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Line-of-sight paths are important as VHF radio channels. In a mobile
radio system, for example, the landscape determines the communication
possibilities in @ complicated way. This paper analyzes a stmple model of
rough terrain to relate statistical terrain properties to line-of-sight paths.
The model is constructed from conical hills, all the same height, distributed
at random over the surface of a spherical earth.

The parameters of the model are the earth's radius a, the density o
of hills, and the grade g of the hills. Although o simpler planar model is
obtatned by lelting a — =, a fintte spherical earth is needed for most
questtons. Assuming that a base station is located af the peak of a hill,
the most inleresting line-of-sight paths are those from a typical hilliop.
A large number of statistics of these paths are then derived, uswally as
simple functions of a, o, and g. These include properties of paths to other
peaks, to the horizon, and to random points on the ground.

I. INTRODUCTION

Very-high frequency radio propagation is often said to resemble
optical propagation. A line-of-sight path provides a good radio channel ;
a path blocked by the terrain does not. With the aid of a topographic
map, one can determine whether a path Q.Q. is a line-of-sight path.
Essentially, one must plot the ground elevation profile along the path
to see whether the ground intersects the straight line segment @1Q..
This calculation must include the effect of the earth’s curvature.
Atmospheric refraction is also accounted for by changing the earth’s
radius to a fictitious value.

Having done the calculation for one path @i, Q:, we learn little about
other paths. The region covered by a transmitter at @y, i.e., the set of
points @ visible from €1, would be found by plotting ground elevation
profiles along views from @ at every possible azimuth angle. This
region might represent the coverage of a Tv station or of a base station
in a mobile telephone system.

This paper analyzes a statistical model to give insight into the way
coverage regions depend on properties of the terrain. The parameters
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of the model are the radius a of the earth, a density ¢ of mountains
(or hills) per unit area, and a grade (slope) g of these mountains.
Many statistical properties of terrain and paths are then derived as
functions of a, o, g. These properties are means, or in some cases
distribution functions, of the random variables that appear in the
INDEX. Line-of-sight paths from a typical mountain peak receive special
attention because a peak is the most likely site for a base station.
Although the exact formulas contain integrals with unwieldy trigono-
metric integrands, most of these formulas may be replaced by simple
expressions, to a very good approximation. The expected area visible
from a peak and the expected number of peaks visible from a random
point on the ground are more complicated quantities, leading to
integrals that are evaluated numerically.

INDEX
Altitude—eqgs. (6), (7), (8), Table I, Fig. 6.
Area blocking—eqs. (12), (17) to (20), (23), Table III.
Visible—eq. (43), Table VII.
Within horizon—eq. (35).
Number of peaks visible:
From a peak—eq. (26), Table V.
From a point on the ground—eq. (37).
Range from a peak:
To furthest visible peak—eq. (31), Table V.
To horizon—eqs. (33), (34), Table VL.
To random visible peak—eqs. (25) to (29), Table IV.
To random visible point on ground—eqs. (39) to (42),
Fig. 15.
Slope—Table I1.

The earth’s radius e is an important parameter of the model.
Although a simpler planar model is obtained by letting @ — =, the
planar model is inadequate for most statistics of interest.

With e and ¢ fixed, the terrain becomes rougher as g increases. As a
rule, the model predicts more long line-of-sight paths and larger
expected visible area for rougher terrains. However, in mobile radio
these long paths are more important as sources of interference than
as useful channels.

Il. THE MODEL

The terrain model will use conical mountains distributed at random
in a Poisson pattern over the surface of the earth. Begin with a sphere
of radius ¢ miles (a may be the true radius of the earth, or something
larger if atmospheric refraction effects are to be taken into account).
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Place points at random on the surface S of this sphere using a Poisson
process with density ¢ points per square mile. Each Poisson point will
represent a mountain peak, and so the sphere of radius a will be called
the peak sphere.

Each Poisson point P will be associated with a mountain-shaped
subset M (P) of the interior of the peak sphere. The subsets M (P;),
M(P,), --- for the various peaks will overlap. Take the union of all
the subsets M (P) to represent the earth.

The simplest shape for M (P) is the cone consisting of all rays from
P making angle <@ with the inward-pointing normal to S. This cone
has to be truncated to keep it from extending beyond the peak sphere
in the direction antipodal to P. The surface of the cone is tangent to
an inner sphere, concentric with the peak sphere and having radius
a sin 8. Take M (P) to be the inner sphere plus the part of the cone
that lies between P and the inner sphere. Figure 1 shows M (P)
shaded.

With this construction, the terrain consists of conical mountains,
all having the same height and the same grade g = cot §. There may
also be flat places where the earth’s surface coincides with the inner
sphere. A flat spot occurs at any point that lies further than (3= — 6)
radians away from all Poisson points. Flat spots are rare, except when
the parameters o, 6 are chosen to produce widely separated mountains
having very gentle slope.

INNER _.7

SPHERE ANTIPODE

Fig. 1—Construction of M (P).
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Figure 2 is an elevation contour map for a typical random terrain.
Some unrealistic features of the model are evident. The conically
shaped mountains have circular contour lines. The peaks are distrib-
uted chaotically instead of being arranged in rows (mountain ranges).

-6666666b-b---ccaccac—o 6606++++855588284383+++6666= Yil:bbllilemmmm=
------------------ “u-———6660+¢+3306.....d&uﬂttt*ﬁuﬁ----uu" L
*=666bccmmmm—— U4UlileeabhBsss+508. .00 8

66666666666-=<== blUUYmmmafhbesrscdl. . ...

6666666666666----= ULbeezhbbb+++8d08

¢¢¢+0;+000606GD—---iu----F66*+o++nGojéﬁﬁﬁas0+*+6666—--”““““————6666600

868888ﬁ606#++6065----u-—-—buﬁn6+¢¢+¢¢+0+04+++o66065-———“““—--60664.&&9
bbb Ebsssrsrrsrtsssssbb6BocaclaacbbbesssbB
eemmhbB+++ 4885358558 ++4+6660=emmm" 6666+++t03
Boveeoo .00++4466606="nuum 66h5++++856C3308b68++++6666--—--=-6666+++848

B...... 8688+++4++06666H-aaan 666++++80068..... Biod++++660 6666+++b0d
88....68006888+4+++466hacaan 66bh++++800.00nn.. 5db++++66h06H6666666+++-50
3533&aﬂab&bdScDd+++066b--—-660++++dud ....... d08++++66666666666666+++4+4d
+H88868..... 5335++++006——--60h++++8iH8....55808++4b04444442444666664444

+++B888....... 8B3++++006- 6D6b++4¢Edbdﬂbdddd&+o+¢o+++¢40¢0¢*4066660o+
«+eB888....... BBB+++46b6---- 66564+ 4448308385+ +4+++44+00888888++4446606+
+++88838. . .356503++4+660bmmmmaabBbhb+sssssssrsstssss20033888688B44445666

