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Blocking s considered for an N-trunk group of exponential servers
with Poisson-offered load whose rale parameler varies with time. The
infinite trunk case is solved by means of a rapidly convergent series of
Poisson-Charlier polynomials. This solution is used to obtain practical
approvimations of blocking probability, transition probabilities, and
recovery function for general time-variable offered load in the finite trunk-
group case. An integral equation is derived satisfied by the blocking
probability in the general case. In the situalion of constant offered load,
two additional methods are derived for providing easily computable
approzimations; one based on the integral equation, the other based on an
approximate tnversion of the Laplace transform. To aid in the latler
approximation, bounds on the roots of Poisson-Charlier polynomials are
obtained; in particular, an approximation is obiained for the dominant
root. The inversion of the integral equation ts studied with the purpose of
providing the basis for future investigations of errors of approximation.
Curves are provided for a number of examples permatling comparison of
exact and approximate solutions.

I. INTRODUCTION

The main purpose of this paper is to present a discussion of the
time behavior of blocking in a fully available N-trunk group for any
initial state with exponential servers and with Poisson-offered load
whose rate parameter a(¢) itself may be considered to vary with time;
that is, the probability of j calls arriving in a time interval (0, {) is as-

sumed given by
t Kl
. [f a(u)du]
exp(—f a(u)du) Lo, d=oiz. @
0 :

The service rate is taken equal to 1, so that a(¢) is measured in erlangs.
The problem of blocking with time-variable offered load was con-
sidered by Palm! for finite trunk groups and by Khintchine? for infinite
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trunk groups. The impetus for this is the need felt for more accurate
computation of blocking probabilities and correlation information® than
can be obtained by quasi-stationary analyses, that is, by the use of
equilibrium formulas in which the offered load parameter is replaced
by its instantaneous value. Lack of statistical equilibrium renders
this approach inaccurate. The time-variable aspect of the input stream
should be ecarefully distinguished from other statistical descriptions
such as peakedness,* since the effects on the system are separately
identifiable. It has been reported, for example, that offered load and
peakedness determinations from carried usage, peg count attempts
offered to a group, and overflows are misled by the time variability
of the offered load.

Palm had proposed an interesting method of accounting for the time
variability of the offered load, i.e., his ‘‘slow variations” model. In
this model, it was assumed that the actual ordering in time of a(?),
that is, the functional dependence of a(t) on ¢ could be ignored if a(f)
varied slowly. He replaced a(f) by a random variable with an incom-
plete gamma function distribution.! Thus, traffic functions such as
blocking may be obtained from their equilibrium values by averaging
over the appropriate gamma distribution. This model, however, re-
quires further elaboration in view of the investigations of Iversen,®
who showed that the Palm approach does not correctly model the
empirical data collected in the extensive Holbaek measurements of
Danish telephone traffic. Iversen found that the correct time variation
of the traffic could not be ignored.

The trunk provisioning procedure whereby one uses the average
offered load over a busy hour to achieve a required grade of service
results, in some cases that were considered, in only a small under-
estimate of the required number of trunks as calculated by the methods
of this paper. Since the standard method is convenient, this may be
viewed as substantiation of the approach.

Essential for the methods of this paper is a Volterra integral equa-
tion derived in Section II satisfied by the blocking probability,
Py(t, N), experienced by a load of a(f) erlangs offered to an N-trunk
group. Exact analytical solution of this equation is not useful, but
numerical methods may be advantageously used. An important fea-
ture of the equation, nonetheless, is that it permits studying errors of
approximation and, in one instance (Appendix D), was directly used
in the construction of an approximate operator for studying the
transient response in the case of constant a(¢). Appendix A presents an
explicit representation of Px(f, N) for general a(f) by means of an
infinite Neumann expansion. Inequalities for Py (¢, N) and truncation
error estimates for the Neumann series are also given.
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The infinite trunk group case forms the basis of the approximations
developed in Section IV that are applicable to the general case of time
variable a(¢). Although this case was solved by Khintchine,? Section III
presents new representations in terms of rapidly convergent Poisson-
Charlier expansions. Truncation error estimates are obtained, and the
rate at which the state probabilities approach the Poisson form is
assessed. To aid in the use of Poisson-Charlier polynomials, Appendix
B provides a short discussion of their properties, especially providing
convenient means of expanding a function into a Poisson-Charlier
series. Since the state probabilities of the infinite trunk group system
are often close to Poisson, this form of representation is very useful.
The Poisson-Charlier expansion expresses the deviation of a function
from the Poisson form. Further, in Section IV, the Poisson-Charlier
polynomials are used to express the transition probabilities in explicit,
closed form.

The approximations of Section IV are applicable to time variable
a(t), and are developed from the infinite trunk group solution by
renormalization appropriate to the finite trunk group. To facilitate the
use of the approximations, closed expressions are obtained for the
relevant infinite trunk group solutions. This approximation procedure
gives rise to the useful notion of a “modified offered load.” One of the
approximations obtained was, in fact, already obtained by Palm.!
This approximation is particularly interesting because it uses the
Erlang loss function, B(N, a), for which rapid methods of computation
are available.®® A special case of the approximations for transition
probabilities is that for the recovery function, which is important in
the discussion of correlation properties’ and, hence, in the determina-
tion of variances of traffic parameter estimators.

The constant offered load case is studied in Appendix C. Although
the solution for the state probabilities is known,? the integral equation
formulation appears to be new. Certain advantages are obtainable from
this formulation. The errors of approximations to the state probabilities
satisfy the same integral equation but with a different inhomogeneous
term; thus, the more general integral equation is studied, leading to
methods for investigating the quality of approximation. For this
purpose, a natural Banach space (uniform norm over [0, =) is
introduced, in which the integral operator is bounded and has a
bounded inverse. Of course, the known Laplace transform of the
transition probabilities is immediately obtained as a corollary. The
integral equation is also used in Appendix D as a tool for the con-
struction of an approximate solution (the scaling method) correspond-
ing to an arbitrary initial state. Appendix C also presents several
bounds on the required roots of Poisson-Charlier polynomials by
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obtaining general bounds on the largest and smallest members of sets
of positive numbers subject to isoperimetric constraints; the results
are then specialized to the Poisson-Charlier polynomials. One of the
bounds for the dominant root is explicit and easily calculable. Its
accuracy appears to be good (see Fig. 8).

Appendix D provides two approximations for the case of constant
offered load. The scaling approximation, whose genesis was suggested
by 8. Horing, is constructed by obtaining an approximate time in-
variant of the transition blocking probability from the initially empty
state. The subsequent generalization of this approximation to arbi-
trary initial states is then obtained by means of the integral equation.
The Laplace transform approximation is constructed by an adaptation
of the Widder formula® for the inversion of the Laplace transform. It
requires the determination of the dominant root; but, depending on
the needs, it may be made arbitrarily accurate. It has the interesting
property that, under certain conditions, it provides bounds for the
exact solution.

