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The effect of small, periodic phase errors upon transmission between
two coaxial, circularly symmelric apertures is considered when the aperture
phase distributions are confocal and the amplitude dislributions are
gaussian. The results are applicable to loss calculations in beam wave-
guide systems with tmperfect lenses. When the periods of the phase errors
are less than one-half the aperture radii, the total loss is approximately
3(B1 + B3), where B, B2 are the peak phase errors (in radians) on the
apertures. Phase errors with periods greater than the aperture diamelers
are found to cause comparatively liltle transmission loss.

I. INTRODUCTION

The use of beam waveguide! systems for the transmission of informa-
tion,? or for the transmission of power,? necessitates the design of lenses
(or cylindrical reflectors*) as focusing elements. In the design of these
elements, it is desirable to estimate the degradation in performance
caused by surface profile errors. Such degradation results in trans-
mission loss and, in a communications system, will contribute to
interference. Typically, the profile errors are associated with machining
operations and, for lenses with circular symmetry, these errors are
frequently circularly symmetric. The principal effect of the errors
is to impart small, circularly symmetric phase perturbations to the
field distribution adjacent to the lenses. The purpose of this paper
is to caleulate the reduction in transmission, caused by phase errors of
this type, in a simple system comprising two coaxial, circular apertures
as shown in Fig. 1. The field distributions on the apertures may repre-
sent the fields in the aperture planes of two antennas or the fields on
adjacent lenses in a beam waveguide system.

In the absence of phase errors the transmission between coaxial
apertures has been extensively studied by Kay,* Borgiotti,® Heurtley,’
and others, with the principal objective of determining that aperture
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?‘ig. 1—Coaxial, circular apertures with confocal field distributions & (r) and
&t(ry).

field distribution which maximizes the transmission. When the aperture
separation is greater than some minimum, it has been found that this
field distribution corresponds to that of the lowest order mode in an
open, confocal resonator.® The phase distribution appropriate to this
mode is obtained when the phase fronts on the apertures are confocal,
i.e., are spherical with the center of curvature at the center of the
other aperture. The appropriate amplitude distribution is well approxi-
mated® by a gaussian curve. For this (optimum) distribution, the
transmission between the apertures can attain surprisingly high values
even when the apertures are separated by many aperture diameters
(see Refs. 5, 6, and 7). Although the effect of periodic and random
phase errors upon antenna gain and side lobe level has been investi-
gated by several authors,®" little information appears to be available
regarding transmission between two apertures when each has phase
errors. In the case of transmission between two reflector antennas,
Chu®? has obtained an upper bound for the loss resulting from those
phase errors produced by displacement of the feeds from the reflector
foci. Yoneyama and Nishida®® have considered transmission through
a two-dimensional, confocal beam waveguide consisting of lenses with
random phase errors. We compare their results to those of the present
study later in this paper.

In the following section the total transmission loss in a confocal
system, with small phase errors on apertures with arbitrary ampli-
tude distributions, is expressed in terms of the losses associated with
each aperture when the other is free from phase errors. In the next
section explicit expressions are derived, for two cases of practical
interest, when the phase errors are sinusoidal and when the aperture
amplitude distributions are gaussian. These expressions are then
discussed and compared with results from the literature.
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Il. TRANSMISSION BETWEEN CONFOCAL APERTURES WITH

PHASE ERRORS

Consider the circular apertures A, A, of radius a,, a. which are
separated by a distance d > a,, as, as in Fig. 1. It is assumed that the
apertures are focused at each other such that the tangential electric
fields in the apertures, when each is transmitting in the absence of the
other, have the quadratic phase variation

kr:* .
8ir) = B exw (3% ), i=12 M
where the r; are radial coordinates in the apertures. In the absence of
phase errors the E(r;) are real. If interaction is neglected, the trans-
mission between the apertures is readily found”!2 from the results of
Hu! and Kay?®:

] 1 1 2
-1 ’ fn ﬁ Fasdridra| , 2)
where
Fm = E1(7‘1)Ez(?‘2).]0(711‘1?‘2)1"11"2 (3)
and
D= | [ 1B trdrs [ |Batra) 2radrs | @
= nt . 1Ty 110 2\T'2) | “T2dT2

