bounded by the number of times
positions are added before the cost of these additions exceeds C.
Finally, since the maximum number of servers that need be con-
sidered is finite, we reach the case in which the delay constraint is
violated in a finite number of steps (at most, M@ values of M).
Since there are only a finite number of values of M to be considered
and since, for each M, only a finite number of steps are performed, the
algorithm terminates in a finite number of iterations. QE.D.

Theorem 2: The solution (N*, M*, Z*) obiained upon termination of the
algorithm is a global optimum.

Proof: Assume that another configuration (N, M, Z) exists, such that
all constraints of (I) are satisfied and Z < Z*. First, consider the case
in which @ > M*. By construction, the branch corresponding to M
must have been searched and, as indicated in Theorem 1, the branch
would have been terminated in a finite number of steps. If this branch
had produced a feasible solution with a lower cost, it would have been
retained. Hence, this case is not possible.

Second, consider the case in which A < M*. From the algorithm,
we know that the termination of the procedure implies that the delay
constraint has been violated. We therefore know that either the branch
with M produced a feasible solution with a cost larger than Z* (or else
it would have been retained), or 3 is smaller than the value of M
when the procedure terminates. If the latter is true, then M cannot
produce a feasible solution since the delay and blocking probability
for (N*, M) must be greater than those for (N*, M*) by Property 3;
and, to reduce this delay, positions would have to be removed that
would result in at least one blocking constraint being violated. Con-
sequently, this case is a contradiction and, hence, (N*, M*, Z*) is the
optimum. Q.E.D.

One point should be noted : For the higher levels of blocking (= 0.05),
the solution (N M ) is generally a feasible solution. However, as
a result of the reduction in offered load to the servers because of the
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blocking, M () can be reduced before any constraints are violated. This
is of importance since, in practice, such systems have been engineered
in such a manner that the configuration is (N©®, M (), which is ob-
tained from use of the Erlang B and Erlang C formulas, as described
earlier.

A more concise mathematical summary of the algorithm follows.

Optimization Algorithm:
Step 1: Initial Feastble Solution

() Determine N (z = 1, 2, - - -, I) from the Erlang loss formula
where N{® = min {n|B(n, ;) < b:}.

(i7) Determine My from the Erlang delay formula where
M(u) = min [mlW(m, (l) = d} Let &k = 1.

kth iteration:

('L%) Calculate B,‘(N(O), M(k_l), 8.) and D(N(m, M{k~1), a). If the
set of constraints (21) are satisfied, let M@ = M _y). The
initial “optimal” feasible solution is N* = N©®© M* = M ©,
and Z* = 2L, C:N7+ CM*. Set j = 1, ;1N© = N* and go
to Step 2.

If at least one constraint of (21) is not satisfied, set M,
= Mu—y + 1, increment &, and return to (7).

Step 2: Solution Improvement

In this step, the superseript j refers to the jth “optimal” value of
M ; for a given value of j, the subscript r refers to the rth value of N..

jth iteration:

(1)) NS =1,G9 =0,r = L.
(42) Reduce number of servers by one, M@ = MU= — 1, If
M@ =0, go to Step 3.
(712) Calculate B;(,NG-1 M@ a) and D(,NGD M@, a),
(a) If DN, M@ a) > d, go to Step 3.
(b) If (21) and (22) are satisfied and if G = NS X C, then
store (,NUD, M{?) as the new ‘‘optimal”’ solution. That
is, set N* = NGV M* = M and

Z* = i C; rNU_l) + CMWD,
1=l

Set N = ,N&1) increment j, and go to (z).

620 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1975



(¢) If (21) and (22) are satisfied but G > NS X C, then
reduce the number of servers by subtracting 1 from M,
increment NS, and return to (7).

(d) If at least one blocking constraint of (21) is violated, i.e.,
SW = {{|B:(,NUD, M@ a) > b;} is not empty, then add
> et C; to G, Let

r+1Ni(j_n = rNi(J_n 7 GE S
and
NE=D = NGD 41 i€ 89,

If GW > NS X C, then decrement M¢? by 1, increment
r, and go to (47). If G = NS X C, increment », and go
to (47).

Step 3: Termination

If D(,NG, M®, a) > d, then stop the procedure. The global
optimum is (N*, M*, Z*).

