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By F. J. BROPHY and A. C. SALAZAR
(Manuscript received October 7, 1974)

Two compuler-aided algorithms for the design of all-pass digital filters
are presented. The first technique is based on a linear programming ap-
proach to solving the approzimation problem posed by the minimax design
of an all-pass digital filter. A new tterative algorithm with stability con-
straints s offered for direct form design. The second technique implements
a gradient search for those quadratic factors of an all-pass transfer function
that lead to a locally optimal approximation (in the least-squares sense)
of a desired phase function. New tnitial guess procedures and the parame-
terization of linear-phase offset enhance the least-squares design procedure.
Examples illustrating the result of both procedures are included.

I. INTRODUCTION

The increasing availability of digital signal processors such as those
described in Refs. 1 and 2 has generated much interest in the algo-
rithmic design of digital filters. One particular class of recursive
digital filters commonly referred to as all-pass digital networks has
an important and interesting design problem associated with it. That
is, the design objective for this type of filter involves the following
transfer function
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Because of the relationship between numerator and denominator
polynomials, the number of degrees of freedom in filter design has
been reduced to N from the usual 2N. Since the magnitude funetion
of H(z™) is precisely 1.0 on the unit circle, the design problem is
focused directly on the phase variation of H(z!). The importance of
this design problem does not arise from an academic viewpoint.

There are signal processing applications in which an influential
factor in signal fidelity is the amount of phase distortion present in
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Fig. 1—(a) Original pulse. (b) Phase-distorted pulse.

the medium. The effects of phase distortion in communication systems
are illustrated in Refs. 3 and 4. Apart from nonlinear phase equalization
applications, all-pass networks can be used to provide a constant
phase shift over a specified frequency band or bands. The Hilbert trans-
former commonly found in bandpass modulation systems is just one
example of this application. In constructing phased arrays in radar
and seismic research, constant phase shifters are also found to be
useful.®¢ Figure 1 illustrates how a constant phase offset can shape
(or distort) the impulse response of a system where f(¢) and f*(f)
differ by a constant phase offset of /2. A constant phase shift of any
amount besides an odd multiple of 7/2 will produce a pulse with a
single large lobe. Equalization of this type of distortion is again
possible by all-pass networks.

Previous work? has addressed the envelope delay design problem.
In many cases, this is sufficient but, as seen above, there are applica-
tions where the phase function must be treated directly.

Our design techniques are for all-pass structures where the design
criteria stem from the phase function directly. The first technique,
described in Section II, is a new method for designing all-pass networks
using linear programming. This approach allows for fast (at least
quadratic), always convergent design of phase networks. For the
first time, stability can be treated directly in the design procedure.
The second algorithm is based on a gradient search procedure on a
least-squares criterion. The basic approach is analogous to those
described in Refs. 7 to 9. The all-pass structure reduces the number
of variables and simplifies the gradient calculations. In addition to
developing the algorithm, we provide initial guess procedures and
linear-phase offset parameters that enhance the algorithm. These
initial guess procedures are new noniterative filter designs that can
serve as excellent all-pass approximations in their own right.

Il. A LINEAR PROGRAMMING APPROACH

A need for fast, reliable design of all-pass digital filters has been
shown in the previous section. Linear programming techniques have
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been found to be useful in rational function approximations®!! and
have been applied to the magnitude-only design of digital filters.2.13
Here we show how the all-pass structure in digital filters can be trans-
formed into a problem that can be handled by linear programming
techniques also. As we shall see, the rational function differs from the
magnitude-only case. Most importantly, this technique allows the
question of stability to be handled directly in the design procedure.
Other techniques that consider the phase or envelope delay variation
of the digital filter (see Refs. 7 and 9 and Section III of this paper)
deal with stability with a more heuristic approach.

To develop the linear programming design method, we first recall
that the all-pass transfer funetion is

P() _ by +byoe Fbyaz? + oo b
Q™) bo+ bzt 4+ --- + byz™V

P(Z_l‘) _ Z_N(bNZN + bN_;[ZN—l + ‘e + bo) .