A discussion of some results and graphical illustrations is given in
Section V. In testing the quality of the modified offered load approxi-
mations, high change rates of a(f) were chosen, in fact, much higher
than would occur in practice. The errors of approximation increase with
increasing rate of change of a(t), hence, the examples chosen indicate
much higher errors than one would expect to encounter in the practical
application of these methods.

Il. INTEGRAL EQUATION FOR BLOCKING

It is the object of this section to establish Theorems 1 and 2, which
provide integral representations of the binomial moments (13) of the
probability distribution (2) of the number of busy trunks, and corollary
1 of Theorem 2, in which an integral equation is given for the prob-
ability that all trunks are busy at a given time.

Let £ = £(¢, N) be the number of trunks busy at time ¢ in an N-trunk
group, and P; = P;(¢, N) the corresponding probability,

PL(t, N) = j1 = P;(t, N). (2)
The probability generating function g(¢, ¢, N) is given by

g = Bgem = 5 Py NI 3

At the point ¢ + di, one has
gt +di, &, N) = g + dg, £t +dt, N) = £+ d¢ (4)
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and, hence,
g+ 99 = E{TtE[r*| (]}, (5)

in which E[{%|£] is the conditional expectation of {4 given £, and E,
is the expectation over the probability distribution of ¢. The boundary
at j = N necessitates a further analysis of (5). One has

g+ 89 = (1 — Py)E[E[r%[t < N}
+ PyEACE[S% |t = N1}, (6)

The probability distribution of d¢ is

Pl = — 1|E= j,0 = j <N] = jdt,
P[df=0|£=_],0§_]<N]=1—(a.—i—_j‘)dt,

Plde=1]t= 7,0 < j < N]= adt, (7)
P[d¢ = 0|t = N]=1— Nd,
Pldi = — 1|t = N] = Ndi;

hence,

E[f%|t=j,0=j<N]=1+ (af —a— j+ jr)dt,
E[f%[g=N]=1—N(1 — ¢ Vdt.

From (6) and (8), one has

(8)

% _ (1 — PEfttaf —a— £+ &£ < N

at
— PyELE( — D[gE=N], (9)
o~ (1= P)a(t — DELE < N]— (¢ — DEL&e;
hence,
ag a9 _ TV _
a + (-1 a a(f — g —a(f — 1)i¥Py. (10)

The infinite trunk group does not require the analysis of (6) nor the
boundary conditions (¢ = N) of (7), hence (9) becomes

%= ar — Vg — (¢ — DEL&tT] (an

Thus, the corresponding equation for the infinite trunk group is
99 1% _ e =
ot T (& — D =al -1 (12)
The binomial moments 8,(f, N) are defined by

5.0, M) = ¥ P, M) (7)), (13)
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in which () designates the binomial function defined by

() - U=Dlizek D gy,

] s! !

(5)-+

The binomial moment generating function I(t, w, N) = 2% Ba(t, N)w*
is given by

(14)

I(t, w, N) = g(t, 1 + w, N). (15)
Thus, the differential equation satisfied by [ is

al al _ .
3 + o= awl — aw(l + w)VPy. (16)

The corresponding equation for the infinite trunk group is

al al
7 + wo = awl. (17)

Equation (16) is a linear partial differential equation that can be solved
by the following device (method of characteristics). Let 6 be a new,
independent variable and set

1 = 1(0),
w = w(6), (18)
t = t(6).

Then, comparison of
dil. _aldt | dl dw

d6 = 3ide T wdo (19)
with (16) yields the set of equations
3—16 = aw — aw(l + w)¥Py,
2w, (20)

whose solution for I is then obtained. To exhibit the solution conveni-
ently, let

a(t, 1) = e—'L‘ e*a(s)ds, (21)
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and
A =A() = a(t, 0) = e txa(l), (22)

where * designates convolution produet over (0, ¢). The solution of
(16) takes the form

I(t, w, N) = 1(0, we™t, N)etw
—w f Cewwt—1 4 wert]¥a(r) Py (s, N)dr. (23)
0

Similarly, the solution of (17) is
I(t, w, =) = 10, we™t, o)eiw (24)

To obtain the binomial moments themselves, it is convenient to intro-
duce the Volterra operator K,,

t
K.f = [ K. 0i@ar, (25)
defined by the kernel
s=1 i N et
K60 =% % (S T j) e~ =g (7). (26)

Since the Laguerre polynomial L& (—x)' is given by

Lo-0 = = 5(0 7 “). (27)

ZojI\n—j
the kernel K,(f, ) may be written more compactly ; thus,
K,(t, 7) = a(r)e- =D LN TTD(—get=7), (28)

The following theorems may now be stated.

Theorem 1: The binomial moments, B,(t, =), for the infinite trunk group
are given by

ﬁa(t, 00) = i .Ba_j(o, 00)3‘(1-_;‘):1_}_:_
i=0 J:

Proof: The coefficient of w® in the expansion of the right-hand side
of (24) yields the result.

Theorem 2: The binomial moments, B,(t, N), for the finite trunk group
satisfy
ﬁa(t, N) = B.(t, ») — K,Py.

Proof: The coefficient of w* in the expansion of the right-hand side of
(23) provides the required result.
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Corollary 1: The probability, Py (t, N), that all trunks are busy satisfies
the integral equation
PN(t, N) = ﬁN(t, 00) —_ KNPN,
in which
N . Aj
Bu(t, ») = 2 Bn—i(0, N)G“”"“F
i=

Ky, 7) = a(r)e VLY (—aqet—T).
Proof: For the finite trunk group (13) shows that
ﬁN(t, N) = Pm'(fr,I N)-

Hence, the integral equation follows from Theorem 2. The explicit
expressions for Bx(f, «) and Kx(t, 7) are obtained from Theorem 1 and
(28), respectively.

The special case of all trunks free initially leads to a somewhat
simpler integral equation for Py (t, N). This is given in the following
corollary.

Corollary 2: When all trunks are initially free, Px(t, N) satisfies
AN
Py, N) = Ni KyPy.

Proof: The initial probability distribution P;(0, N) has the form
P;(0O,N)=1 j=0,

29
=0 j>0. (29)
Hence, the binomial moments satisfy
(0, N) =1 =0,
B.(0, N) 8 (30)

=0 s > 0.
The equation for S8y (f, «) given in the first corollary now yields
AN
The result of the corollary follows.
The probability Py (f, N) corresponding to all trunks initially busy

is called the recovery function; it satisfies the following integral
equation.

Corollary 3: When all trunks are initially busy, one has

Py(t, N) = e¥Ly(—e'A) — KnPy.
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Proof: We have

P;(0,N)=0 0=j<N,
2
L iow (32)
Hence, the required binomial moments are
N
g.0, M) = (V): (33)

The result follows from the equation for 8 (¢, ) and from (27).
A noteworthy case occurs when a is constant, then the integral
equation for Py(f, N) becomes of convolution type. Thus, let

Kx(t) = ae VLY [—a(e — 1)]. (34)
Then one has Corollary 4.
Corollary 4: When the offered load a is constant, Py(t, N) satisfies
Py(t, N) = Bn(t, ) — Ky*Py.

