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Effective analyses of performance for detection schemes that optimally
decode digital data in the presence of iniersymbol interference have been
slow wn coming. Recently, however, Forney has given an upper bound on
the bit error probability for mazimum-likelihood sequence estimation.
Starting from a standard geometrical framework, we give a much simplified
derivation of this upper bound. Our derivation places the validity of this
imporlant bound more in evidence in that the concepts of whitened maiched
Jilter and error event are not introduced.

Let a;, j = 1, 2, ---, N, be independent, equilikely binary random
variables taking wvalues =+1. Data transmission usually involves
estimating the a; from a pulse sequence of the form

N
2 ah(t —jT), —ow <it< o, (1
I=1

which is observed in white gaussian noise of (two-sided) spectral
density No/2. In (1), the minimum assumption put on the pulse wave-
form A (t) is that it be L,. One possible detection procedure is to decide,
on the basis of the received noisy signal, which one of the 2¥ equilikely
signals given in (1) was “most likely” (maximum-likelihood sequence
detection) and use the sequence {a.} which is associated with that
sequence as the detected symbols. As NV grows large, the probability of
deciding incorrectly on the sequence approaches unity; however, the
real question revolves about the bit-error probability for maximum-
likelihood sequence detection. Important work on this problem was
done recently by Forney,!? who showed that, under certain conditions
on h(t), the bit-error probability for large signal-to-noise ratios goes
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exponentially to zero as
2

d;
P, = (coeff.) exp(—ﬁ): No—0, (2)
where d2,, is the minimum distance between the signal sequences in
(1); i.e., if we add a superseript to distinguish among sequences thus

N
sO() = 3 aPh(t —jT), —0 < t< @ i=1,2 -2V  (3)
j=1
then
A = lim min [~ 500 — @ () |1t )
ik T

Forney’s demonstration consists of two steps. First, a lower bound on
P, of the form (2) is established, valid for any h(t). Second, if H (w)
denotes the Fourier transform of h(t) and

Ql? } | H (w) |2¢™*dw = 0O for integer k, |k| > », v integer, (5)
then an upper bound for P, can be given which is convergent for large
signal-to-noise ratios and which, furthermore, also has an asymptotic
form given by (2).

In our opinion, Forney’s discussion of the upper bound is sufficiently
complicated that some question remains as to how firmly the result is
established. We shall give a much simpler derivation, but first let us
review the situation when » = 0, i.e., when there is no intersymbol
interference. Using the reduction to the standard geometrical picture,®
the signal points (sequences) received in the absence of noise are as
shown in Fig. 1. These signal points are to be regarded as being per-
turbed by spherically symmetric, N-dimensional, zero mean gaussian
noise; the variance of each component of the noise is No/2. Thus any
point in the N-dimensional space may be received and the maximum-
likelihood decoder chooses the unperturbed sequence nearest to the
received point as the transmitted one. The decoding regions are shown
in Fig. 2 by dashed lines, and are labeled R; ; in an obvious way.

Now assume we transmit (1, 1) and ask for the probability that the
first bit is in error. This is the same as the probability that the received
signal point is in R_;.; \U R_1,1, or equivalently that the received
signal point is to the left of the line labeled S in Fig. 1. In N dimensions
it would be the probability that the received signal point is on the
opposite side of an (N — 1) dimensional hyperplane. This is clearly a
simple one-dimensional gaussian problem having the well-known Q-
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Fig. 1—Four siFnal points corresponding to sequences for N = 2 in the absence of
intersymbol interference.
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Fig. 2—Four signal points with intersymbol interference.
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function for an answer, independent (because of the simple geometry)
of the dimension or of which bit in the sequence is transmitted.

When intersymbol interference is present, the error probability for
the kth bit may well depend on k and N. In addition, the surface S
which separates the sequences that have ai = +1 from those which
have @, = —1 is no longer a hyperplane, although it is made up of
segments which are hyperplanes. Finally, and perhaps a bit vaguely,
the “shape’ of the surface may depend on k. An example for N = 2 is
given in Fig. 2 showing the separating surface for the first bit.

Our goal is to derive Forney’s upper bound by geometrical arguments
about as simple as those used in the discussion of Fig. 1.