4.3 Numerical example

To illustrate the algorithm, we examine a simple two-queue system
that represents an automatic call distributor system used for credit
checking. The company has subseribed to two Inward waTs bands
with a cost per trunk of $800 and $500. The two trunk groups each
receive 15 erlangs of traffic in the busy hour. Calls, on the average,
are 45 seconds in duration. The subscriber has requested a 5-second
speed of answer and blocking objectives of P.10 and P.05, respectively.
The monthly cost of an attendant is $750. With these parameters,
we begin the algorithm by using the Erlang loss formula with 15
erlangs and the delay formula with 30 erlangs to obtain (N©®, M),
which are (18, 20; 34). As shown in Table I, this initial solution is feas-
ible and hence will be stored as our tentative optimal solution,
(N©, M),

We proceed to Step 2 of the algorithm in an attempt to improve the
initial feasible solution. By decreasing M by one, M®) = M©® — 1,
we obtain the system parameters (18, 20; 33) and the system char-
acteristics (0.0912, 0.0504; 0.404), which indicate that this is not a
feasible solution. Since the blocking constraint for trunk group 2 is
violated, a trunk must be added to this group at a cost of $500. The
accumulated cost of the additional trunks, $500, is less than the ac-
cumulated cost of the removed attendants, $750. Therefore, we
proceed by obtaining the system characteristics for this set of param-
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Table | — An example of the optimization procedure

N 1 N 2 M B 1 Bl D Z (3)
Initial Feasible
Solution 1 18 20 34 | 0.0887 | 0.0481 | 0.201 | 49900.
2| 18 20 33 | 0.0912 | 0.0504 | 0.404 | 49150.
3 18 21 33 | 0.0926 | 0.0373 | 0.546 | 49650.
Solution 4 18 21 32 | 0.0970 | 0.0409 | 0.945 | 48900.
Improvement 5 18 21 31 | 0.1034 | 0.0460 | 1.550 | 48150.
P 6 19 21 30 | 0.0939 | 0.0573 | 2.990 | 48200.
7 19 22 30 | 0.0976 | 0.0466 | 3.422 | 48700.
8 19 22 20 | 0.1120 | 0.0572 | 4.976 | 47950.
Termination 91| 20 23 28 | 0.1220 | 0.0676 | 8.864 | 48500.

* Optimal solution.
System Parameters:

= 15 erlangs, by = 0.10, c1 = $800
ﬂ.g = 15 erlangs, by = 0.05, c3 = $500
HT = 45 s, d=>5s, C = $750.

eters, i.e., (18, 21; 33). As Table I indicates, this is a feasible solution,
is a cost improvement, and hence is stored as the tentative optimum.

As shown in Table I, the procedure continues from this point until
(20, 23; 28), at which point the delay constraint is violated. The
optimal solution is (19, 22; 30) at a cost of $48,700. We should note
that the parameters (20, 23; 29) were not examined since the accumu-
lated cost of added trunks, $1300, was greater than the accumulated
cost of removed attendants, $750.

The above solution is the global optimum for this constrained
problem. However, practitioners might suggest that (18, 21; 31) is a
more realistic design since, in faet, the blocking constraint is ‘“es-
sentially”’ satisfied (0.1034 vs 0.1000). This can be incorporated in the
design procedure by allowing any solution that is within ‘¢’ of a
blocking objective to be retained. The algorithm can then be applied
as before.

V. SUMMARY

In this paper, an analysis of a particular multiserver, multiqueue
service system has been presented. Examples of this type of system
are the directory assistance systems used in the telephone companies
and credit verification bureaus used by the credit-card industry, which
use automatic call distributors. Expressions were derived for the
equilibrium-state probabilities, and four properties of the system char-
acteristics, overall average delay, and the blocking probabilities for each
queue were given.

These results were used in developing a procedure to obtain a least-
cost system configuration to satisfy a given set of single-hour grade-of-
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service constraints. That is, the procedure determines the number of
waiting positions for each queue and the number of servers required to
satisfy constraints placed on blocking probabilities and average delay
at minimum cost. The work reported here should form the basis for
the development of a practical method of traffic engineering and
administration for small automatic call distributor systems.
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