Proof: Use of (21) and K (¢, 7) as given in Corollary 1 yields the result.
For constant a, an equilibrium distribution P;( o, N) exists.? Let

Nak

Swy(a) = kgom' (35)
Then
Pi(‘”;N)=m: 0=j=N. (36)

The notation B(N, a) is used for the blocking probability Py(=, N)
and is referred to as Erlang’s loss formula.® Corresponding to the
equilibrium distribution, one has the binomial moments 8,(0, N) and,
hence, the moments for the infinite trunk group given in Theorem 1.
These moments will be denoted by 8:(¢, @). It may be noted that

lim B(t, ) = ;- (37)
t— e s!

The integral of Kx(f) that is useful in error analyses may now be
easily obtained.

Theorem 3: When the offered load is constant, we have

[ Entnar = G2 — 1,

f‘ Kx(r)dr = Sx(a) — 1,
0
in which Ky (1) 18 given in (34).

NONSTATIONARY BLOCKING 633



Proof: Since B(N, a) is the equilibrium solution of the integral equa-
tion of Corollary 4, and since 84(#, @) corresponds to the equilibrium
state, the solution of the integral equation is constant and equal to
B(N, a); thus,

B(Nr a) + KN*B(Ns G) = ij(t) a’)-

This immediately implies the first equation of the theorem. The second
follows on considering ¢ —, and using (36) and (37).

It may be useful to observe that the positive character of the general
operator Ky in Corollary 1 immediately supplies the inequalities

31\((5, w) - KNBN(t, 00) < P_N(t, N) < ,BN(t, 00) (38)

A Neumann-series solution of the integral equation of Corollary 1 is
discussed in Appendix A. Higher-order inequalities of type (38) are
also given.

lll. THE INFINITE TRUNK SOLUTION

It will be convenient to express the solution for P.(t, «) in terms of
Poisson-Charlier polynomials®! whose relevant properties are dis-
cussed in Appendix B. The probability distribution of the number of
busy trunks for the infinite trunk case was considered by Khintchine?
and, for constant offered load, by Karlin and McGregor.'* Theorem 4
presents a rapidly convergent form of the solution in terms of Poisson-
Charlier polynomials valid for any initial state. This solution will
be the main tool for the construction of approximations to distribu-
tions in the finite trunk case.

From (15), let 1(0, w, =) be given by

10, w, @) = ,§, 6;(0, ®)wi, (39)

then the binomial moment generating function for the infinite trunk
case is, from (24),

1t w, ©) = etv Y B;(0, ©)eiw. (40)
=0

The mean, g, of this distribution is the coefficient of w; hence,
p=A+ pe, (41)

in which uo is the mean of the initial distribution. One may now state
Theorem 4.
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Theorem 4: The probability distribution, P.(t, <), of the number of busy
trunks tn an infinite trunk group has the convergent representation

Pa(t, ©) = ¥(z, n) i e~ id;G5(x, p),
=0
d.i = i (_:1[), “""-85—"(01 m):
o v

provided that
10,2 — 1, ®) = ¥ 8,(0, ®)(z — )i = 3 P,(0, =)z
=0 =
converges for |z| < r(r > 2).

Proof: Use of (40) in (101) which the choice A = p as given in (41)
yields ‘

Cw) = emowet 3 B;(0, = )eituwi, (42)
7=0
Hence, )
=iy ED s 0 43
C; = € et y! »uIJ.Bj—v( ] m) ( )
and, from (95),
Pa(t, ©) = ¥(=, u) 3 cGs(x, u). (44)
=0
Let ‘
=% SV s 0, ©), (45)
v=0 V.
then
¢; = e”itd;, (46)

and the formula of the theorem follows. A theorem of Uspensky!?
states that the general representation of (95) is valid in the sense that
the series converges to F(z) if the series Y ;i, F(x)z* has radius of
convergence greater than 2. Since

Utz — 1, ©) = e 4440, (z — 1)e~t, =], (47)

the radius of convergence of I(t, z — 1, =) is greater than 2 by the
condition on [(0,z — 1, =) stated in the theorem. Hence, by
Uspensky’s theorem, the representation of (44) is valid for all ¢ = 0.

A truncation error estimate for the series representation of Theorem
4 is given in Theorem 5.
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Theorem &
k
|Po(t, ©) — (x, p) — ¥(x, 1) Ee‘j‘d:-Gj(w, nl

< 2 k+1 e—(k-l-l)-‘.
() T e e, =,

k=1, R>w>0, t>1n£,
in which R is the radius of convergence of 1(0, w, ).

Proof: Since

|¥(z, WGz, p)| = [¥P(z, w)| = 2 jz0, (48)
we have
> et d;| [¥(z, w)Gi(z, p)| £ X e7*27|d;]. (49)
>k >k

Also, from (45),

ldi| = X =
j=o v!

| &

ﬁj—y(o, Do) = eunwl(o, w, nc)w—'j_ (50)
Thus,
> e itd;| [¥(z, )Gz, w)| = enel(0, w, ») 3 e 2w (51)
>k >k

e~ (k1)L

< eroul(0, w, =) (’L%)kﬂ I__WW' (52)

The conditions of the theorem ensure the convergence of (0, w, =)

and of the series of (51).
The corollaries below follow directly under the conditions of Theorem

5.

Corollary 1:
Pult, ©) = ¥(x, ) T ed;Gy(x, ) + 0(e=*+1).
=0
Corollary 2:
4 o
|Pz(t: =) — ¥(z, F)l = t?l_—_ﬁ/w—)e:‘e“ I(OI w, w)

Corollary 3:
P.(t, ») = ¢(z, u) + 0(e™).

Thus, the distribution quickly becomes nearly Poisson with the time
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variable parameter u, regardless of the initial distribution. In fact, if the
initial distribution is Poisson, one might anticipate P.(f, ) to remain
Poisson for all £ = 0. This is asserted by Theorem 6.

Theorem 6: If P.(0, =) is Potsson with parameter uo, then

P;(t, m) = Ifl(ﬂ?, 1“')-

Proof: The binomial moments, 8,(0, =), are

B0, ©) =58, 520 (53)
It follows, from (45), that

dJ—j!ygo(V)( =0, j>o. (54)
The result is now obtained from Theorem 3.