#++++83baaﬁbbEH¢++066UU-- ———bb(00b+++sss4esbaess0088. ..., HBodd+++6666
bet+++4b008I+++4++660066-mmmmana ho666L650hE6GG+++8303. ... ... BB8++++666
666444440444+t sast44000000—amam 6660666660h6656h+++8300. . 0.t B38++++666
666666++s4s4sssss+++++24000066906HE666066006=b00++++08388..... BY3B+++6666

—n6666664044¢606bdcoo&oodﬁﬁﬁéﬁ66++++oboﬁb6566ﬁ6400*d006583688804**66£-
eeeb6666++++E8508506BB+++40bb++++ss+ssstssbb666hb+4++0080888d4++++6666=
666644450850, .. E0B0++44644444248Cn++++4+E5606R0s 44444444444 +400666-=
-=6666+++8388...... BE3G++++4+4580837308 444446606666 +++++44444666666--=
-=6666+++BEd0....... 566 +++++05:505.00088E+++6bb006006666566666666=—-—=
==b6664+448888...... G830 ++++4+b80. .. ... .C00+++4666--560666066666====== b=
—mef06++++B0508000808b+4++++8%6, ... ... 638 ++++660- ———— L4y
am=f666+++++80b000803444444ab0B. ... ... “85+ss4hifcccnccccmmm———— qUyuuuy
606+t etr b r sttt st st Osss35E588 . 100080+ ++00Hh———UULUULLLULULLLLLLLY
Q----606ﬁﬁ+¢++++o++++ouﬁb¢++¢+ﬁoddjujcc***‘¢660---—uHNHQQHMHHHN“‘“HQH

Uyecauaa BOLEEEAD+++BLOOEDAAC++++++L3E+ 4444406000 -==UUUU 20t
YUhlccaaa 6606666666506 00066++++s+s4+4+4440000h=m=lUlll:
U4l Y e e e e 666660 ==m=== HH000DA+++++0066Hb66=m=== EELEHH
------------------- 60056660 LE606Hbmmmatdulilyy;
fmm—————— 6006R0bwmm = Laldsuby:
UBUUUUULYY UL dddl e m e e e e s mc e e Juyuuy

BUuyquybiuud s QuyUliillcemmme e [ LT Tt
L L L L L L Tr— bobb66666666666-----
uuuhuuuuuuuuuuuuuu::: T TU B 5666600 +++446066666---—-
BUUYLLLLLLauLLauuly: s tlblldaaa— hﬁ65+»++++a+++»¢+56666--—-uuuﬂ‘.HHHH
fommmmmm e "u“ﬂﬂu::UuﬂH-—-ﬁﬁ666++9*oodDd¢4¢¢+¢66bb6---—uuﬂuﬂuuHu
-------------------- ULUEULUY emmabb++s+48038880883+4+++4666-——-UldUUYua
-=6666666666666H--<--= UUiylylhmm=bbbhe+++BLE88 . 008068 +440660-——-llcmam==
6666666666666666666-—-=- UUlYome=bBhesssdhidd. .. ... g8 ++++666
6O e+ssrssets240bbL6P—mcclilacanbbbes++308.......060++44066
O Y1 1 e L L P 1o T oot++++566
+++45848058B B4 4+44060Dmma-U=—-fnhd++s+89038...86d88++46666
BBEBBBEEHB0EE1Id+444060bmmilmm==hbBO+++++8CC0808EHB++es29b0-=mz 6666444+
BbBB38BB....B0000+++0Ab0-cUlioaabbbhbssss+B888b8444ee:hib6-mamm 666+++48
sessasnanns BB6++446hbmccllcancbbbibessrsrststrssssiADHO=mm=m 6666+++83
..D80++++060hmmelliccann bbhBES+++++4+LH0000—mmmmm= 6666+++88
BB.....oaannn 5883 +++4666----llomeeea- bbhH6OEHEARAEED e YeuabbbbessBY
0688 ..8030688808++++4bbbb-mmmmmenam= hhphb-6660H0H0cmmmaam LlUaa-bbb66+eee8
BBBHCoddbdbbolidss el mmmmmmnm 66FOGREBAEDOABN - o aa UUUylYeaa-bbbbesss
+++088B4+s442444449600mmmmnn AOBGOLHD+++H0H00E00 444Ul omm=b66b++4
PPN (1 111 T Y- 06506+ ++++444+4440b000-=man YyhUgYl e bb66b66

66+4+++4666066006006accaaan 6666+++++++srtsss4406666-==luUUUUllaa-=-66666

Fig. 2—Contour map. The symbols - 8 + 6 — 4 : 2 denote altitude levels ordered
from the peak sphere downward.
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Figure 3 is a plane cross section through the earth in the same model.
This figure is more interesting for the present problem because the
existence of a clear line-of-sight path between two points depends only
on the shape of such a profile. Note that the elevation curve in Fig. 3 is
composed of convex ares (hyperbolas) that join in the valleys between
mountains. But, at least, the maxima in Fig. 3 have different heights.
Figure 4 shows random terrain as seen from one of the peaks looking
out toward the horizon. The nearest and furthest peaks shown have
ranges of 6 and 150 miles. The parameters were picked to match a
particular portion of the Alps for which a panoramic photograph was
also available. The deficiencies of the model are less evident in this
figure. The curvature of the earth makes it less obvious that all peaks
have the same height.

In real terrain, it is sometimes possible to see part of a mountain
even though the mountain’s peak is obscured from view. That cannot
happen in this model, as will now be proved. Suppose that the view
of a peak P, is blocked when the eye is at E. Then the line segment
P.E contains a blocking point B, belonging to another mountain
M (P5). Now consider any other point P of M (P,). P must lie on some
line segment P/, where I belongs to the inner sphere. Figure 5 shows
the triangle EP1/. The segments EP and B:l cross at some point B
in the triangle. B belongs to the convex set M (P,) because B, and I
belong. Then B is a point of M (Ps) blocking the view of P.

