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Clos’ Network

By V. E. BENES
(Manuscript received October 8, 1974)

Methods from group theory and combinatorics are used to prove the
(Slepian-Duguid) rearrangeability theorem for Clos’ three-stage network.
The nr-permutations realizable in such a network can be represented as a
product Go ~\H ¢G, where G, H are subgroups realized by stages and
¢ 18 the spectal cross-connect field used in making frames. Thus, rearrange-
ability can be cast as G ¢ H oG = 8,. = symmelric group of degree nr.
Since it 1s an elementary theorem that a permutation group containing all
transpositions 1s symmetric, it 1s enough to show that the product G ¢ H G
s closed under multiplication and confains all transpositions. We prove
that closure of the product is equivalent to a property of suitable partitions:
existence of systems of common representatives. This property, formulated
by J. B. Kruskal, is a consequence of Hall's theorem on distinct representa-
tives, It is easily seen that G ¢ H oG contains all transpositions, so the
Slepian-Duguid theorem follows.

. INTRODUCTION

In this paper we continue the exploration begun in previous work!—?
of the relationships between permutation groups and connecting
networks that are made of stages, frames, and cross-connect fields.
Our results concern a well-known theoretical result of this area, the
Slepian-Duguid theorem, which states that Clos’ three-stage network
with square switches is rearrangeable, i.e., realizes any permutation.
Since the permutations realizable by a stage form a special kind of
subgroup, the theorem has been viewed in terms of group theory as a
factorization of the symmetric group S,. of degree nr into a product of
three subgroups or, alternatively, into a product of two mutually
inverse double cosets.?

We further illuminate this basic rearrangeability theorem by giving
it as nearly group-theoretic a proof as we have been able to find. This
proof starts from the known characterization' of the nr-permutations
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realizable by a Clos’ three-stage network as a product G¢'H G,
where G, H are subgroups realized by stages and ¢ is a “canonical”
cross-connect field. It then shows that this product is closed under
multiplication, and that it contains all nr-transpositions, whence
immediately, by an elementary theorem, that it contains any nr-
permutation, i.e., that S., = G¢1H (.

In the course of this proof we show that the basic combinatorial
backbone of the rearrangeability theorem is really the existence of
systems of common representatives (scrs) for pairs of partitions.
Since, in apparent contrast, Duguid’s original proof* used Hall’s
theorem on systems of distinct representatives (spms) of subsets, we
have also sought to clarify just how the rearrangeability result depends
on Hall’s theorem. The contrast above is apparent only because there
are standard ways of proving scr results from spr results. In the
present context, the two approaches are equivalent and lead to the
same results. However, the scr formulation is closer to the group-
theoretic aspects than is Duguid’s original spr proof: it provides an
sCR property that is a consequence of Hall’'s theorem and is necessary
and sufficient for the product G¢'H ¢G to be closed. The property
was first formulated by J. B. Kruskal in unpublished notes about
rearrangeable networks dating from 1964.

Il. SETTING AND FORMULATION

We now sketch the group-theoretic interpretation of the Slepian-
Duguid theorem in some detail, as has been done in earlier work.?
Figure 1 shows Clos’ three-stage network, composed of three sym-
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Fig. 1—G¢'H oG describes the permutations realizable by Clos’ three-stage
network.
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Fig. 2—Getting transpositions in G¢'H G : terminals on different outer switches.

metrically placed stages interconnected by the ‘“‘canonical”’ cross-
connect field ¢ and its inverse. Each stage can realize precisely those
permutations from a certain subgroup of 8., depending on the size
and number of switches in the stage. The r n X n switches of each
outer stage realize a subgroup G isomorphic to (S,)7, viz., all those
that permute the sets {kn + 1, kn + 2, ---, (k+ I)n}, k=0, .-,
r — 1, within themselves. A similar statement holds for the center
stage, but with » and r interchanged, to define a subgroup H isomorphic
to (S;)n