In these expressions the r; are normalized so that r; = ri/a;. The
Fresnel number n = kaia:/d, with k the wave number, and J, is the
Bessel function of order zero. In the special case when the aperture
separation is much greater than the aperture diameters, we see that
n < 1 and that the aperture phases are uniform, i.e., &i(r;) = Ei(r:).
Substituting the small argument approximation for the Bessel function,
z K1, Jo(z) &1, eq. (2) then reduces to the familiar Friis trans-
mission formulal!®

AfAS

The effective aperture areas A} are defined by
f 8i(r)rdr|
A = 2mat -—F——— 1=1,2 (6)
f | 8i(r) [2rdr

e.g., in the case of uniform illumination, &i(r) = 1 and A} = wai
The far-field transmission, 7' in (5), is also expressible in terms of the
gains (() of the apertures A, and A,:

A 2
T=Gle(m), n<<1, (7)
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where
4 A .
G=5, i=12 (8)

Returning now to the discussion of phase errors, suppose that the
phases in the apertures depart from the ideal (confocal) distributions
by amounts ¢;(r1) in A and ¢s(rz) in A, The transmission T'12 between
the apertures in the presence of these phase errors is, from (2),

r 1 1 IF . drid 2 9
12—5‘j‘;f0 12 €xp [J(d1 + ¢2) Jdridrs| , (9)

where the ¢:(r;) are abbreviated to ¢:. T is expressible as
Tm = Tn - Ale, (10)

where T is the transmission in the absence of phase errors and AT
is the loss resulting from the phase errors. Let

T,‘ = Tu - AT,‘, 3 -— 1, 2 (11)

be the transmission between the apertures when there is a phase error
on only the aperture A ;. From Appendix A we then find

AT = AT, + AT + R, (12)

where

1 1 1 1
AT‘- = }—)I:j; '/; Fudndrz j; -/; F12¢21d7'1dr2

— {fl fl Flgqf);d?'ld?'z}a] , 7= 1, 2, (13)
0 1]

2 1 1 1 1
R = 5 [f f Fisdridre f f F12¢1¢2d1‘1d‘f2
0 0 0 0

— _[[,1 fﬂl Fiogadridrs ful j: F12¢2d7‘1d7‘2] < (14)

Equation (12) states that the total loss incurred by (small) phase
errors ¢1(r1) and ¢.(r:) on confocal apertures 41, A, is approximately
equal to the sum of the losses associated with each aperture when the
other is free of phase errors together with the term E. In the next
section we evaluate the expressions for AT; and B when the aperture
amplitude distributions are gaussian.

lll. GAUSSIAN APERTURES

In the case of gaussian amplitude distributions, Ei(r:) = exp (—a.r?).
To simplify the analysis we assume the a; to be sufficiently large that
the upper limits in the integrals may be extended to infinity. The
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transmission T in the absence of phase errors may now be obtained
from (2), (3), and (4) by noting!®

[wex (—aard)J o(nrire)redr =iex (—?ﬁ) (15)
. p aals)d o 172) 12T 2 Dets P 4ot

to give
16n%a 102

TD = (nz + 40:1052)2 ’

exp (—a;) K 1, i=1,2 (16)
Apart from differences in notation, this expression is identical to the
corresponding result obtained by Kogelnik!” for the coupling of
(fundamental) gaussian modes. We find

T[) =1 when n = 2Vd1€!2, (17)

i.e., within the approximation exp (—ea;) < 1, there are optimum
amplitude distributions that will ensure complete power transfer
between the apertures for a given n. A detailed analysis,® or numerical
integration, indicates this to be a satisfactory approximation when
a; = 2.3, 1 =1,2. For example, when a; = a; = 2.36, the exact®
results for identical apertures are Tp, = 0.9931, n = 5.00, and the
approximate results are Ty = 1.00, n = 4.72. From (6), the effective
aperture area, A% of a gaussian aperture is

_ 2ra’

=1

AS 2. (18)

a;
As expected from physical considerations A{ decreases as a; increases,
i.e., as the aperture field becomes more concentrated about the aperture
center.