H(z1) =

Q") (bve™™ + by_1z¥* + -+ + by) (1b)
Hence, the phase function of (1) on the unit circle is
Pe)) .
N = — 1
¢ ("‘ Q) )l =~ ~ 2LQE e (2)

From (2) we note that the phase variation of H(z™!) is equivalent
(modulo a constant multiplier and an N sample delay term) to the
phase of @(z~'). Henceforth, we address the problem of synthesizing
Q(z1). The phase variation of @(z™!) on the unit circle is

by sin 2rkf

N
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tan ¢[Q(27") ]| js1=1 = Imag [Q(e?)]/Real [Q(e7)].  (3)
Further,
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Our design criterion is chosen to be
. _ E(fa)
Iﬁfll max D(f.) S(f)

where D(f) is the tangent desired phase function and M is a number
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of frequency points* (3>N) chosen to ensure adequate approximation
over a subinterval of |[f| £ §, namely, 0 < fo < f1--- < fu < }. We
recall that the desired phase function has been scaled down by —3
because of the factor of —2 appearing in (2) and will have a delay of N
samples inherent in its design by the 2% factor of (1b). It is important
to note here that the norm is applied to the tangent of the desired
phase function instead of the desired phase function itself.!

If we prevent S(f) from assuming the value zero, we seek the
minimum value of A,

[D(f2)8(fz) — R(fx)| = AS(fa). (5)

Using the differential correction idea of Ref. 10, we expand the right-
hand side of (5) in an iterative form:

AS(fs) &2 AkSk(fn) + (A — A)Se(fn) + [S(Sfa) — Se(fa)]Ak.  (6)

The intention is to iterate toward those values of {b;} that minimize A.
The subscript & indicates the kth iteration. We then have, from (5)
and (6),

| D(fa)S(fa) — B(fa)| — AS(fn) — (& — A)Se(fa) =0,
which translates into a familiar pair of equations'
[D(fn) + 8:dS(fn) — B(fa) + (A = A)S(fa) 2 0 (M
[—=D(fa) + 8:1S(fs) + R(f2) + (&4 — A)Sk(fs) 2 0.  (8)
Substituting the series forms for R(f») and S(f.), we have

N

Zl {[D(fx) + Ai] cos 2wjfs + sin 2xjfa}b; + (A — Ak)Sk(fn)
= —D(fn) — A& (9)

5 ([-D(f) + 4] cos 2a5f, — sin 2uifulby + (& — AISK(J)
= D(fn) - Ak; (10)

where by = 1 is the normalization made. We have in (9) and (10) an
over-determined set of 2M equations in N + 1 variables. The objective
is to minimize A, one of the variables. It would seem that the condition
S(fa) > 0 would be necessary to solve (9) and (10). But the phe-

* An extension into a weighted eriterion can be handled, but is suppressed in this
presentation. M was chosen to be in the range 4N (N large) = M < 10N (N small)
in our implementation of the algorithm.

Therefore, the nonlinear nature of the tangent transformation may inhibit
designs in the neighborhood of .
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nomenon experienced in Ref. 10 occurs here also. That is, if Se(fa) > 0,
0 £n =< M,then Si;1(f.) > 0,0 = n = M, also.

Standard linear programming techniques can now be used on (9)
and (10) to iterate toward a minimum A. However, no restriction has
been made on the locations of the zeros of Q(z'). Now there exist
sufficient conditions for stability that can be written as linear con-
straints. We have looked at two of these, e.g., a restriction that
by, by, - -+, by of (1) form a monotonic sequence' or the restriction that
the sum ¥ §_o bi cos 2akf > 0, ¥fE[0, 3115 (The formulation of the
linear programming problem gives us this condition on the subset
of [0, 3] over which we are approximating.) For an example of a filter
designed using this technique and the latter constraint to assure
stability, refer to Fig. 2. Curve B is the sixth-order approximation to
Curve A (only approximated over [0.075, 0.4257).

However, the filter designer may decide that these types of con-
straints are too restrictive for his particular applications. Nonlinear
stability constraints, such as those found in Ref. 14, Chapter 3, can
be included via the cutting planes algorithm,'® but this may require
excessive computation times. Another suggestion involves interrupting
the standard simplex method for solving the linear programming
problem after each iteration. We may then further constrain the b
vector used in the next basic feasible solution to a choice (i.e., some
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Fig. 2—Sixth-order approximation using linear programming method.
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Fig. 3—Phase error vs bandwidth for various orders of Hilbert transformers.

“maximum”) from among those vectors that would result in a stable
filter in addition to the normal improvement of an object function.
Using the standard formulation of the problem with no additional
constraints or techniques necessary to assure stability, we were able
to design many Hilbert transformer filters.* Figure 3 shows the relation-
ship between the maximum error (recall that the tangent of the
desired function is approximated) and a bandwidth (the filters were

* FIr designs of Hilbert transformers are well documented (see Ref. 17). There,
90-degree phase is guaranteed, and the magnitude of 1.0 is approximated.
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Fig. 4—Tenth-order Hilbert transformer.

designed* over [f,0.5 — f], f = 0.075, 0.05, ---, 0.225) for various
orders of filters N = 4, 6, 8, 10. The log of the maximum error is given
in the figure.