IV. APPROXIMATIONS

The Neumann series (75) is an explicit solution of the integral
equation of blocking given in Corollary 1, Theorem 2. For constant
offered load a, the resolvent kernel solution (108) and Theorem 11 are
also available; however, especially when N is large, these solutions
are not convenient. It is therefore important to have approximations
that lend themselves to computation for large N in a sufficiently
convenient manner. Three such approximations have been developed,
namely : the “modified offered load’’ approximation that is useful and
fairly accurate in the general case, that is, for time variable offered
load, the ‘‘scaling” approximation, and the “Laplace transform”
approximation, which are applicable only to transient phenomena
under constant offered load. The scaling approximation is also fairly
accurate and does not require factorization of polynomials. The Laplace
transform approximation consists in fact of an infinite set of approxi-
mations of arbitrarily high accuracy. It usually requires finding a
single root—the so-called dominant root—of an appropriate poly-
nomial. The scaling and Laplace transform approximations are dis-
cussed in Appendix D. Appendix C provides approximations for the
required dominant root. The modified offered load approximation
is presented below.

Let P..(¢{, N) be the probability that the N-trunk group started
from state ¢ at time 0 and proceeded to state x at time ¢, then P; (¢, «)
may be computed from Theorem 4 using

8,0, =) = (): (55)
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An approximation, P; .(t, N), for P; .(t, N) is given by
Poa(t, N) = Li=b ™) (56)
ZO Pl'.l’(t’) w)

This approximation is suggested by the following considerations. One
has _

lim P;.(t, N) = Pi.(i, =). (87)

N-wo
Hence, the approximation should be accurate even for time-varying
offered load when N is large. Furthermore, when a is constant, since
lim;.., g = a, one has

A _a

lliIE Pl'.-’:(z! N) - :L"SN(G) ]
which, as previously indicated, is the exact equilibrium distribution;
hence, the approximation should be accurate when ¢ is large even for
time-varying a(t), provided a({) is small. Since, by the law of total
probability,

(568)

Pu, N) = X Pi0, MPi(t, V), (59)

one can construct an approximation, P.({, N), to P.(t, N) by use of
B; .(t, N); thus,
_ N -
P.(t, N) = 3 Pi(0, N)P..(t, N). (60)
=0

To facilitate the use of (60), Theorem 7 expresses P; ,({, ) in finite
form.

Theorem 7:
Piat, @) = (1 — e~¥)ie— (_x—j‘) G.[i, — (et — 1)AT.

Progf: From Theorem 4 and (55), we have

Pi.(t, ) = ¥(x, u) z e=itd;G5(x, 1), (61)
d; = éﬂ (:})vi’ (j ¢ y)- 62)

Comparison of (62) with (90) shows that

d; = Ji, 6,0, ©). (63)
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Let,

¢; = V6,6, 0, (64)
then
cw) = %, 6,6, pw, (65)
= !
which, by comparison with (89), may be rewritten
C(w) = e (1 4+ e 'w)’. (66)
Let
B(w) = e**C(w) = er*(1 + etw)® (67)
and '
g(z) = B(z — 1) = etet2(1 — et + e t2)". (68)
Then
Pl'.-f(g: 00)

p=0\T — Vv v!

==y - £ ( F YHES DAY )
Hence, comparison of (69) with (90) finally yields
Piatt @) = (1 — s O @ p e~ a1 (0)
Immediate corollaries are the following :
Corollary 1:
Pott, ) = e A 5 Py, @)(1 — e, — (e — DA

Corollary 2:

P;.(t, N) = Go[3, — (et — 1)A]

-i:o (@ !/v ) (—A)=*G,[G, — (¢t — 1)A]

Of particular interest are the functions Py x(t, N) and Py x(t, N);
the first describes the progression of the system from initially empty to
blocked, and the second describes the recovery of the system from an
initially blocked condition to the blocked condition again. The latter
function is called the ‘“recovery function.” 7 The following formulas
are obtained from Corollary 2.

Pox(t, N) = B(N, ). (71)

The general principle of approximation employed, namely, the re-
normalization of an appropriate solution for the infinite trunk group
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case, allows one to state, by use of Theorem 6, that, whenever one starts
from an approximately Poisson initial state, an approximation to
P N(t, N ) is

This approximation was known to C. Palm.! The parameter u is re-
garded as a modified offered load.
The recovery function approximation obtained from Corollary 2 is

Gn[N, — (et — 1)A]
N
r (N D(—A)~VG,[N, — (¢t — 1)A]

Pyn(t, N) = (73)

V. NUMERICAL EXAMPLES

For the purpose of providing some idea of the accuracy of the ap-
proximations developed in Section IV and Appendix D, curves were
drawn up comparing exact and approximate solutions for a group of
ten trunks. These curves illustrate nonstationary behavior. Figure 1
shows the scaling and modified offered load approximations for a step
input problem in which @ = 7 erlangs is offered to an initially empty
group. The scaling approximation of (166) was used, and (71) was used
for the modified offered load approximation. Apparently, for this situa-
tion, the scaling approximation is somewhat more accurate.

0.10
0.09%-
0.08
0.07f
= 006~
- |
@
< .05~
[=]
&
o 0041 TRUNK GROUP = 10 TRUNKS
OFFERED LOAD a=7 ERLANGS
0.03 B (10, 7) = 0.07874 (EQUILIBRIUM LEVEL)
e EXACT PROBABILITY
0.02}- == == == = SCALING APPROXIMATION
== MODIFIED OFFERED LOAD APPROXIMATION
0.01}
] ] ] ] 1
0 1 2 3 4 5 6 7

t (TIME)
Fig. 1—All trunks empty initially—scaling and modified offered load approximations.
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1.0
0.9
0.8
TRUNK GROUP = 10 TRUNKS
0.7 OFFERED LOAD a=7 ERLANGS
= B (10, 7) = 0.07874 (EQUILIBRIUM LEVEL)
= 06 \ = EXACT PROBABILITY
2 \\ — — — — LAPLACE TRANSFORM APPROXIMATION
é 0.5 \ ——-—— MODIFIED OFFERED LOAD APPROXIMATION
o
= 04}
(-9
0.3
0.2
0.1
0

t TIME}

Fig. 2—Recovery function—Laplace transform and modified offered load approx-
imations.

The recovery function approximations of (73) and (187) are com-
pared to the exact solution of (185) in Fig. 2. The approximations are
correct at the extremes ¢ = 0,¢{ = <, and track the exact curve reason-
ably well. The approximation of (73) is more accurate initially and is,
of course, also applicable when the offered load is time-variable; how-

TRUNK GROUP = 10 TRUNKS

OFFERED LOAD a=4+4t— 16t2,0<t<5
=4,5<t<10

0.4
TRUNKS IN EQUILIBRIUM INITIALLY UNDER
OFFERED LOAD a=4 ERLANGS

0.3+ ~ e E X ACT PROBABILITY

\ — — — — MODIFIED OFFERED LOAD
APPROXIMATION

0.2

P (PROBABILITY)

0.1

T (TIME)
Fig. 3—Pulse response—modified offered load approximation.
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P {(PROBABILITY)

P (PROBABILITY)

0.22

o.18}-
0.16p~
0.14F
0.12
0.0
0.08—

0.06

0.08

0.07

0.06

0.05

TRUNK GROUP = 10 TRUNKS

0.20—- OFFERED LOAD a=7+ 3 SIN 497t ERLANGS
EXACT PROBABILITY

— — = — MODIFIED OFFERED LOAD APPROXIMATION

t{TIME}
Fig. 4—All trunks empty initially—modified offered load approximation.