Thus, if we think of the network in Fig. 1 as acting from right to
left, and if we interpret composition of permutations as left-multipli-
cation of the inner permutation by the outer, then the permutations
realizable by Clos’ three-stage network with square switches are
precisely those in the complex

G 1H o,

The Slepian-Duguid theorem says that this complex is exactly the
symmetric group S,, of degree nr. We note for future reference that
all transpositions are realizable; this can be seen from Figs. 2 and 3,
in which the remaining terminals (not shown) are connected through
to “themselves,” as is possible and indeed necessary to realize a
transposition.

\\\ /,f
- \\ . /, .
. ~ . /’ .
o P
L] -~ - .
\\ //

Fig. 3—Getting transpositions in G ¢ 'H ¢G: terminals on same outer switch.
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IIl. SYSTEMS OF DISTINCT REPRESENTATIVES

Let X be a set, and X, - -+, X,» finite subsets of X. We make the
following definition.

Definition 1: Elements x1, ---, m from X form a system of distinct
representatives (SDR) of X1, - -+, Xm iff z: € Xiand x; # x; 9f © # j, for
,7=1,+-+,m.

Hall’s theorem? gives a necessary and sufficient condition for the X
to have an spr, thus:

Theorem 1 (Hall): X1, -+, X have an sDR iff for k = 1, - -+, m, the
union of any k X has at least k elements.

This result was used by Duguid in his proof of the rearrangeability
of Clos’ network with square switches. It enabled him to decompose
any permutation into a union of submaps each of which, in switching
terminology, carried exactly one terminal on each input switch onto
images that were spread over all the output switches. These submaps
could then be accommodated, one each on a middle switch.

IV. SYSTEMS OF COMMON REPRESENTATIVES
Let P = {P;} and @ = {Q;} be partitions of a set X with |P| = |@Q].

Definition 2: A subset E C X 1s called a system of common representa-
tives (scr) for P and Q iff

|[EN P:| =1, P,eP
Ryser® gives an spR argument to prove a necessary and sufficient
condition for two partitions as above to have an scr. In the cases of
interest to us here, a sufficient condition can be given in a particularly
simple way. We make
Definition 3: Q is an (r, n)-partition iff |Q| = », and |Q:| = n for
Q: € Q. An (r, n)-partition of X s one into r sets each having n elements.

We use substantially Ryser’s argument® to prove the following
special case (Theorem 2.2, p. 51, of Ref. 5) of his result:

Theorem 2: Let P, Q be (r, n)-partitions of X. Then P and Q have an scr.

Proof: Forj =1, ---, 7, let A; = {i:P; meets @;}. Take any union of
k of these sets, 4; U --- U 4;,, and observe that Q;, U --- U @Qj,
has precisely nk elements in it. Hence, at most r — k integers in the
range 1, - - -, r fail to be in some 4;, - - -, 4;,. Thus,

|AJ'1U UAJ'kI gk:
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so, by Hall’s theorem, {4;} has an spr {7,}, and P;; N Q; # ¢. Hence,
P and @ have an scg.

V. ORTHOGONAL PARTITIONS

We now prove a property of partitions that will later turn out to be
equivalent to the closure of the permutations realizable by Clos’
network.

Definition 3: Partitions P, Q are orthogonal, written P L Q, off P; E P
and Q; € Q imply |P: N Qi = 1.
Remark:If P 1 @, and = is a permutation, then =P 1 Q.

The next result was first given by J. B. Kruskal.

Theorem 3: If P, R are both (r, n)-partitions, then there s an (n, r)-
partition Q orthogonal to each of P and R.

Proof: By Theorem 2, P and R have an scr ¢,. Remove all elements of
Q, from the P; and the @, to give new (r, n — 1)-partitions P’ and @’.
Repeat to find Qz, Qs, - - -, @n, and then take Q@ = {Q.}.