By making a — =, one obtains a planar model of random topography.
The peak sphere S becomes a peak plane. At a point @, the land surface
lies below the peak plane a distance

v = ¢ Min |P; - q, M

where the minimization is over all Poisson points P;. Replacing S by a
plane simplifies the analysis considerably but, unfortunately, it
produces a much less realistic model. If Fig. 4 has been drawn for a
planar model, every peak P; would have been visible. Even worse,
Section VIII shows that the expected area visible from a peak would
be infinite. For that reason, the extra complication of a spherical earth
is really necessary for some questions about line-of-sight paths.

lll. PARAMETER ESTIMATION

The two parameters o, g = cot § can be chosen to fit the model to
terrain measurements. One might estimate the density ¢ by counting
peaks. A difficulty is that one must then decide how big a hill must be
to be counted. Surely every bump on the landscape ought not to count
as a peak. This decision is avoided by using statistical properties of
the point @ lying below a random point g on the peak sphere. The
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Fig. 4—View of horizon from a peak.
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Fig. 5—M (P3) blocks all of M (P,) from view if it blocks P:.

altitude and slope of the terrain at @ are two useful random variables.
Both depend on the angle y = < POQ from Q to the nearest peak P
(see Fig. 1). Since a circular cap of angle v, on the peak sphere has
area 2ma?(l — cos yo), the distribution function for <POQ can be
written immediately,

Prob (v £ 7o) = 1 — exp [— 27a%s (1 — cos vo) ]. (2)

There is no natural sea level in the model, and so it will be con-
venient to specify the altitude at @ by giving the depth y, measured
from S down to the land. If ¥ = %= — 6, then ground level coincides
with the inner sphere, i.e.,

y = a(l — sin ), v = §r — 6. (3)

For smaller angles v,
y = a[1 — sin 6/sin (y + 6)], 0y <ir—0 4
as is clear from Fig. 1. These formulas, together with the distribution

(2) for v, determine the depth distribution,

Prob {y < a[1 — sin 8/sin (v + 6)]}
= 1 — exp [—2wa%s(l — cos v)], 0=~vy<ir—106 (5
Prob {y £ a(l —sing)} = 1.

Although one can easily tabulate the distribution function for y by
substituting numerical values of v into (5), the distribution function
is easier to visualize in a limiting case. Since e is a large radius, let
@ —» in (5). As one might expect, the formulas tend toward the
depth distribution function in the planar model,

Prob {y £ Y} =1 — exp [—on(Y/g)*]. (6)

In this limit, ¢ and g enter the distribution only via a single length
parameter ¢—}g, which is an index of altitude variability. Thus, altitude
distribution data alone cannot be expected to supply good estimates of
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both g and ¢. Some simpler statistics are the median,

Median (y) = (= !log. 2¢%/0)}
= 0.46975 g,

and the moments,
E(y*) = T(1 + }k)(g*/7a)*2.

Particularly, the mean is

§=E{ =3y (7
and the standard deviation is
[Var ()]t = [(=! — 272)¢*/c ]t = 0.2683¢1g. (8)

It is also possible to obtain (6) as an exact result for a spherical
model in which the shape of the mountains is only approximately
conical. That entails a new choice of the set M (P) in Fig. 1. Define the
new shape so that the depth becomes

¥ = 2gasin v, (9)

where again y is the angle to the peak. At P, M(P) comes to a point
approximating a cone of slope g. At the antipode to P, M (P) has depth
2ga; then this model requires ¢ < }. Now the depth distribution for all
vy is again given by (5) but with the left-hand side replaced by
Prob {y £ 2ga sin }+}. But that is (8), exactly.

For many values of g and ¢, the planar approximation (6) to the
depth distribution (5) is very good. For example, Table I compares
the planar approximation with some distributions having a = 3959 mi,
the earth’s radius. In the table, the cones have grades ¢ = 0.05, 0.1,
and 0.2 and the density ¢ is adjusted to fix the standard deviation in
(8) at 528 ft (0.1 mi). Table I gives percentiles of the distribution as

Table | — Altitude percentiles (in feet)

Spherical Model Planar
g= 0.05 0.1 0.2 _
g 0.0171 0.0683 0.2732 | 9/¢" = 6831
0.19 —1899 —1964 —1980 —1986

1%, —1378 —1421 —1432 —1436
109, —691 —712 —717 —719
259, —315 —327 —331 —332
50, 70 63 62 61
759, 402 400 399 399
209, 642 641 640 640
999, 896 896 896 896
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altitudes measured upward from a common level, corresponding to the
depth 7 in (7).

Figure 6 is an altitude distribution for northern New Jersey. It
was obtained from a topographic map by reading altitudes at 52
points, 10 km apart in a rectangular grid covering latitudes 40°30’
to 41° and longitudes west of 74°. The altitudes ranged from 0 to
1100 ft. Data for parts of New Jersey further south were not used; the
topography of New Jersey is too variable for both north and south
to be well represented by a single simple model. The planar model
fits the observed points well, except at low altitudes. As an alternative,
use the spherical model with @ = 3959 mi. By taking g = 0.011, one
obtains a maximum depth (3) near 1100 ft, so that low altitudes can
be regarded as occurring on the inner sphere. Then ¢ remains as a
parameter to adjust for a good fit.

The parameter g = cot @ is the grade at mountain peaks. At the
random point @, at angle ¥ away from a peak in Fig. 1, the grade is
smaller because the normal to the conical surface makes an angle
ir — § — vy with the vertical direction 0Q. Thus, the grade at Q is

, _feot (0+7) = (g —tany)/(1 +gtany), if 6+ v < §r
~ 10 otherwise.

0.9
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Fig. 6—Altitude distribution for northern New Jersey. Curve is for planar model
with peak sphere at 1130-ft altitude and [Var (y)]* = 400 ft.
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Table Il — Percentiles of G/g

g = small 0.1 0.2 0.5
0% —1.0000 —1.0000 —1.0000 —1.0000
1% —0.9995 —0.9995 —0.9995 —0.9994

10% —0.9510 —0.9506 —0.9492 —0.9399

25% —0.7070 —0.7053 —0.7001 —0.6667

509%, 0 0 0 0

75% 0.7070 0.7053 0.7001 0.6667

90% 0.9510 0.9506 0.9492 0.9399

999, 0.9995 0.9995 0.9995 0.9994

1009, 1.0000 1.0000 1.0000 1.0000

The grade 0 occurs on the inner sphere. This result, together with (2),
determines the distribution of the grade ¢’. In most cases, the grade g’
has high probability of being close to g; one should not expect this
distribution to fit observed grade data well.

At g, one might move in a random direction and ask for the slope ¢
along the random path through Q. The slope, which depends on the
angle ¢ between the path direction and the uphill direction, lies in the
range —g' < G' < ¢’. With some simple geometry, one finds

G = g’ cos ¢/(1 + g™ sin? p)i.

By using the known distribution for ¢’ and assuming a flat distribution
for ¢, one can obtain a distribution funetion for . This would be the
distribution of the slopes ' seen in cross sections like Fig. 3. A simple
distribution is obtained only in the planar model limit, for which
¢’ = g = cot § identically:

Prob {G = tan X} = 1 — #!arc cos {sin X/cos 6}.

Table II gives the slope distribution in the planar model for several
values of g. In the limit of small g, the distribution function for G/g¢
tends to 1 — =~ arc cos G/g.