TRUNK GROUP = 10 TRUNKS
OFFERED LOAD a=5+2S5IN0Q.057t 1
EXACT PROBABILITY -

o= == == MODIFIED OFFERED LOAD APPROXIMATION //

| ] |
5 6 7 8 9

t (TIME)

Fig. 5—All trunks empty initially—modified offered load approximation.
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P (PROBABILITY)

P (PROBABILITY)

0.08
/

0.07
0.06}-

TRUNK GROUP = 10 TRUNKS
0.05— OFFERED LOAD a= 5+ 2 SIN 0,177t

EXACT PROBABILITY

— — — — MODIFIED OFFERED LOAD APPROXIMATION
0.08}-
o0.03f
] ] I
5 6 7 B 9

t (TIME)

Fig. 6—All trunks empty initially —modified offered load approximation.

0.06,

0.05}-
TRUNK GROUP = 10 TRUNKS
OFFERED LOAD a=5+ 2 5IN 0.5t

004 / EXACT PROBABILITY

/ — — —— MODIFIED OFFERED LOAD
/ APPROXIMATION
/

.03l

0.02}-

0.01f-

0 ] I |
5 ] 7 8 9

1 (TIME)

Fig. 7—All trunks empty initially—modified offered load approximation.
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ever, the approximation of (187) is simply the case n = 0 of Theorem
16. Considerable enhancement of accuracy may, for example, be ob-
tained by using n = 1 or even higher values of n.

The modified offered load approximation, (72), is compared to a
pulse response in Fig. 3. It is seen that, despite the rapid variation of
a(t) (as high as 14 erlangs/call duration) and the large range of prob-

‘ability values, the approximation well imitates the course of the
response.

Figures 4, 5, 6, and 7 illustrate the modified offered load approxi-
mation applied to sinusoidal inputs. In all cases, the trunk group was
initially empty. Figure 4 shows the response, starting from ¢ = 0, to
@ = 7 + 3 sin 4xt. This may be considered to have wide excursions
compared to the constant term 7, and rapid oscillations, i.e., the period,
T, is 5. The exact curve is seen to be well imitated by the
approximation.

One may consider the total error to consist of two components, an
evanescent part arising from the specific initial state and a component

2.0
1.0 /
/
,/
1.8
i/
i/
1.7 i/
TRUNK GROUP = B TRUNKS y
EXACT ROOT
1.6~ — — — — APPROXIMATION
1.5
T
1.4}
1.3
1.2}
1.1}
1.0
| L ] 1 ] | ]
0 1 2 3 4 5 6 7 8

a— OFFERED LOAD
Fig. 8—Upper bound approximation to dominant root.
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resulting from the rate of change of the offered load itself, that is, a
function of d(#) which vanishes when d(¢) = 0. Figures 5, 6, and 7
are intended to illustrate the latter component above; hence, the time
scale starts at five. The periods of 40, 20, and 4, respectively, were
chosen to reflect the effect of d(f) on the approximations. To provide
clearer comparison, the probability scales of the graphs have been
expanded.

The lower bound of Theorem 13 provides an upper bound on the
dominant root. A comparison with the exact values for an eight-trunk
group taken from Bene¥ is given in Fig. 8.

VI. NEEDED INVESTIGATIONS

Much work remains to be done to provide a satisfying and viable tool
for fully available trunk group analyses. One may mention error estima-
tion of the approximations suggested in Section IV and Appendix D,
the investigation of new approximations, such as studying the con-
sequences of using a refined scaling approximation or an improved
modified offered load, and the study of (I + Ky)~! in the Banach
space X, for variable a(¢). This, in turn, would permit new approxi-
mations to be constructed and would provide improved means of error
investigation. Relatively little is known about the behavior of the
zeros of Poisson-Charlier polynomials, especially in the present
context, as functions of a, N. It is hoped this paper will provide an
impetus for further investigation.
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APPENDIX A
Neumann-Series Solution
The Neumann-series solution of the integral equation for blocking,
Py(t, N) = Bn(t, ©) — KnPu, (74)
is
Px(t, N) = Bn(t, ©) — KnBn(t, ©) + KiBn(t, ») — ---, (75)

which, of course, is convergent for all {. The positivity of Ky implies
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the system of inequalities

}:0 (—1)KiBn(t, ©) < Py(t, N) < Z( 1)iKiBn(t, ), k 20,
(76)

which generalize (38).
Truncation error estimates for (75) will now be obtained. The in-
equalities (76) yield

—K¥H8y(t, ©) < Py(t, N) — Z (—1)KiBn(t, ») <0, (77)

0 < Px(t, N) — EE: (Hl)jKirBN(t, 0) < K?\?H.@N(t. ). (78)

Hence, it is only necessary to bound K3¥t'8x(t, ). Let

a(l) = 4, (79)

then, from (27) and (34),
Ky(t, 7;0) < Ky(t — 7;8) = Ae™77, (80)
A = aL{(—a). (81)

The dependence on a is explicitly shown in (80). One similarly obtains
- N a’
BN(t, © a.) é ﬁ = ZOﬁN_j(O, N) ﬁ, t = 0. (82)
= !

One may now state Theorem 8.

Theorem §8:
At
W(t, =) s B4
Proof: One has
Ky(t;a) £ Ae . (83)
Hence,
- , _
Ky.t;a) =4 =11 e, (84)

in which Ky .(t; @) is the r-fold convolution of Kx(¢; @) with itself.
Convolving this with Bx(t, «) finally yields

(At)

Ky, (t; @)%Bn(t, ©) = B~ (85)
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APPENDIX B

Polséon-Charﬂer Polynomials

Some properties of Poisson-Charlier polynomials! are developed in
this appendix, especially with a view to convenient representation of

functions by series expansion. Let

A®

V@ N =er =, T=0,1,2

Then the polynomials G;(x, A) are defined by

@ N) = WOz, N) = Gy, N, A).

The Taylor expansion
® i
Va A+ 9 = T Sy, )
1=0]"
yields the generating function
(1+ ) 2 Gi(z, A)j.-—:-
Thus, explicit formulas for G,(x, \) are

Gie, N =5 % (-1 ( )f

j—v /!

=50 (2)0m(0)

The first few polynomials are

Golz, \) = 1,

Gh(z, A) = % (x — ),

Galz, \) = % [2* — (2\ + 1z + 7],
1

Ga(z, \) = 55 [2° — 30\ + 1)a* + (3% + 3) + 2)z — N,

A recurrence relation derived from (89) is

G, ) = T2 G, ) — 3 Gia(a, W),

(86)

(87)

(88)

(89)

(90)

(91)

(92)
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The following inner product is defined for functions f(z), g(x) of the
discrete variable z:

f, 9 = g ¥z, N f(2)g (). (93)

The Poisson-Charlier polynomials are orthogonal with respect to this
inner product!