In the case of transmission with circularly symmetric, periodic phase

errors, we take

¢i(r:) = Bicos (yiri), =12,
where (19)
21”1,,'.

Bi = ka,, Y= T

B: is the peak value of the error in radians (with §; the peak profile
deviation) and I; is the period of the error. For errors of period much
greater than the circumference of the apertures, y: << 1 and then, in
(9), o:i(r:) =B, t =1,2. It follows, therefore, that Ty = T, ie.,
to this order of approximation, small, slowly varying, circularly
symmetric phase errors do not affect transmission between the aper-
tures. In the general case of small errors, the transmission loss AT,
for gaussian apertures is found from (12) with (13) and (14) by
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substituting for the &;(r;) and ¢.(r;). From Appendix B, we have

ATT: = Bi[2D(yi/2) — D(v) — 7D (v/2)], i=1,2, (20)

. / 4o
YT Y n? + 4oy (21)

D(x) = exp (—2? Lm exp (9)dr (22)

where

and

is the (tabulated) Dawson integral.!® The index j = {3} when ¢z = {}}.
The term R in (14) may be evaluated approximately in two cases
of practical interest. In the first of these, the apertures are sufficiently
far apart that n << 1 so that Jo(nrirs) /2 11in (3). F1; is then separable
in funetions of r; and r; and hence, from (14), B = 0. For this case,

ATy 2 AT, + ATz, (23)

i.e., the total loss is approximately the sum of the losses associated
with each aperture when the other aperture is free of phase errors.
The total loss is given by (20) and (23) in which v; simplifies to

Yi

'yizﬁ, n <1, (24)
It is noted from (7) and (11) that
A%, a1, i=12, (25)
0 T

where @; = G — AG; is the gain of aperture 4, with the phase error
¢:. Hence, (20) with (24) gives the fractional reduction in gain of the
aperture 4, resulting from a (small) periodic phaze error.

The second case of practical interest arises when the amplitude
distributions on the apertures are optimized in accordance with (17)
such that, in the absence of phase errors, the transmission is unity.
From Appendix C, the term R in (12) is negligible in this case provided
T, Y2 >N = 2V, 1.e., the periods (1)) of the phase errors satisfy

L™ and LM (26)
ag [15]

The transmission loss, AT, between the apertures is then the sum of
the losses associated with each aperture as given by (23). This result
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implies that the transmission through a sequence of confocal lenses,
each with small phase errors of period satisfying (26), may be obtained
by calculating the transmissions associated with each lens in the absence
of phase errors on the other lenses. Furthermore, (23) indicates that
it is not possible to compensate for such phase errors on one lens by
introducing phase variations on an adjacent lens. When (26) is satisfied,
the Dawson integrals in (20) may be replaced by the first terms of the
asymptotic expansion (44) to give

AT~ 365, i=1,2 (27)

It is of interest to note the physical significance of the condition
(26) for the validity of the approximate forms (23) and (27). As
expected from the theory of diffraction gratings, a circularly symmetric,
periodic phase perturbation on a circular aperture generates® two
additional side lobes in the aperture radiation pattern. If the period of
the phase perturbation is I, then the two side lobes are symmetrically
located about the main beam at an angle @ = sin—! (A/I). Consider
now the two apertures of Fig. 1 with phase errors of period I; in
Ay and lp in A,. If the apertures are sufficiently far apart the side
lobes, due to the phase error /; in 4,, will not intercept A, provided
sin=! (A/l1) > tan! (as/d), i.e., for small angles, l; < Ad/a;. Similarly,
the main beam of A will not couple energy to the side lobes of 4.
provided !, << Ad/a;. The condition (26) implies, therefore, that energy
is coupled from 4, to A, via the main beams alone.