IV. BLOCKING REGIONS

Suppose two points @i, Q. are given, representing the positions of
two antennas. In general, @, @. can lie anywhere above the inner
sphere. A clear line-of-sight path exists between @, and Q. as long as
the straight-line segment @Q.Q. does not intersect any of the sets
M (P;). The blocking region for @i, Q. is the (open) set of points P on S
such that @1Q: intersects M (P). The area of the blocking region enters
into the probability that a line-of-sight path .Q; exists. The advantage
of the conical mountains M (P) is that blocking regions assume simple
shapes.

LINE-OF-SIGHT PATHS 745



The simplest blocking region is one for a pair of points @i, @2 both
on 8. If the line Q,Q; intersects the inner sphere, all M (P;) block the
path. The blocking region then consists of the entire sphere S. If
Q:Q. misses the inner sphere, then blocking occurs at a point @ on the
path Q:Q if a peak P; lies too close to Q. If the depth of @ is y, then
(4) gives the angle ¥ to peaks P such that @ lies on the surface of
M (P). Then blocking occurs at @ if a circular cap of angular radius
v contains a peak. The pole of this cap is the radial projection ¢ of @
onto S. The blocking region for the path Qi@ is the union of all the
blocking caps for points @ on the path. These caps are largest midway
between Q; and @, shrinking to points at @, and Q.. Then the blocking
region is lens-shaped, as in Fig. 7.

Figure 7 shows two arcs K, K’ which form the boundary of the
blocking region. The argument that follows shows that K, K’ are
actually arcs of circles. Figure 8 is another view of the peak sphere
projected directly along the line @1, Q2. Two planes, = and =’, can be
drawn through @i, @; and tangent to the inner sphere, say at C and C".
These planes project to lines in Fig. 8. The planes = and =’ intersect S
in two circles, centered at C and C’ and both passing through @: and
Q.. Since M (P) is the convex hull of P and the inner sphere, = is a
supporting plane of M (P) as long as P lies below = (ie., in the half-
space containing the inner sphere). Then M (P) does not block the
path Q1Q. if P lies below =, or below =’. The part of S lying above
both 7 and =’ appears shaded in Fig. 8. Suppose P belongs to the shaded
region. Project the triangle C'PC, a subset of M (P), onto the plane
of Fig. 8. The path @,Q: projects to a point lying inside this projected
triangle. Then Q.Q., a chord of S, must intersect the triangle C"PC.

Fig. 7—Blocking region for two points @, Q2 on the peak sphere.
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SPHERE

Fig. 8—Another view of the blocking region.

The point of intersection is a point of M (P), which blocks the path.
Thus, the shaded region, bounded by ares of the cireles § =, S N 7/,
is the blocking region for ©:1Q..

The area A(Qi, @:) of the blocking region in Fig. 7 will now be
expressed as a function of the angle 2o = /:0Q.. Project the centers
C, €' in Fig. 8 radially out to ¢, ¢/ on S. Figure 9 is another view of S
showing ¢, ¢’ as the poles of two circular caps bounded by S () = and
S M ='. The angular radius of both caps is $= — 4, as is clear from
Fig. 8. The chord ©.Q: subtends some angle 2o = / Q1@ at ¢. Using
the spherical sine law in the right triangle @, ¢, $(@1 + @:), one may
determine o from

sin o = sin p/cos 6. (10)

The cap with pole ¢ has area 2ma?(1 — sin 8) and the sector included
within angle 2« has area

A, = 200*(1 — sin 6).
Also, the triangle @,c6). has area
Ar = (20 4+ 28 — m)a?,

where 8 = @1Q:C1 = @Q2Q1c. The sine law may be applied to triangle
@1c€): to find B

sin § = cos # sin 2a/sin 2p. (11)
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Fig. 9—Angles used in deriving area A of blocking region.

The difference As — Az is 34 (@1, @2). Thus,
A(Q1, Q2) = @*(2r — 48 — 4asin ), (12)

where (10), (11) give &, 8.

The blocking region is more complicated if @1, @2 or both are not
on S. As in Fig. 7, each point @ on @10 is blocked by peaks lying in a
circular cap of radius y given by (4); the blocking region is the union
of these caps. Let @1, @; be the points where the extended line @:Q:
meets S. The blocking region for Q:Q. is a subset of the blocking
region for @Q;. As shown in Fig. 10, the blocking region consists of
the caps for blocking at @ and @ plus the part of the blocking region
for Q;Q, that lies between these caps. The centers of the two end caps
are the points g1, g2 obtained by projecting ¢, Q2 radially onto S.

The two end caps have a special role in the blocking. Normally,
Q1, Q: are known to lie above ground, and so the two end caps are
known to contain no peaks. If the ground levels below gy, ¢z are known,
then peaks P;, Py must exist somewhere at the appropriate angles vy,

748 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1975



v2 away from qi, ¢o. In Fig. 10, @4, Q. are assumed to be at ground
level; then Py, P, lie on the boundaries of the end caps. The mountains
M (P,), M (P:) on which @,, @: lie can themselves block the path @,Q..
Thus, in Fig. 10, P, blocks the path because it lies in the blocking
region. To compute the conditional blocking probability for the
configuration in Fig. 10, one must know both the area of the part of
the blocking region that lies outside the end caps and also angles ¢, ¢»
that limit where P;, P, can lie to cause blocking. In the applications
that follow, it will suffice to let @ lic at a peak @, = P; and let Q: be a
point at ground level. That simplifies Fig. 10 to Fig. 11.

Let 2z, = £ Pi0q, the angular distance along the arc P1q.. The depth
at @, determines the angle v, of the end cap. The sides of the spherical
triangle Pig:c are now known, and so its angles § = Z q2Pic,
$2= /£qecPy, m — o3 = £ Piguc are determined. One finds

1 —cos (z2 — y2) + gsin (22 — y2) |}

1 —
640 2¢2 = | oSin (e + 72) — L + cos (22 + 7v2) (13)
sin 8 = sin ¢2 cos ( + v2)/cos @ (14)
sin {2 = sin g Sin 22/c0s 6. (15)

The blocking area is twice the area of the half of the blocking region
above the line P1Q; in Fig. 11. That half can be obtained as a sum of
two parts. One part is a sector of angle 7 — ¢, from the end cap; its
area is (r — @32)(1 — cos ys)a®. The other part is obtained by removing

oo,

Fig. 10—Blocking region for points @,, @2 which are not peaks.
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Q=P

0
Fig. 11—Blocking region for @ = P, a peak, Q2 not a peak.

the triangle Pigsc of area (8 + {2 — 2)a’® from a sector centered at c.
The sector has area {»(1 — sin §)a?. These areas may be combined to
express the area of the blocking region in the form

A(Q1,Q:) = Ao+ Ao,

where
As = 2x(1 — cos vs)a? (16)

and
Ay = (2¢z 008 y2 — 28 — 2{. sin f)a. a7

A, is the area of the end cap and A, is the area of the remainder of the
blocking region.
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Although the blocking area A (Q,, @.) for the general situation of
Fig. 9 will not be needed, it can be obtained in the form

A(Q1, Q) = A(Q1, @) + A(Qs, Q2) — A(Q), Q). (18)

Note that formulas like (16) and (17) give A (Q1, Q2), 4 (Q1, @5) while
(10), (11), and (12) give A(Q,, Q:). Likewise, with a change of sub-
scripts, (13) gives ¢; as well as ¢..