(G5, Ge) = 0, J#EEk (94)

j !
@ G) =55

Accordingly, the coefficients ¢; in the expansion of a function f(z)
in the form

@) = ¥z, ) ; ¢iGs(z, N) (95)
are given by
6 = 5 X, Gilz, NI@). (96)

For the purpose of the present investigation, a more convenient mode
of determining ¢; is achieved by obtaining their generating function;
that is,

Cw) = gﬂ cw. (97)
From (96), one has
= = (Aw)?
cw) = X 1@ 3, T Gl V. (98)
Hence, from (89),
Cw) = e T J@)(1 + )~ (99)
Let
Bw) = ¥ f@(1 + ). (100)

Then B(w) is the binomial moment generating function of f(z) and
C(w) = e MB(w). (101)

From (101), the first few coefficients ¢; are obtained in terms of the
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corresponding binomial moments g8; of f(z); thus,
Co = .Bu,
¢1 = B1 — By,
c2 = B2 — A1 + A%,
c3 = Bs — M2 + 3A\*B1 — £A3B0.
A useful choice of the parameter A is suggested by (102), namely,

(102)

A = B1/Bo, (103)
which yields ¢; = 0 and
2
€y = P2 — % )
ﬁl,c; . (104)
€y = fBs — Tvz + 2,3—313.

For a probability distribution, one has 8y, = 1, and the choice (103)
for A implies that A is equated to the mean of the distribution. In this
case, one has

ez = 3(o® — ),

¢ = ba — 30 + 20), (105)

in which u is the mean, ¢? the variance, and a the third moment about
the mean of the distribution.

APPENDIX C
Constant CHfered Load—Dominant Roois
In this appendix, the integral equation for the constant a case,

namely,
Py(t, N) = Bn(t, ©) — Kx*Py(t, N),

Ky(t) = ae= LY \[—alet — 1)], (106)
Butt, =) = e 3 pu-s0, Ny (2T DT
is studied. In fact, the somewhat more general equation,
J@O + Knxf(t) = g(1), (107)

is resolved. This presents a considerable advantage over the solution
of (106), since the errors of approximations to Py(f, N) satisfy (107),
and hence may be studied by means of Theorem 10 and its corollary.
Solutions for blocking have been obtained in the literature,’-® but do
not provide a means for error analysis. For the practical utilization
of the solutions, bounds for the exponents occurring in the explicit
representation of the resolvent kernel will also be obtained.
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Integral equation theory' asserts that a resolvent kernel, Qw(f),
exists with the property

f@) = g@®) + Qu*g(D). (108)
Laplace transformation will be used to study (107) and (108).

Theorem 9: The Laplace transforms, Ex(s), On(s), of Kx(t), Qun(t),
respectively, are

(—1)¥a¥Gy(—s — 1, a)

By ="—x1. ¥ N D
Ox(s) = s+ 1---(s+N)— (=D)Va"Gy(—s— 1, a)
e (—1)¥a"Gy(—s — 1, a)
Proof: One has, from (27),
b e NS ON \X
wa-0- 35 (;11)5 (109)
and hence, ~
Kn() = aev g () Fe - (110)
Thus,

Ru(s) = a Nil( f )‘i [7 et — eyt (1)

Letting X = ¢, one has

Rv@-a £ (5,

The integral in (112) is the beta function, B(N + s — j, j + 1).
Hence,

a’ ! . .
)j—,quNﬂ—a—la _ X)idz. (112)

One has the following transformations:
&= 2 (7 ) wro v S
v ()= GG £ (Vo @v-p, 13
Br®= e 2 (] ) D (D), (116)

Ev)= 31y aN(s+N),Z( v/(F) (T am
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Thus, the required formula for Kx(s) is obtained from (117) by
comparison with (90). From (107), one has

F+ Ensf=1¢ (118)
Hence, _
s__ &8 __._ Ky _
f_1+KN Ay 4 (119)
thus, Eul®)
_— _.__N s -
On(s) = 1+ Ex(3) (120)

This, together with the formula for Ky(s), yields the required expres-
sion for Qn(s).

Corollary: & )
il—s,a

Pin(sy N) = (=D (a1 oy

Proof: Use of Theorem 2, Corollary 4, Theorem 9, and eq. (178) with
B;(0, N) = (3).
An expression equivalent to this corollary was given by Takdcs.'®
It will be useful now to introduce the Banach space, X, of functions
f(t) that are bounded and measurable over (0, «) and normed by

7l = sup [f(&)]. (121)
¢ =0
One may now state Theorem 10.

Theorem 10: The operators I + Ky and (I + Ky)™ are bounded;
further,
|7 + Kx|l = Sw(a),

10+ Kl = 1+ [ 1w las

in which the operator norms are those induced by (121).

Proof: The quantity ||/ + Kx| is obtained directly from Theorem 3
and the formula

II + Kxll =1+ fn Ky(t)dt. (122)
Since the polynomials Gy(x, a) are orthogonal over (0, «), it follows
that the zeros, Py, - -, Py are distinct, real, and positive; hence, the

zeros, r1, -+, ry, of Gy(—s — 1, a) are distinet, real, and less than
minus one. The Paley-Wiener theorem® applied to Qx(s) now asserts
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that I + Kx has a bounded inverse with norm C given by
€= I+ K0 =1+ [ lQu)]a (123)

An immediate corollary is the following.

Corollary: The integral equation
f+KN*f=g: QEX,
possesses a solution [ € X satisfying

Il = Cllgll,
im |f(#)] < CLim |g(®)].
-+ [ ]

In particular, if imy.. g(t) = 0, then lim,.. f(t) = 0.
Proaof: The result follows from

J=g+ Qunxg (124)

and the definition of C.
The following theorem provides a representation of Qx(f) and an
estimate of C.

Theorem 11:
N N
N H (ri + ») N |?'J'+ Vl
v=1 . v=1
Qn(t) = -21 et C=1+4 21 - .
ST - Bl I 1y —
:#J' v

Proof: One has
(=1)YaVGy(—s—1,a) = (s —r1)- (s — rn) (125)
and, hence, from Theorem (9),

(s+ D +N) = (=r)(s=r)  (joa

(s—r1)---(8 —rw)

On(s) =
The partial fraction expression for Qn(s) is

N fi[ (TJ- + V) 1
QN(S) ~ 1 '1;1 § — T“
i T

vitj

(127)
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Thus,

Q) = X % ¢t (128)
i=1 I—_Il (T‘ _ T,,)
v
Also, one has ¥
N 111 |7 + v|
[NOIE P erit, (129)
B I:Il [ — 7]
v
and, accordingly, .
© N 11 |T.i + V‘
c=1+ [ laxlas1+ X - (130)
il II |r; — 1]
U#J

To make the results of Theorem 11 accessible for estimation, partic-
ularly in numerical applications, and for the Laplace transform ap-
proximation of Appendix D, bounds for the roots, r;, will be obtained.
The generating function, g(z), for the equilibrium probability distribu-
tion, P;( =, N), of (36) may be written as

0() = ‘?g“l’\f(“;)) (131)

Thus, the mean, m, and variance, ¢%, are
m = a[l — B(N, a)], (132)
e =m — (N — m)aB(N, a). (133)

We now have Theorem 12.
Theorem 12: (Benes) ry > — (m/d?).