The minimax approximation formulated here is performed on the
tangent of the desired phase and not on the desired phase itself. For
very good approximations, however, no penalties seem apparent. We
have briefly looked at methods to design minimax phase approxima-
tions based on the algorithm we have presented here. Our conclusions
are that a two-stage design algorithm is required to iteratively locate
a proper weight function that will “prewarp’” the ‘“‘tangent’”’ design
so that the weighted ‘“‘tangent’” design is minimax and the phase
approximation is itself equiripple.

Figure 4 illustrates the effect of the tangent transformation in this
design procedure. In this figure, we see the phase of the resultant
design (and its error function). This is a 10th order approximation to a
90-degree phase shift over [0.05, 0.45]. While the design guarantees
a minimax solution (equiripple) to the tangent, we can see that the
resultant phase approximation is not exactly equiripple.! We have not

* Each design only required a few (e.g., 5) iterations.
T We can see from Fig. 2 that the effect that the tangent transformation has on
the error curve also depends on the values of the desired function.
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implemented an algorithm to find the minimax solution to the phase,
since, for our needs, the improvement in the phase approximation from
the method outlined here did not seem to justify the use of a modified
algorithm.

ll. A GRADIENT SEARCH TECHNIQUE FOR LEAST-SQUARES DESIGN

The next design algorithm we describe involves the computation of
the gradient vector relative to the set of coefficients in a produet of
quadratic factors. The transfer function of an all-pass digital filter,
expressed as a product of second-order sections, is:

M . a1 —2
HE = 11 ( Bt ozt d o, ) (11)

The least-squares form
L
B = % [D(ji) — Ang H(em)Tu(f) (12)

will be used as a measure of the approximation error from the desired
function D(f) on the set of frequency samples {fi}f. Here, w(f)
denotes a nonnegative weighting function. A. G. Deczky has also
considered gradient techniques applied to the least-square design of
all-pass digital filters.” In that paper, the emphasis was on envelope
delay design. However, as shown in Section I, there are applications
where envelope delay approximations are not adequate. Specifically,
there are cases where phase distortion (e.g., constant phase offset)
must be eliminated with an all-pass structure.

Our design algorithm stems from familiarity with Ref. 8, which
considers magnitude-only designs. With the least-squares criterion,
the cascade second-order section form can be used. The advantage
is that coefficient accuracy problems are minimized. As an alternative
to the linear programming approach considered in Section II, this
least-squares approach also enables one to more easily control the
linear-phase offset permitted in the design. However, a disadvantage
of the least-squares approach is that stability of the designed filter
cannot be handled directly. Stability is obtained by confining the
gradient movement to within the unit circle. This constraint may
increase the likelihood of reaching an unsatisfactory local optimum. As
we see later, there are initial guess procedures that provide excellent
approximations to the desired phase function which, through the design
algorithm, increase the likelihood of reaching a satisfactory local
optimum.
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3.1 Gradient calculations

We find the entries of the gradient vector are

ok d Ang H (e—727/¥)

e, = — 2‘:21 [D(fx) — Ang H (e %) Jw(fx) % (13)
28— — 2 31D() — Ang Hemmo(s) ZABHETD gy

Here we define ¢(f) = Ang H(e ) = tan™I(f)/R(f), where
I(f) = Imag H(e= ) and R(f) = Real H(e ). We seek

D - R(LUH — IORUN

645(1’) = RN — IRA),

where prime (') denotes the partial derivative relative to the subseript.
After some algebra, we find

;qu_ =2(1 — B)F:(f)sin2xf i<i<M (15)
%b_ = 2F(f)(sin 47f + a; sin 27 f) 1=i= M, (16)

where Fi(f) = |1 + aie~?" + B.e~*|~2 Finally, (13) and (14) can
be simplified for 1 <7 = M to

g?E.- = — 4(1 = 8) T [D(f) — ¢(f)IF:(fu)w(fe) sin 2af; amn
;;% = — 4 L [D(x) — ¢(fIFi(fw(fy) (sin dxfi + assin 2xf,). (18)

The minimization of E in (12) then proceeds with an iterative algorithm
that is based on the formula

¢ = ¢t — ¢ AL (VE) s, (19)

where ¢ is the coefficient vector (ai, Bi1, as, B, - - -, an, Bu) at the
nth iteration, e, is the nth step size in the coefficient adjustment, A,
is a positive definite matrix at the nth step (=7 in the case of the
steepest descent algorithm) and (VE), is the gradient vector whose
entries are given by (17), (18) at the nth iteration (we use the Fletcher-
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Powell algorithm). An initial guess procedure is required to start an
iterative algorithm such as that of (19).