These formulas can now be used to obtain the path probability
p(@Q1, @:), the conditional probability that a clear line-of-sight path
exists between given points @, Q.. When Q,, Q. are on S, as in Fig. 7,
P (@1, @) is just the probability that the shaded region of area 4 (@1, @:)
contains no peaks. Then

p(Q1, Q2) = exp [—cA (@, @2)], (19)

with A (@, @) given by (12).

The situation in Fig. 11 is more complicated. @1 = P, a peak, and
Q: is supposed to lie on the ground. Then the eap of area 4, is known
to be empty. Two conditions must hold if the entire blocking region
is to be empty. One is that the peak P of the mountain on which Q,
lies causes no blocking. Since P, is equally likely to be anywhere on
the boundary of the cap around @., there is probability 1 — ¢./x that
P, does not block the path. The second condition is that the remainder
of area A, of the blocking region is empty. Then

p(Q1, @2) = (1 — ¢2/7) exp (—od,), (20)

where (13) and (17) give ¢2 and A, Formula (20) applies as long as
2 < 2. It is also possible to have y2 = z,. In that case, Q; lies on the
mountain M (Py); the path in question runs from the peak Q, = P
to @ along the surface of the cone M (P;). Whether or not such a path
is to be considered blocked is a matter of definition. Here M (P,) is
regarded as an open set so that the path is not blocked. As ys — zs,
one finds g2 —0 and A¢— 0 so that p(Q,, Q2) — 1, i.e., (20) con-
tinues to give the correct probability in the limit.

Another limiting situation, y, — 0, illustrates an important distinec-
tion between Figs. 11 and 7. In the limit 4, — 0 and A, becomes the
area of a lens-shaped region, such as shown in Fig. 7. Then the ex-
ponential factor in (20) becomes the path probability (19) for the
two peaks Q:(=P,), and lim Q.. However, (20) contains an extra
factor (1 — ¢o/w) which approaches 3, not 1. This disagreement
between (19) and (20) is explained as follows. From a point Q. near a
peak P, one can look over a 180-degree view; the mountain M (Ps)
blocks the other 180 degrees. Then the factor % in (20) is needed to
account for possible blocking by M(P:). But exactly at the peak
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Q» = Ps, the mountain M (P2) no longer interferes in any direction.
Then no factor } is needed in (19). The discontinuity in p(Q:, @:) as
Q. — P, could be avoided by assuming that the antenna location Q2
lies at some known positive height & above ground.

V. PATHS BETWEEN PEAKS

The simplest blocking regions were for paths @.Q. with both end
points on mountain peaks. The path probability p(@s, @2) in (19) can
now be used to derive some interesting properties of peak-to-peak
paths. In this section, @, will be a given peak Py . will be another
peak selected at random. An element of area dA(Q.) on the peak
sphere S has probability ¢dA(Q:) of containing a peak Q.. Then
op(Q1, Q2)dA (Qs) is the probability that the element contains a peak
@, which is visible from Q.

Let d(Q1, Q2) denote great circle distance between @: and Q.. Let
=1(d) denote the random variable which is the sum

Zx(d) = Z.: d(Q, P:)* (21)

of kth powers of distances from @, to all other visible peaks P; lying
within distance d[d(Qi, P:) < d]. The element dA(Q:) contributes a
term d(Q1, Q2)* to Zx(d) with probability op (@1, Q2)dA (Q2). Thus, the
expected value of Zi(d) is

B = o [ [ a@, @'p(@s @:)dA (@), (22)

where the integral extends over all points Q; in the cap d(Qi, @2) = d.
Another random variable Z; is a sum like (21) extended over all
visible peaks, at any distance from Q. The mean E(Z;) is an integral
(22) over the entire sphere. Evaluating (22) will give the mean number

Table 11l — Blocking area A(Q,, Q) in square miles, as given by
exact and approximate formulas (12) and (23) with
range d(Q,, Q=) = 100 miles

Grade g Exact Approximate
0.01263 7887.7 3333.1
0.02 2430.9 2104.9
0.05 857.6 842.0
0.1 423.2 421.0
0.2 210.2 210.5
0.5 84.1 84.2
1.0 42.0 421
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of visible peaks E(Z;) and other information about the distances to
visible peaks. That could be done numerically, using (10), (11), (12),
and (19). However, the approximation that follows simplifies the
evaluation.

The approximation is one which holds when a is so large that angles
2p between visible peaks can be considered small. The planar model
has A(Qy, Q:) = 0 and p(@, @2) = 1, which is too rough to make
sense in (22). Instead, the first nonzero term in a series for A (@1, @)
in powers of p will be used. Expansion of the exact formulas (10), (11),
and (12) is laborious but straightforward :

a = p(l + g)t/g + p*(1 + ¢1)¥/(6g°) + 0(p%)
B =3r — p/g — (2¢* + 1)p*/(6g") + 0(p*)
A(Qy, Q2) = a*(2p)*/(6g) + 0(p%).

where r = 2ap is the great circle distance d(Q,, Q.).

For a simpler, more intuitive, derivation, one may find the size of
the circle about a typical point ¢ along the path @i, @ in Fig. 7. If z is
the great circle distance from @, to g, then the ground level below ¢
lies at depth y satisfying

(@ — y) cos (z — 3r)/a = acos 3r/a
or

y=z(r—2z)/2a)+ ---.

The radius ay of the circle about g is approximately y/g, and the
blocking area is approximately

A(Qy, Qo) = j " avyde

fo "2(r — 2)dz/(2ag)

A(Qr, @) = r*/(6ga) + - -, (23)

as before.

From the form of the series used in deriving (23), one may predict
that the rate of convergence is determined by the ratio p/g. Table III
shows that (23) does give a better approximation for large g than for
small. In Table III, a = 3959 mi; a large range, 100 mi, was used for
a severe test of the approximation. At grades g smaller than 0.01263,
a 100-mi path between peaks is blocked by the inner sphere. The small
p/g condition is another way of requiring that the path Q:Q. clears
the inner sphere by a safe margin.
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Now use the approximation (23) for A (@i, @2) in (19) to evaluate
the integral (22) for the expectation [Zx(d)]:

df(2a)
E[Z:(d)] = 270 f (2ap)** exp {—4a?op’/3g) 2adp
0

(d/D)
E[Zx(d)] = (2wa/3)DFt2 ./; w11 exp (—u)du, (24)

where
D = (6ag/o)}.