To obtain further bounds, the following lemmas are needed.
Lemmal:py = --- = p1 > 0,

pr+ - +pov=38, pit+--+px=28, po-pxv=D,

then

s1 4+ V(N — 1)(Ns, — s})

= < ... = =
pP=p1L= = PN = N

in which p is the small positive root of
p(s1 — p)¥* = D(N — 1)1
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These bounds are sharp.

Proof: The equations

bt e o = s (134)
P+ -+ pov=s (135)
may be written
pr+ -+ 4+ py_1 = 81 — pn, (136)
Bt o+ phoy = 8 — pd (137)
Let
p:v = INax py (138)

over all allowable sequences. Then the sum (137) is minimum when py
is replaced by py. This occurs, however, only when

gy = LT PN
p1 = PN-1 = 7 (139)
Thus, from (137),
— pr\2
-0 (5= = (140)
The solution of (140) for py is
— — o2
p*N _ $1 + '\/(N ]&) (N82 51) . (141)

This proves the upper bound of the lemma. The inequality is attained
for the vector (p1, - - -, px) defined by (139) and (141).
Similarly, one may write

pz+ -+ pxy = 51— py, (142)
p2---px = D/p1. (143)

Let . .
p1 = min p; (144)

over all allowable sequences. Then the product (143) is maximum when
p1is replaced by p;. This occurs only when

*

pr= e =y = o (145)
Thus,
— N1
[5=2 ] - o (146)

and the equation of the lemma defining p has been established. The
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inequality is attained for the vector (py, - - -, pw) defined by (145) and
(146).

Lemma 2: py = --- Z p1 > 0,
1 1
sag=—4 -4+, D =pi--px
p1 N
Then
pPNZE = p = p,

in which p is the small positive root of
1 N—1
D (8_1 — ;) = p(N — I)N_l.

The bound is sharp.

Proof: One may write

1
LTI P (147)
p2 PN p1
p2° PN = D/Pl- (148)
Let
p1 = min py (149)

over all allowable sequences. Then the product (148) is maximum
when p; is replaced by pi. This occurs when

N-—-1
pr = - = py = i (150)
S_1— =
P1
Thus,
N —1 |~
1 = D/pi (151)
1 — =
P1
and the equation of the lemma is established. The inequality is at-
tained for the vector (p1, - - -, pn) defined by (150) and (151).
The application of the lemmas to the polynomials Gx(z, a) is ac-
complished by identifying pi, - - -, px with its zeros. For this purpose,

the form of Gy(z, a) given in (90) will be recast, by the help of the
Stirling numbers of first kind," into standard form; that is,

N
Gy(z,a) = Y ay—mx™ (152)
m=0
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The Stirling numbers, S7, are defined by

1 .
M- =% Sam (153)
y=(l m=1

Thus, one has

Gu(z, a) = <—1)N+m§=1xm”f"(—1)vav-~(ﬂ‘f ) n_,. (154)

¥ =

The sums s;, s; are accordingly given by

2
sg=s§—6({f)—(6a+4)(1§)—2a’(§)- (156)

The reciprocal polynomial, that is, the polynomial whose zeros are
pity -+, py' is given by

5 = (N) + aW, (155)

N
X¥Gy(z™, a)Gn(z, @) = Y amnz™ (157)
m=(
Hence, the analogous quantities s_; and s = p;2 4+ -+ + p3? are
given by
LS|
1= 2, ;N(”)a—", (158)
v=1
N 1 »—1 1
§p=8,—23% SNWg* ¥ =, (159)
y=2V i=1]
in which

NO =1 NO=NN-1---(N—v+1), »>0. (160)

The upper bound of Lemma 1 now establishes Theorem 13.

Theorem 13:

N
s+ VIV — 1) (Nss — &2,)

SEp< - <opwn

< 81+ \"(N - 1)(N32 - S%)'
= N

Proof: The upper bound is immediate. The lower bound is obtained
by applying the upper bound of Lemma 1 to the reciprocal equation.

A numerical illustration of Theorem 13 is provided by the zeros of
Go(x, 7) used in obtaining the recovery function plotted in Fig. 2.
They are 0.332811, 2.05847, 4.06653, 6.31227, 8.81308, 11.5197,
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14.6407, 18.0255, 22.0872, and 27.1438. The lower and upper bounds
given by the theorem are 0.32964 and 36.82292, respectively. It appears
that the lower bound may well be usable as an approximation to p;.
The accuracy of this when used to approximate —r; =1+ p; is
illustrated in Fig. 8. The exact values of —r; are taken from Benes.”
This provides an upper bound for r; which, together with the available
lower bounds, is useful for error investigations.

APPENDIX D
Approximations—Constant Offered Load

It was suggested by S. Horing that an appropriate scaling between
Px(t, N) and P.(t, k) may exist; that is, a function F[Px(t, N),
P.(t, k)] may exist, which would be approximately independent of ¢
and which may, therefore, permit the approximate determination of
Px(t, N) in terms of Py(¢, 1), for example, thus permitting large trunk
groups to be studied in terms of the behavior of small ones. Since it is
feasible to use (108) for small trunk groups, this would constitute an
approximation of the solution of (106) for large trunk groups.

Consider the following

B(kl, a) L1kt Si(a/k)*

B(, a/k)* ~ (k)! Swula)

(161)

The ratio S:(a/k)*/Sii(a) is approximately independent of a since
Si(a/k)* = Swi(a) = e for k large. Thus,

B(kl, a)

B(, a/k)* (162)

is approximately independent of a. It would seem, therefore, that the
ratio (162) is approximately a time invariant of (106), especially for
large ¢; that is, the function

Pu(t, kl; a)

Pi(t, 1; a/k)* (163)
is approximately equal to the ratio (162) when ¢ is large; thus,
) = Pt 1; a/k) 1*,
Pul(t, l; a) = B(kl, a) [ BU a/k) (164)
We have, from (107) and Theorem 11,
Loy - @ — p—lat1)t
Py(t, 1; a) a1 {1—e ! (165)

when the trunk is initially empty. Hence, from (164) with [ = 1,

NONSTATIONARY BLOCKING 657



k=N,
Py(t, N) 2 B(N, a){1 — e-laIN+11e}¥ (166)

for the case when all N trunks are initially empty.
It is desired now to extend the approximate solution (166) for
application to any initial condition. Define gx () by

gn(t) = B(N, a){l — e laiM+1I N (167)

Then a convolution operator with kernel Ly (f) will be constructed so
that one has