3.2 Initial guess procedures for all-pass networks

Convergence to a local minimum at which the approximation to a
desired phase function is satisfactory can be made easier if a good
initial guess is provided to ¢@ of (19). A desired feature of an initial
guess procedure is that it be simple in nature. After all, excessive
computation and effort should not be expected in simply starting a
complex algorithm. In this section, we consider two procedures in
which only a linear set of equations need be solved to obtain initial
values for {bi}i=p of (1). The value of having several initial guess
procedures is that the designer may want to exercise his algorithm
from multiple starting points to choose the best from a set of local
optima. The following initial guess procedures operate on the direct
form of H(z!)(1) which can be factored to the cascade form (11).

3.2.1 Tangent approximation by Gauss’ method

From (4) in Section II we know that a desired phase function can
be approximated by considering a monotonic function of the phase,
namely the tangent. Hence,

by, sin 2wkf

N

&,

tang(f) = ——% —————— (20)
k;} by cos 2wkf

is the approximating funection of the tangent of half the desired phase.
If we require the estimates of the desired phase tangent [tan ¢a(f)] to
be “good” at a number of frequencies, we then have the following
equations:

N N
tan ¢a(fo) 2 bi cos 2mfy — :Z, by sin 2wkfo = 7o
k=0 -]

N N
tan ¢a(f1) kg,ﬂ by cos 2wkf, — 3 by sin 2wkfr = r1
k=1

N N
tan ¢a(far) :?: be cos 2wkfy — kZ be sin 2wkfar = 7ar. (21)

=0 =1
If {r.}a" were all zero, then the approximation would be exact. The
objective then is to minimize } 3%, 2, where M > N. This problem

is a least-squares minimization problem for which the solution is

776 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1975



derived from solving a set of normal equations:

(a1, a1) (a, a2) - - - (a1, aw) | (b1 (ay, d) )
(as, 9-1):(32, )+ (aﬂ,:aN) b:2 _ (az,: d) (22)
(aw, a1) (aw, aw) | |bx (ay, d)
or
Ab = e,
where
a, = (tan ¢a(fo) cos 2wnfy — sin 27nf,,
-tan ¢a(f1) cos 2rnf, — sin 2xnfy, - - -,
-tan ¢a(far) cos 2rnfar — sin 2anfy) n=1,2, ---, N
and
d = [— tan ¢a(fo), — tan ¢a(f1), - -, — tan ¢a(far)]
b = (bI! bg, Ty bN) and e = [(alj d): T (aNr d).—-l
Let
— * - (I'*, I'*)
pmux = IAX {lral} and 5 = y*—=7/—,
where 7* = (rg, 71, -+ -, rar), the residual values after the least-squares

approximation. If pn.x — p 1s large (it is always positive), then a
Chebyshev approximation may be desirable.'®

3.2.2 Tangent approximation in Chebyshev sense

It is well known that the minimax solution to (21) requires solving
an appropriate subsystem of N + 1 equations. Further, the minimax
solution of N + 1 inconsistent equations can be effected by examining
the least-squares solution to the same set of equations and proceeding
to solve a set of N linear equations.’®

For our purposes here, an effective method of obtaining an initial
guess for the iterative procedure implied by (19) is that of choosing
M = N and obtaining the minimax solution to (21). This can be done
by solving (22) for b = (by, bs, - - -, by) and then evaluating (21) for
the residuals 75, 71, « - -, rv. The minimax solution to (21) is then given
by the linear set of equations

Bb = o, (23)
where B = (bj), N + 1 by N matrix with b;; = tan ¢4(f;) cos 2xkf;
— sin 27k f;, ¢ = €[sign (ro), sign (r1), - -, sign (ry)], and

NN,
e= 2 i/ 2 |l
k=0 k=0
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It may be noted that only N of N + 1 equations are used in the solu-
tion of (23).