The integral in (24) may be expressed in terms of the incomplete
gamma function,

E[Zk(d)] = (2ma/3)D¥{T[(k + 2)/3] — T[(k + 2)/3], (d/D)*},
or the x2 distribution function,
E[2u(d)] = (2ma/3)D*T[(k + 2)/3]P(x*|»),

where
x2 = 2(d/D)?
and the number of degrees of freedom is
v = 2(k + 2)/3.

Although the approximation (23) becomes poor at long ranges, the
integrand is very small there. Thus, (24) can be expected to hold even
for long ranges. In particular, the expectation E(Z;), for visible peaks
of all ranges, may be approximated by letting d — < in (24):

E(Z) = (2x0/3)D*T[(k + 2)/3]. (25)
For the special value k = 0, (25) gives the mean number of peaks

visible from @;:

E(Z,) = =oDT(5/3)
9.3645(a%g%)}

= 2344(g%)} if @ = 3959 mi. (26)

i

Note, as predicted earlier, that the mean number of visible peaks
tends to infinity in the limit of large ¢ (planar model). When k = 1,
(25) simplifies to

E(Z,) = 4rag. (27)

As ¢ increases, (26) shows that the mean number of visible peaks
increases, but (27) shows that the mean sum of distances to visible
peaks remains unchanged. This indicates that visible peaks tend to
be closer for large ¢ than for small. One way to define a range for a
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“typical” peak is to form the ratio

Dy = E(24)/E(Z0) = D/T(2/3)
= 0.738487D
= 1.34190(ag/0)}. (28)

Vl. RANGES BETWEEN PEAKS

One might ask for a probability distribution for the range d from
a peak P; to a randomly chosen visible peak P  P;. The random
process for choosing a peak must be specified with care. Perhaps the
most natural process would be this. Construct a random landscape
and choose a peak P from the set of Z, visible peaks, all peaks equally
likely. Then ask for the probability that P is one of the Z.(d) peaks
within range d of P,. Given a landscape, the conditional probability
that P is within range is Z5(d)/Z. Then the unconditioned probability
is E[Z(d)/Z,]. Unfortunately, the expectation is hard to obtain [there
is also a question of giving an appropriate meaning to Z,(d)/Z; when
Eg(d) = Eo = 0]

By using a different random process, one obtains a simpler distri-
bution. Construct a trial random landscape and pick one of the peaks
P at random, this time from the set of all peaks on the entire sphere S.
P may not be visible. If not, discard that trial and construct a new
landscape. Continue constructing landscapes and choosing peaks until
the chosen point P is visible. Then ask for the probability p(d) that
P lies within range d.

To determine p(d), note that the total number of peaks on the entire
sphere has the Poisson distribution with mean 4ra?s. The argument to
follow assumes that this number is large, so that the number of peaks
actually obtained is almost always very close to its mean value. Then
the probability that P is visible is £ (Z,)/(4wa%s). If q[Z, Z0(d)] is the
joint probability for Z, and Z.(d) in each trial, then ¢[Z,, Z4(d)]Z¢/
(4ra%s) is the probability that a trial has 2, visible peaks, Z,(d) within
range d, and that P is visible. The joint probability for the numbers Z,,
Zo(d) of the landscape, selected when P is visible, is ¢'[Zo, Zo(d)]
= q[Zy, Zo(d)]Z0/E(Zo). The probability that P lies within range d
is obtained as a sum over Zy(d) and 2,

p(d) = 2 ¢'[Zo, Zo(d) JZ0(d) /20
E[Zo(d)]/E(Z0)

p(d) = 1 — T[2/3, (d/D)*]/T(2/3), (29)
the last line following from (24).

It is clear from this derivation that the second random process
tends to select random landscapes with larger =, than the landscapes
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Table IV — Probability p(d) = E(S¢(d))/E(Zo) that a randomly

chosen visible peak lies within range d

d/D Probability
0.25 0.06880
0.30211 0.1
0.48595 0.25
0.5 0.26361
0.72212 0.5
0.75 0.53050
1 0.77518
1.20507 09
1.32182 0.95
1.5 0.98440
1.55886 0.99
1.81350 0.999
2 0.99983

of the first process. However, Z, may be expected to have a highly
peaked distribution, in which case Z, is nearly always close to E(Zo).
Then g(-, -) and ¢'(-, -) are nearly the same, and (29) is also a good
approximation to the range distribution for the first random process.

Equation (29) provides numerical values for the range distribution
in Table IV.

Another random variable of interest is the range to the furthest
visible peak. Even the expectation of this maximum range is hard to
derive. However, a simpler ‘“typical”’ maximum range is the range dn
such that the expected number of visible peaks with ranges d > dn is

just §. Then d,. satisfies
E(Z0) — E[Zo(dw)] = %, (30)

and (24) shows that

f * wtexp (—w)du = 3/(4weD?). (31)
(dm/D)*

Table V — Mean number of visible peaks E(3,) and range d,.
such that E(3¢-30(dn)) = V2

aD? a'g’s E(Z) dm/D
3.11 0.84 8.8 1.30
5.69 5.12 16.1 1.40

11.3 40.1 32.1 1.50

24.5 409 69.5 1.60

58.4 5528 165.6 1.70

153.6 100572 435.5 1.80

450.5 2.54 X 10¢ 1278 1.90
1477 8.95 X 107 4189 2.00
5447 4.49 X 10° 15448 2.10
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Table V gives numerical values of d./D as a function of ¢D?
= (36a%g%)}. E(Z,), which also depends on ¢D? as shown by (26),
also appears in the table. Note that d.. is not just a function of a single
product of powers of a, g, ¢; it has a more complicated form (ag/c)?
X function (a’g%s).

The integral in (31) is a rapidly decreasing function of d,/D. Then
the numbers in Table V would not change much if d,, were redefined
with the term % in (30) replaced by any other number of the same order
of magnitude. For the same reason, d» can be expected to be a good
approximation to the mean range to the furthest peak.

Vil. THE HORIZON

The approximation (23) will now be used to derive properties of
the range from a peak P, to the horizon at a random azimuth angle.
The range to the horizon is a more interesting random variable than
the range to a random visible peak. As has been noted, it is not always
clear what to count as a peak in a real landscape. But the horizon
has no ambiguity.

Look from P, with a fixed azimuth angle. One sees only sky at high
elevations and ground at low elevations. The horizon point is the limit-
ing point at ground level which has the highest elevation angle. The
distance z from P; to the horizon is the range of interest here.