Figure 2 shows the transmission, as a function of y = y; = ¥,
between two identical apertures as obtained by numerical integration
of (9) with (19), and as obtained from the approximate result (23)
with (27). The upper curve in the figure applies for « = 4, n = 8,
B = 0.36 and the lower curve for & = 2.36, n = 5, 8 = 0.18. In the
absence of phase errors Ty = 1 for these (optimum) distributions. The
dashed lines correspond to the. approximation (23) with (27). As
anticipated earlier, the transmission is essentially unaffected by phase
errors of large period, e.g., when v < n/2,i.e.,1 2 2\d/a. The approxi-
mate form (23) with (27) is seen to be within about 1 percent of the
exact result when v 2 2n, ie., I < Ad/2a. As an illustrative example,
consider a beam waveguide system of the type deseribed by Arnaud
and Ruscio? with A = 3 X 10=*m, d =2 80m, ¢ &2 0.5m. The parameters
of this system correspond to those of the lower curve in Fig. 2. Substi-
tution shows that small, circularly symmetric phase errors of period
! 2 2a on the lenses will cause negligible transmission loss, and that
the approximation (23) with (27) is applicable for phase errors of
period I < a/2.
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Fig. 2—Dependence on v of phase error loss.

IV. COMPARISON WITH PREVIOUS RESULTS

To conclude this diseussion on the effects of phase errors, we briefly
compare the preceding results with the work of others. An expression
for the gain (G’) of an aperture with small, periodic phase errors was
given in (25). Consider the special case in which the period of the phase
error is much less than the dimensions of the effective aperture, i.e.,
] < VAe. From (18) and (19), this implies v > Va s0 that the Dawson
integrals in (20) with (24) may be replaced by the large argument form
(44) to give, with (25),

!

o1, (28)
where @ is the gain in the absence of phase errors. Since this result
depends only upon the magnitude 8 of the phase error, it is anticipated
that it may apply to random phase errors with correlation lengths
that are small compared with the dimensions of the effective aperture.
Ruze! has examined the reduction in aperture gain caused by such
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random errors and we compare (28) with his results. In the particular
case of a sinusoidal surface error of rms value e on a parabolic reflector
antenna, we have 8 = ké§ = 2vZke. From (28), the gain with this small

phase error is
’ 2
%Mexp[—(é?)]- (29)

This expression, derived here for a sinusoidal phase error, is identical
to that obtained by Ruze in the case of a random error. As noted in
Section I, Yoneyama and Nishida!® have examined the effect of random
phase errors on lenses in a two-dimensional, confocal, beam waveguide
system. Their approach is based on the concept of a statistical beam
mode and this leads to a description of the field distribution, and
transmission loss, in terms of an integral equation. A computer was
used to solve the integral equation by numerical iteration from the
solution in the absence of phase errors. It is interesting to find that
the conclusions of their study, of a two-dimensional system with
random errors, are similar to those obtained here for transmission
between circular apertures with periodic phase errors. In particular,
it was found that the transmission was not appreciably affected by
phase errors with large correlation lengths and that the loss for a
given error tended to a constant value for increasingly small corre-
lation lengths.

V. CONCLUSIONS

We have examined the effect of small, periodic, radial phase errors
upon transmission between two coaxial, circularly symmetric apertures
with confocal phase distributions. Two cases of practical interest have
been considered when the amplitude distributions on the apertures
are gaussian. In the first of these the apertures are widely separated
with phase errors of arbitrary period. The total loss is then the sum of
the losses associated with each aperture and is given in terms of
tabulated Dawson integrals. This result reduces to a known form
when the periods of the phase errors are sufficiently small. The second
case of interest applies to transmission through a beam waveguide
system with imperfect lenses. When the periods (I;) of the phase errors
on the apertures satisfy I; < a;/2, (¢ = 1, 2), where a; is the aperture
radius, the total loss resulting from phase errors is approximately
3(B8} + B3), where B1, 3: are the peak phase errors in radians on the
two apertures. A comparison, based on numerical integration, shows
this to be within about 1 percent of the exact result in a typical case.
Phase errors with periods I; 2 2a; (i = 1, 2) have comparatively little
effect upon transmission.
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APPENDIX A
Derivation of (12)

For small phase errors, (¢: + ¢2) < 1 and the exponential in (9)
may be expanded to second order. Recalling that the E; are real, i.e.,
F12 is real, we then find

11 2
T ‘lﬁ [{fu fu Fi[1 — $(¢: + ¢2)2]d7‘1d1‘2]

+ [ [ [ P+ m)dndnr]- (30)

Expanding the first bracket and noting that

1 1 r 2
D Uo f F 12(¢1+¢=>”dﬁdh} < (61 + 62)huTo, (31)

where (¢1 + ¢2)max iS5 the maximum value of (¢1 + ¢2), we have, to

second order in ¢, ¢z,
Tiz = To— ATy, (32)

where

1 1 1 r1
AT % [ f f Frodridrs f f Fia(¢1 + ¢2)2dridrs
0 0 1] 0 .