AN
gy + Ly*Qy = N1’ (168)

exactly. The operator Ly will then be taken to approximate the opera-
tor Ky of (106). Accordingly, an approximation Py to Py correspond-
ing to initial states other than all trunks empty is defined by the

equation _ _
Py 4+ Ly*Py = By. (169)

Theorem 14: The Laplace transform, Ly(s), of the approximating
Ly (t) is

TG (¥ + Gy +Y)
o N+ 00 (7

- (1) o f 2L 20

1+ Ly = (AE,+ I)Sw(a)

Proof: One has

Gy = BV, @) [~ emrtf1 — ety gy (170)
Let w = [(a/N) + 17¢, then
v = 7(5%’_?1 : e—lsl GIN+DIu(] — )Ny, (171)
The substitution z = e~ yields
Gy = %\;,—f—l 0lzli.'(n.'N+l)]—1(]_ — 2)Vda; (172)
thus,
s V| @me]
wT @M +1I,[N+ R 1] (173)
(a/N) +1
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One also has

@ _ NIT(s)
8t — N o - .
fo L = eVl = s (174)
The Laplace transform of each term of (168) now yields
~ = a¥T(s) )

Use of (173) yields the result of the theorem.
It may be noted that Ly has an impulsive component at { = 0 whose
value is

(% + 1)”NSN(a) — 1L (176)

For large N, this is nearly zero. The effect of this is to create an
error at ¢ = 0; that is, Py (0, N) 5 Py (0, N) if By (0, N) s 0. The
larger N is (for fixed a), the smaller the discrepancy.

Equation (169) is studied in Theorem 15.

Theorem 15: The solution of (169) is

5 N! ' o
PN = W B(N, a) s
POT ¥+ Gy + 1]
E 8,0, MaTGs + )
e N 1
Fu= 2500 " 2ED gy, p=2.

Proof: From Corollary 1, Theorem 2, one has

N i
By = % By5(0, N) % e V=DK1 — et)3; (177)
hence, N )
5= . T+ |
IBN— Jg{] BJ(O; N)U'N F(s + N + 1) (178)

Transforming the terms of (169) yields
Py(1 + Ly) = B, (179)

and hence the result of the theorem is obta;ined from Theorem 14 and
eq. (178). The inversion of the transform, Py, by use of differentiation
follows on use of (173) in Pu.
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Another method of approximation useful for constant offered load is
based on an approximate inversion of the Laplace transform. Let

F(s) = L T iy, s> 0; (180)
then »
%fsnﬂfcn)(s) = L e=ruynf (u)du. (181)

The function (s**'/n!)e~t%y" is a probability density function for
any ¢ > 0, n = 0 whose mean is (n + 1)/s and variance (n + 1)/s"
Letting s = (n + 1)/¢, the mean and variance are ¢ and #/(n + 1),
respectively; hence, Korovkin’s theorem on sequences of positive
functionals'® establishes the Widder inversion formula?:
(=1~ aHl F(n) =

A0 = 1. (182)

lim

n—®

s=(n+1)/t

The above diseussion forms the basis for Theorem 16.

Theorem 16: For € > 0, let the transform of e<f(f), namely, f(s — e),
exist for s > 0, and let et f(t) be convex in t > 0, then

1@ s e E s — o

a=(n+t1)/¢ !
Proof: Jensen’s inequality applied to (181) in the form

S"+1

" =
%s“ﬂj(“)(s —_ e) - T

j;w e tvynest f(u)du (183)

establishes the theorem. By virtue of (182), when similarly modified
for the function e¢f(¢), the dexter of the inequality always provides
an approximation to f(t) even when e¢f(t) is not convex.

Corollary: f(s — € exists for s > 0, and et f(t) 78 convex in t > 0
implies
651_}"(?—6), t>0.

Proof: The case n = 0 of Theorem 16.

If f(s) should have a dominant pole, it is usually advantageous to
choose € equal to the negative of that pole.

The above corollary will now be applied to obtaining an inequality
for the recovery function. The corollary to Theorem 9 shows that

Gn(—s, a)

Pyl N) = @ 3 o

(184)
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The inversion of Py y(s, N) is readily accomplished; the result is’

N orit
Puw(t, M) = B0V, o) — £ I (1- 2) (89
i=1 Tj isj LE R
It follows from (185) that
e [Py n(t, N) — B(N, a)] (186)
is convex for ¢ > 0 and that the corresponding Laplace transform exists
for s > 0, hence, by the above corollary, one obtains
Py x(t, N) = B(N, a)

rit G [_(l/t) — Ty a:l _ B(N, a) )
+e[u+m%d—wn—n—hﬂ 1+m] (187)

REFERENCES

1. B. Wallstrom, “Congestion Studies in Telephone Systems with Overflow Facili-
ties,”” Ericsson Technics, No. 3.
A. Y. Khintchine, Mathematical Methods in the Theory of Queuing, New York:
Hafner, 1969.
V. B. Iversen, ‘“Analysis of Traffic Processes Based on Data Obtained by the
Seanning Method,” Lyngby, Denmark: Technical University of Denmark.
R. I. Wilkinson, ‘“Theories for Toll Traffic Engineering in the U.S.A.,” B.S.T.J,,
35, No. 2 (March 1956), pp. 421-514.
D. L. Jagerman, “An Approximation Theorem of Central Limit Type,” un-
published work.
D. L. Jagerman, “Some Properties of the Erlang Loss Function,” B.8.T.J., 53,
No. 3 (March 1974), pp. 525-551.
. V. E. Benes, Mathematical Theory of Connecting Networks and Telephone Traflic,
New York: Academic Press, 1965, Chapter 6.
. J. Riordan, Stochastic Service Systems, New York: Wiley, 1962,
. R.E. A. C. Paley and N. Wiener, “Fourier Transforms in the Complex Domain,"”
Amer, Math. Soc., 1934.
G. Sansone, Orthogonal Functions, New York: Interscience, 1959, Chapter IV.
. C. {(I?ﬁlon, Calculus of Finite Differences, New York: Chelsea, 1947, Chapter
. S. Karlin and J. L. McGregor, “The Differential Equations of Birth-and-Death
Processes and the Stieltjes Moment Problem,” Trans. Amer. Math. Soc.,
85, 1957, pp. 480-546.
. E. Schmidt, ‘“Uber die Charlier-Jordansche Entwicklung einer Willkiirlichen
Funktion nach der Poissonschen Funktion und ihren Ableitungen,” Zeitschift
fiir Ange. Mathematik und Mechanik, V. 13 (1933).
14. E. C. Titchmarsh, Iniroduction fo the Theory of Fourier Integrals, New York:
Oxford, 1948,
15. L. Takdcs, Iniroduction to the Theory of Queues, New York: Oxford, 1962, Chapter

S o® N 2 o oa W W

P
o

—
w

4.
16. P. P. Korovkin, “Linear Operators and Approximation Theory,” New York:
Gordon and Breach, 1960, p. 14.

NONSTATIONARY BLOCKING 661



aldy b b c e