Figure 11 will now be used to derive the conditions under which @
is the horizon point, as seen from a peak P;. If @ is the horizon point,
the entire straight line path P,Q; in Fig. 11 must intersect the ground
only at Q;. Then the entire lens-shaped blocking region for @, must
contain no peaks. But the depth at ). determines the circle on which
a peak must lie. This circle appears in Fig. 11 inside the (open) blocking
region. The only place that this peak can be now is on the boundary
of the blocking region at one of the points of tangency T, T".

Figure 11 shows the usual situation in which the horizon point is
not on the inner sphere. There is small probability that Q. is on the
inner sphere. In that case, g, is at angle 3r — 6 away from P,, the
centers ¢, ¢’ coincide with gs, and the blocking region is bounded by the
circle through P; with center g.. There is no second peak on the bound-
ary of the blocking region ; @, lies on M (P,).

To find the probability distribution for the horizon range, one may
first find the joint distribution for that range and the range » to the
intersection point Q. Since r is the largest range for which the corre-
sponding blocking region is empty, the probability distribution func-
tion for 7 is P(r) = 1 — exp [— ¢4 (Py, Q;)]. In this derivation, the
approximation (23) will be used to write

P(r) = 1 — exp [—(r/D)*].
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Figure 12 shows @, lying at a range between r and r + dr, an event
of probability dP(r). Given this position for ;, the band between the
boundaries of the blocking regions at r and r + dr contains the peak
on which the horizon point lies. The shaded part of this band is the
region in which the peak must lie so that the horizon point Q. will
have range z; < z. The conditional probability function for the horizon
range is just the ratio of the area of the shaded part of the band to the
total area of the band. To simplify that calculation, one may replace
the dotted line by a great circle that ecrosses P1P; at right angles. That
approximation leads ultimately to the conditional distribution

Prob {horizon range = z|r} = (2/7)}, 0=z =r. (32)

The details are omitted because the result can almost be guessed
immediately from the roughly triangular shapes of the two parts of the
shaded region.

Now the unconditional probability distribution for the horizon range
is obtainable from (32) by integrating

Prob {horizon range =< z}
[fapey + [ Grrrape
= (2/D)T'[%, (2/D)*]+ 1 — exp [— (2/D)*]. (33)

Table VI gives numerical values.

Fig. 12—Horizon at range = z.
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Table VI — Distribution function for range z to the horizon
looking from peak P, with a random azimuth angle

z/D Probability
0.21417 0.1
0.25 0.13625
0.35618 0.25
0.5 0.42355
0.56305 0.5
0.75 0.70432
0.79977 0.75
1.0 0.88853
1.02324 09
1.15749 0.95
1.25 0.97109
1.40527 0.99
1 0.995247
1.67110 0.999

The moments of the horizon range z are easy to find. From (33), the
probability density for z is

% f " 12dP ().
The kth moment of z is
Bz = 2 f T f " P (1)dz
0 z

[2/(k + 2)JE().

The last line is obtained by integrating by parts. The expectation on
the right is another integral that can be evaluated in the manner of
(24) and (25). The final result is

E(z*) = 2D*T[1 + (k/3)]/(k + 2). (34)

Equation (34) with & = 2 is particularly interesting. If z(¢) is the
range to the horizon when looking with azimuth ¢, then the mean

area within horizon range is
2r
E(%[ zz(w)dw)
0

=E ()
3xT(5/3)D?
= 1.41803D2. (35)

FE (area within horizon)

Ii

This expectation is only an upper bound on the mean area visible.
For, as is clear in Fig. 4, there are points within horizon range that are
obscured from view.
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It is interesting to compare Tables IV and VI. At any given proba-
bility level, the range to the horizon is smaller than the range to a
randomly chosen visible peak. This may be surprising at first. How-
ever, each visible peak is itself a point on the horizon. As seen in Fig. 4,
the horizon consists entirely of small line segments extending down the
sides of the mountains from the visible peaks. The line segments for
distant peaks tend to subtend smaller azimuth angles than the seg-
ments for nearby peaks. Picking an azimuth at random, one is more
likely to find the horizon point on one of the nearby visible peaks
than on one far away.

Another expectation that exhibits the same effect is the mean
azimuth angle between the horizon point and the peak of the mountain
on which the horizon point lies. The ranges z and r determine this
angle. Without belaboring the details, one can approximate this angle
by its tangent and make the further approximations by which (33)
was derived. The expected angle is found to be

E(angle) = E[(r — 2)/(2ag)]
I'(4/3)D/(6ag).

That result can be stated in a more illuminating way :

E(Z,)E(angle) = =T (4/3)T(5/3)
= (2x3~1) (27)
= 0.40306(27).

Il

By contrast, if E(Z,) peaks were evenly distributed in azimuth with
angular separation 27/E(Z,), one would obtain

E(Zo)E(angle) = 0.25(2r).

The larger factor 0.40306 again occurs because of the variability of the
angles which visible mountains subtend on the horizon.

Viil. COVERAGE AREA

The coverage set for a point P is the set of points Q such that a line-of-
sight path PQ exists. In vur radio applications, the coverage set of P
is the set of points @ to which an antenna at P can radiate a strong
signal. This section will estimate the mean coverage area C, the expected
area of the coverage set for P = Py, a peak.

The coverage set can have a very complicated shape. Figure 13
shows one coverage set. In Fig. 13, the peaks are not in a Poisson
pattern; to simplify the drawing, the peaks were located at points of a
regular lattice. The coverage set contains the entire mountain on
which P lies plus parts of adjacent mountains. These points alone
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Fig. 13—A coverage set.

constitute a hexagon of area 4/¢. In addition, the coverage set contains
many smaller isolated patches on more remote mountains. These
small patches can be so numerous that they represent most of the
coverage area.

If Fig. 13 represented the coverage set of a base station in a mobile
radio telephone system, the station would only serve the hexagon of
area 4/¢. The other small patches would lie in the service areas of
other stations, and so these patches would represent places where the
given station can interfere with other stations.