It is convenient to have notations for three special partitions which
arise naturally from the switching applications we are making. Clearly,
the inlets (or outlets) of the network in Fig. 1 can be partitioned
according to what last (or first) stage switch they are on. Similarly,
the “wires” of the cross-connect fields between the stages can be
partitioned according to what middle switch they impinge on. Accord-
ingly, we define the (r, n)-partition S (by “outer’” switches) as

S = {S,‘,j‘—'l,"',?‘}, Sj= [’G(j—'l)ﬂ<k§jﬂ},
and the (n, r)-partition M (by “middle” switches) as
M = [M,',jzl,"',ﬂi, MJ'= {k(J—l)T<k§]T1

It is also convenient to partition by terminal position on outer switches,
so we define the (=, r)-partition T by T = {T,,7 = 1, ---, n} with

T, = {k:k=1In+j forsome 0=1=<r—1}.
The canonical cross-connect field is defined by

j—1

,p;j—>l-|-[ ]—{-r[(j—l)modn] j=1,2 --- nr

The following properties can be verified: ¢T = M, S L T. Intuitively,
¢ takes the jtlo terminal on the 7th switch into the 7th terminal in the
jth switch.
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Vl. CHARACTERIZATION OF REALIZABLE PERMUTATIONS

The next theorem will give a necessary and sufficient condition on a
permutation = to be realizable in Clos’ network, i.e., to belong to
G ¢ 'H ¢G. We start with a lemma.

Lemma: Let P be any (r, n)-partition. If there is an (n, r)-partition R

such that
P1R1S,

then there exists an element g © G such that
egP 1 M.

The practical import of this result is as follows: Consider a frame of
r n X n switches followed by n r X r switches, with the canonical
cross-connect field ¢ in between (Fig. 4); then, under the hypothesis
there is a setting of the right-hand switches (i.e., the r n X n), which
has the effect of connecting each set of P to some terminal on every
switch of the left-hand stage of n r X , i.e., it images each P, so as to
reach every left switch (exactly once).

Proof of lemma: Let B = {R;]. Each R; is simultaneously an spr of P
and one for 8. Thus, if we connect the terminals of R; to the first
left-hand stage switch, we will have used up one terminal from each
P-set and also one from each switch on the right. This procedure can
be repeated with ., Ry, - - -, B, to give the result. Evidently, this set of
connections defines an element g € ¢ such that each set of ¢gP is
spread over the left-hand stage switches, i.e., such that ¢gP 1 M.

Theorem 4: m € G ¢ H oG iff there is an (n, r)-partition R such that
SLEL1LTS

IMAGING OF P ONTO LEFT—-HAND SWITCHES

\\
PIS AN
{r,n }-PARTITION OF
THESE INLETS

v 9

N\

\\ EACH SET OF ¢gP IS SPREAD
OVER LEFT STAGE SWITCHES

Fig. 4—Import of the lemma.
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EACH SET OF pg3 'S EACH SET OF yg,5
ISSPREAD OVER THE IS SPREAD OVER THE
MIDDLE SWITCHES \\ _~MIDDLE SWITCHES

1 r

93 ¢! g2 v o

r=03¢ 102 p g

Fig. 5—egiS L M 1 g;'S.

Proof: Let M be the partition of nr by middle switches, i.e., the (=, r)-
partition consisting of the n sets

{gr+1L,r+2,---, G+ Dr} J=01,--,n—1,

and note that hM = M for h € H. Suppose now that = € G H o
with m = gise™'g2¢¢1 and gy, g; € G, and g» € H. It can be seen from
Fig. 5 that each set of ¢g;'S is spread over all the middle switches.
Similarly, each set of ©g1S is spread over the middle switches. Combina-
torially, and without the help of pictures, these facts follow from
oT = M, from gS = S for ¢ € @, and from S L T, and they can be
rendered as
S L M
egiS 1 M.