3.2.3 Discussion

It should be noted that no constraint has been made on the initial
guess procedures of A or B to ensure that the resulting digital filter
is stable. In fact, if 3"}, bx cos k2xf should ever change signin |f| < }
or at least in the subinterval of approximation [fo, fx], then the
transition from (20) to (21) is not really valid since a division by zero
is implied. Should 33_, b cos k2xf be strictly positive over [f| = §,
then stability results.® (The interesting point is that stability can
result even if the cosine series does change sign in |f| = %). However,
the point to remember is that the resulting initial guess may be
unstable. In our experience, we have not encountered any serious
problems using these initial guess procedures.

We must further remark that the inherent N sample delay present
in these approximations [see (2)] could present a problem when
designing filters with M > N sample delays. However, we feel,
intuitively, that since some delay is unavoidable, a delay of the order
of the filter will not, for most applications, be overly restrictive.

The last point to consider is that the initial guess procedure of Sec-
tions 3.2.1 and 3.2.2 obtains a direct form estimate of the digital filter
coefficients. What is really required for ¢® of (19) are quadratic factors.
We remark that we make the transition from the direct form estimate
of (20) to quadratic factors by using a Bairstow quadratic factoriza-
tion routine.

3.3 Some considerations for least-squares design

Often the engineering systems requirement of a digital filter can
tolerate a linear-phase offset. While the systems engineer cannot
always adapt to an arbitrary delay, there will usually be a range of
delays permissible to him. How then can a designer incorporate these
relaxations into the design mechanism? One technique for doing this
is to add an acceptable delay to the desired function to create a new
desired function and proceed from there. By designing filters for each
of the permissible delays, one can choose from among the delays and
their associated errors to decide which filter to implement.

In Fig. 5 we can see the error function of a sixth-order filter* (B)

* We have not tested the limit of the order of filters that can be designed by this
method, but we have obtained a twentieth-order approximation (20-sample delay)
to the desired function in this example. Quality initial guess procedures help us do
this without excessive computation times.

778 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1975



0.14

012}

*0.10-

0.08—

0.06 —

PHASE ERROR RADIANS
T

0.04-

0.02-

0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.36 0.40 0.44

FRACTION OF THE NYQUIST RATE
NORMALIZED FREQUENCY

Fig. 5—Error curves for initial and final sixth-order Hilbert transformer designs.

designed for a delay of six samples. The desired function is a 90-degree
phase shifting filter with the approximation having weight 1 on
[0.08, 0.417] and 0 otherwise. Note the quality of the initial approxi-
mation (A) using the first initial guess technique outlined in Section
3.2, Of course, the disadvantage of presetting the delay is obvious;
the choice of the optimal delay from those that are acceptable is not
automatic but requires a separate design for each delay. However,
eq. (12) can be expanded to include delay as parameter A

E=% [D(fi) — Ang H(e /%) — A2xfi Pw(fe).

An optimal 4 can be found analytically at each step in the gradient
search and at convergence A will represent the amount of delay which,
in conjunction with the filter, produces the best design.* Of course, we
cannot expect that this delay will represent an integral number of
samples or even a delay that the designer can tolerate. I'igure 6 shows
a desired function (A) (this curve is only shown where the weight of
the approximation is nonzero) and its fourth-order approximation (B),

* It is possible to include a constant phase angle as parameter B similar to the A
used here. In such a case, our procedure becomes an envelope delay design technique.
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Fig. 6—Fourth-order approximation to desired shape (4).

which is by solving for optimal A. Allowing for arbitrary delay, the
algorithm obtained this optimal design with a 4.1-sample delay.

We can offer an heuristic solution to guarantee integer delays in an
automatie fashion; namely, at each step (that is, at each calculation of
A), the nearest acceptable delay* is used to replace A in the algorithm.
This, of course, places a serious strain on optimality, although it does
permit an automatic design procedure.

As a footnote to this algorithm, we remark that there is a tendency,
when working with procedures for designing filters in the cascade
form, to use a previous optimal design of order n as the initial starting
point in the design of filters of order n + 2. In the case of magnitude-
only design, this is easily implemented since the appended second-order
section can be initialized with magnitude 1. However, in the all-pass
presentation there does not exist any second-order section that can be
added which does not distort the overall phase when using a previous
optimal design of order n to provide the initial guess for a design of
order n + 2. And so the user of this algorithm must consider the effect
of the appended second-order section if he does not want to obviate
the value of a previous design toward providing an initial guess.

* Nearest in the sense of greatest reduction of (12); “acceptable’” here means
“integer.”
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