Asin Fig. 11, let P, be a given peak and . another point at ground
level. Suppose the distance r from P, to @, is known, i.e., the angle
z = r/a in Fig. 11 is given. Let f(r) denote the probability that a
line-of-sight path P;Q, exists. Since an element of area dA(Q.) at Q.
belongs to the coverage set of P, with probability f(r)dA(Q:), the
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mean area covered is

C= f f F(r)dA(Qs) = 2ma® ]; " (r) sin zadza. (36)

Before attempting to evaluate f(r) and C, the integral (36) will be
given a second interpretation. Now consider . at a fixed location
and count the number of peaks visible from Q.. The probability that
an element of area dA(P,) contains a peak P, visible from @, is
af (r)dA (P1). Then the mean number of peaks visible from @ is

E(visible peaks) = o f [ F()dA (Py)

= 2ra’e / f f(r) sin zadz,
= ¢C. (37)

Equation (37) can be used to derive very simple bounds on C.
Clearly, more peaks are visible from a point Q. at high altitudes than
at low. If Q. were itself a peak, the mean number of visible peaks
would be E(Z,), given by (26). But Q. has probability zero of being
exactly at a peak. If @, is at any slightly lower altitude, @: is on the
side of a hill which obscures 180 degrees of the view from .. Thus,
E(visible peaks) < 3E(Z,), and (37) shows

C = E(Z0)/(20). (38)

Curiously, the right-hand side of (38) is exactly the mean area within
the horizon as given by (35). Then (38) is a bound that was obtained
in Section VII.

At the other extreme, @, might be on the inner sphere, where no
peak is visible. In most cases, that event will be so unlikely that it
will be safe to say that the worst reasonable possibility is that Q. is
down in a valley near the point where three mountains meet. Here,
the three mountain peaks are visible and so one concludes C' = 3 /.

To obtain f(r), and hence C, recall that (20) is a formula for the
path probability p(Qs, @:), depending on the altitude y at Q.. To get
f(r) one may average p(Qi, Q:) over y (or ys). This average may be
expressed as a sum of two terms which account for the possibilities
that Q. belongs to the same mountain M (P,) as ¢, or to a different
mountain.

In Fig. 11, if y; = 2¢, then Q. lies on the mountain M (P,). This
event has probability exp { —2wea?(1 — cos z2)}. The path probability
p(Qy, @) = 1if r £ (37 — 6)a. If r > (37 — 6)a, then @ lies on the
inner sphere, the path PiQ; is blocked, and p(@:, @) = 0.
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If 42 < 2, then @ lies on a different mountain M (P,). This possi-
bility contributes a second term to f(r),

7 p@, @al1 — exp (—eda),

where A; and p(Q1, Q.) are given by (16) and (20).
Forr £ (3r — 6)a, the two terms combine into

fr) = exp {—2moa?(1 — cos z5)}
+ [ (1= eo/m) exp [—a(do + 40)odAs, (39)

ye=0
where (16) and (17) provide A, Ao. A similar formula applies when r
is larger, but f(r) is very small at such large ranges.

One could find f(r) to any desired accuracy by evaluating the integral
in (39) numerically. Instead, (39) will be replaced by a simpler approxi-
mate formula. Since a is large, the first term of (39) is approximately
exp (—owr?); also, A, = wz? where = ay,. The approximations to ¢
and A, which follow are not uniformly good but are intended to apply
in situations that contribute most of the coverage area C. Except at
very short ranges r, a typical blocking region is more elongated than
that shown in Fig. 11. Figure 14 is more typical. Then ¢; = §m,
approximately. With that approximation, the shaded region in Fig. 14
has area A, + %4.. It consists of a triangle, of area zr, and two extra
lens-shaped pieces. The two extra pieces can fit together into one lens
of exactly the shape of the blocking region for two peaks at separation
r. Then the two extra pieces combined have area 73/(6ga), as in (23).
Now the exponent ¢(A4, + A.) in (39) is approximately (r/D)® + §woa?.

To substitute these approximations into (39), write

Y = om?

X = 19/(6ga) = (r/D)* = [T(5/3)Y/E(Z0) T (40)

Fig. 14—Approximation of Ao and ¢s.
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and then
f(r) =exp (—=Y) + moeexp (—X) fr exp { —eoxr — owri}rdr
1]

f(r) = exp (=) + exp (= X){1 — exp (= Y[} + »'])}
+ exp (=X + 3Y/#%)(2Y/m)}
X {erf (Yi[1 + =1]) — erf (Y¥/m)}. (41)

Figure 15 shows curves of f(r). The ordinate Y# = (o)¥ was used
as a convenient normalized range. It may be interpreted as the square
root of the mean number of other peaks within range r of P;. As (40)
shows, the parameter E(Z,) enters into f(r) through the variable X.
The f(r) curves for different values of E(Z,) lie close together at short
ranges. As the range increases, f(r) falls more sharply for small E(Z,).
There is a limiting curve, as E(Z,) — o, which is obtained from (41)
by setting X = 0. As (40) shows, X = 0 also corresponds to the limit
a — o ; 1.e., this limit represents the planar model.

1.0
0.8

0.6~ EXACT (PLANAR)

0.4

0.2

01—

0.08}
0.06

f(r)

0.04

0.02 —

0.01}—

0.006 — El(Eg) =125

ooosl—1 1 | I L1 I | N
04 06 081 2 4 6 810 20 40 60 B0 100

\To

Fig. 15—Probability f(r) that a random point at ground level is visible from a peak
r miles away.
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Table VIl — Mean coverage area C

E(Zy) aC
25 8.3
50 12.2

100 17.3
200 23.5
400 30.6
800 38.6
1600 474

The approximations which led to (41) are poor when r is small.
Fortunately, the planar model is good for smaller r. The curve labeled
“exact (planar)” in Fig. 15 was obtained by a numerical integration,
using an exact equation (39) for the planar model. The planar curve
crosses the 0.5 probability level at ¥Y* = 2.3. Then r = 1.3¢7} is the
range at which the odds of finding a clear path are even.

The behavior of f(r) for large r can be obtained by replacing the
error functions in (41) by their asymptotic expansions. The leading
terms are

f(r) ~exp (—=Y) 4+ m*Ylexp (—X). (42)

In Fig. 14, the f(r) curve starts to depart from the limiting curve at
values of ¥ near F(Z,). For larger Y, the factor exp (—X) in (42)
becomes small rapidly. In the planar model, exp (—X) = 1 for all ¥;
(42) then shows that f(r) ~ #%/Y = x/(ar?).

To good approximation, the integral (36) for the mean coverage
area can be replaced by

C = j; Cfr)d(rr?) = o fo “ fray. (43)

The main contribution to € in (36) comes from the range 0 < r
< (37 — v)a, in which (39) holds exactly and (41) approximately.
Then (41) will be used for f(») in (43) and, since f(r) — 0 rapidly for
larger r, the range of integration has been extended to 0 £ ¥V < .

Since (40) and (41) express f(r) in terms of ¥ and the single param-
eter E(Z,), (43) shows that ¢C is a function of E(Z,) only. Table VII
gives values of this function, obtained from (41) and (43) by numerical
integration. These values also represent mean numbers of peaks
visible from a random point on the ground, as (37) showed.

In Table VII, ¢C appears to be a slowly increasing function of
E(Zy). As E(Zy) — =, the model becomes planar and then f(r) ~ #%/Y.
Then (43) shows ¢C — = in the planar model limit.
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