It follows from the observation above that goM = M, and thus, by
the remark after Definition 3,

gaegiS L M 1 @gi's,

whence
S L gag™™™ L S

or
S L grlelgsM 1L =8.

For R, we take gi !¢ 'g2 "M, and the necessity is proved.
For the sufficiency, we use the lemma, according to which the
hypothesis implies that there is an element g, € G such that

c,ogur‘lS 1 M.
Thus, in Fig. 5, by setting up g, in the right-hand stage, we can connect,
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for each j = 1, - -+, n, the terminals of #~1S;, one each to a middle
switch. It remains to define g, for the middle stage by collecting those
destined for S, Ss, «+ +, and g; for the left-hand stage by distributing
within each of the sets Si, Sy, - - - in the left-hand stage. This is done
precisely as follows: Define g, by switching a terminal ! to third stage
switch j iff
l e (pgﬂl'_l.s,‘.

It follows that ¢ 'gzeg17r1S; = 8;. Then define g; by switching, within
each final switch, ¢~'gapgim% to 7. Then 7 = gz 'gaeg1 € G H oG,
as was to be proved.

VIl. CLOSURE AND FACTORIZATION

Theorem 5: G 'H oG 1is closed under multiplication iff, for any two
(r, n)-partitions P, @, there is an (n, r)-partition R suchthat P 1 R 1 Q.

Proof: Let P, @ be given (r, n)-partitions. If G¢'H ¢(@ is closed, then
it is a group that contains all transpositions, and so equals S,,. Hence,
there exist permutations 7, and . such that

m8 = P, 7 1S = Q.

Since G ¢ 1H G is closed, it is clear that m.m;: belongs to it. By Theorem
3, or by inspection of Fig. 5, with # = w,m1, we see there is a partition
N such that

S L N 4 (wgn)‘ls;
that is,

TS L mN L 12_18.

For the requisite partition R, take w1V, and the necessity is proved.

For the sufficiency, let m, 7 € G¢'He@, and let P = mS,
Q = w7'S. Then, by the hypothesis, there is an (n, r)-partition R
such that

P1lR1Q;
that is,
mS L R 1L xS
S L xR L (wm)S.

Hence, by Theorem 4, m.m € G¢'H ¢, and we have proved that
G 1H ¢ is closed.

Theorem 6 (Slepian-Duguid):
Sm' = G(P_IH‘PG.
Proof: Immediate from Theorems 3 and 5, since the right-hand side

contains all transpositions and is closed.
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VIIl. FURTHER PROBLEMS AND COMMENTS

Since H is a group, it follows that ¢'H ¢ is also a group, one conju-
gate to H, and that the Slepian-Duguid theorem can be cast as a
decomposition

Ser= U GG

LSl Y0

into disjoint double cosets, similar to the classical Frobenius’ de-
composition. It is tempting to expect some sort of connection with
Frobenius’ theorem here. One can speculate, in particular, that there is
a proof of the Slepian-Duguid theorem from Frobenius’, obtained by
specializing the requisite cosets to those of the form GxG with = in the
conjugate ¢—H ¢, and showing that only these need be considered.

In conversation, Richard Stanley has indicated that, in another
problem, also concerned with showing that a certain set of generated
permutations was all of S, he had used the known result that a
primitive group containing a transposition is a symmetric group. His
remark stimulated our original approach to a ‘‘group-theoretic’” proof
of the rearrangeability theorem: one easily shows that, if G'¢71H G is
a group, then it is a primitive group containing a transposition; the
problem then became to show that it was closed, a property that
turned out to be equivalent to Kruskal’s orthogonal partitions result
(Theorem 3). Since closure was by comparison difficult to prove, and
since it became clear that (G¢1H o7 contains all transpositions, the
simpler proof presented here could be used, making the original side
trip via primitive groups gratuitous. Stanley’s idea, however, is still
a possible proof method for other networks that lead to less trans-
parent groups of realizable permutations.
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