1 1 2
- {fu j; Fia(1 + ¢2)d1’1d7‘2} ] (33)
Expanding the brackets gives (12) with (13) and (14).

APPENDIX B
Derivation of (20)

Substituting E;(r:) = exp (—aa?), ¢i(r:) = Bicos (yia:) (= 1,2)
into (13) with (3) and (4) gives, with (15),

o= 2N — 20l(0] =12, (38)

where
ILi(vd) = fu exp (—nr?) cos? (yir)rdr, (35)
L(yd) = fﬂ " exp (—n1?) cos (yar)rdr (36)
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and

1
" e (n? + daia), (37)
with 7 = {}} when ¢ = {}}. Expanding cos? (y,r) and integrating:
I(v) = 3+ 3a(2v). (38)
Integrating by parts,
1 ® .
Ir) = 5o [ 1= v [Texp (—w sin adar |, @9)
which is expressible'® in terms of the (tabulated) Dawson integral, i.e.,
a2 (5%
Liv) =5 |1-Yo , 40
o0 =g [1-F o (2 (40)
where
D(z) = exp (—2?) [ exp (7%)dr. (41)
0

From (34), (38), and (40), we then obtain (20) and from (19) and (37)
we obtain (21).

APPENDIX C
Approximate Evaluation of R in (14)

We derive an approximate expression for B when v;, y2>> n. 1t is
assumed that the amplitude distributions on the apertures are opti-
mized such that 7'y = 1 with n = 2Vaas, where a1, @2 = 2.3. Consider

the integrals in (14): Extending the integration limits to infinity and
substituting E:(r;) = exp (—air®), 7 =1, 2 gives, with (3), (4),

and (15),
" Pudrdr = L, D=L 42
fu[o 120Nare = o 5 Ty (42)
Similarly, substituting ¢; = 8: cos (y.r:) and using (15) and (40),

1 r1 B \fz_
[ﬂj;F12¢1dr1dr2=2—7:2[1—““?—1“”:n("§\/‘%)]- (43)

Sinece yi > n, the Dawson integral may be replaced by the first two
terms of the asymptotic expansion,?

1 = 1.3..-(2m — 1)
D(x) 52 [1 + W;Z=1m(2x2)”‘ ] , x> 1, (44)
to give
" Fragidrdr, ns — P 45
j; j; 1¢1aridrs 2 — 2(!27%. (45)
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Further,

1 1 1
j; [u Fiap1¢p2dridrs = G182 j; exp (—auri)ri cos (yir1)d(r1)dry, (46)

where
g(ry) = j; exp (—aard)d o(nrirs)rs cos (yara)dre. (47
Substituting the integral representation of the Bessel function
To(z) = 1—1r f " cos (z sin 6)d5, (48)
0
interchanging orders of integration and expanding the cosine product,
1 g
5(rn) = 5= [T L1@) + I(=6)1ds, (49)
m™ Jo
where
10) = [ " exp (—adracos [(y2 + nrysin O)ralirs.  (50)
0
From (40),

1 1 .
I(e) = 5&; [1 - E(-yz-l-m'lsmﬁ)

2‘1[0!—2 (v2 + nrysin6) } ] (51)
Since y2 >> n, both Dawson integrals in (49) may be replaced by the
large argument form (44) to give

d(r)~I1(6) ~ — v2 (52)
Evaluating (46) by (40) and using (44),

Blﬁ2.
2

f f F12¢1¢2dr1d1'2 ~ (53)
'Yl‘Y

Substituting for the integrals in (14) and reducing (20) then gives

R BiB:  8n?
AT+ ALY T B+ v (64)
But [B182/(87 + 8D | = 3, 1e,
2
sriiar) = (o) (55)
Since yy1y: > 2n, (65) is much less than unity and so, from (12),
ATy 22 ATy + AT, (56)
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