As in (3), we consider signal points identified by their respective
data sequences {a;}¥ and label them with a superscript. We focus
on the kth bit being in error, and define sets A and B:

A= {a®|af = +1}, B = {a¥|af0 = —1}
= {bh‘)}_ (6)

We are mainly interested in the chance that the maximum-likelihood
decoder selects a point b € B, given that a particular sequence a®
(say), a®) € A, was transmitted. One upper bound on this is the union
bound

d(a®, b)
ro s 2,0 (“G5) »

where d(a®®, b) is the euclidean distance between a® and b; ie., if [
labels the particular b sequence,

@@®,b) = [ [s0@) — s

= (" 1@ ‘ > (@ — bP)ei| o (8)
21 J i=1
On writing (8), and henceforth, we set T = 1. Equation (7) is a bad
bound because it includes too many terms on the right-hand side. This
is easily seen by applying it to the N-dimensional hypercube (no inter-
symbol interference), for which we obtain (ignoring unessential
coefficients)

P.(k) < 2Ve-@vo), (9)

where d? is the length of a hypercube edge. Thus, the bound, for any
fixed N, approaches o as the length of the sequence N increases.
Our next step will be to make some simple observations about the
geometry of the received signal points [when (5) is true] that will allow
us to delete most of the terms on the right-hand side of (7). Following
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Forney, we are motivated to define another set B, of signal points
which is a subset of B. A vector b € B, if {b; — al"}-, (after deleting
all zeros which begin the sequence and end the sequence of coefficients
{b; — a$"}) does not contain » or more consecutive zeros either to the
right of the kth position or to the left of the kth position. Forney’s
upper bound then reads

d(a®, b)
rw s 3 e %) (10)

To see why no further terms need be included in (10), select an arbi-
trary signal point b* not included in the sum in (10); ie., b* € B
— B, = B*. From the way things have been defined, we may write

al) = (o) 1, a1, @, a3) (11)
b* = (L"L) —1, By, @, @a), (12)

where «; — 81 does not contain » consecutive zeros in its coefficient
sequence and e; — B3 # 0. The 1 in (11) and the (—1) in (12) occur
in the kth position, and e is at least of dimension », corresponding to
the » (or more) positions where a' and b* are to agree. Now er — 1
may or may not contain v consecutive zeros," and we distinguish these
two cases in our discussion. First assume that e, — @1 does not contain
v consecutive zeros. Then note that

b® = (B, —1, By, a2, @) € By (13)
a® = (a, 1, a, w;, §5) € A. (14)

Statement (13) is true by the absence of v consecutive zeros in . — oL
and also in B; — e;; (14) is true because af® = +1. We may at this
point imagine the four signal points a®, b*, b®, a‘® in general position
as in Fig. 3. Now focus attention on the triangle (a®, a®, b*).* We
have (letting 0; denote a string of at least 7 zeros)

d*(a®, b*) = [[a® — b*|?
= ”aL - ﬁLJ 2: a; — Bl: 0’; a3z — B3'|2
= [la* — BY, 2, 01 — Bu|* + [Jas — Bal|®. (15)

The last step in (15) follows from the Fourier integral expression (8)
for the distance and from (5), the requirement that intersymbol inter-
ference not extend beyond ». The right member of (15) can readily
be seen from (11, 12) and (13, 14) to be d?(a®, b*) + d*(a®™, a®).

t Recall that a string of zeros in the beginning does not count.
! We drop bold-face notation for veetors here, and also allow ourselves the freedom
of writing the subseript L as a superseript.
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Fig. 3—The four signal points defined in the test illustrated in general position
(not, necessarily planar).

Hence,
dz(a(l)’ b*) - dﬂ(atal, b*) + d2(a(k)’ a(2)) (16)

and (a™, a®, b*) forms a right triangle. In an entirely similar manner,
one verifies
P(a®, b0) = @ (aW, V) + d(a®, a®), (17)

implying that (a®, a®, b®) is a right triangle. Since b® — b* = a®
— a®, we have
d2(a®), a®) = @2(bW, b*) (18)

and the additional fact that the four points lie in the same plane.
Equations (16), (17), and (18), and planarity, imply that (a®, a®,
b®, b*) form a rectangle as shown in Fig. 4. This demonstration assumes
that there are » consecutive zeros to the right of the kth position and
not to the left. If we interchange the words ‘right’’ and ‘left”’, the same
type of demonstration will apply. There remains the case when there
are v consecutive zeros both to the right and to the left of the kth
position. In this case we write

al) = (a%r alﬁj ari‘: 1, o1, ap, aa) (19)
b* = (ﬂ%} a%: ]i': —1, 81, a 183)1 (20)

where a; — 83 # 0 = o% — g% and neither a; — 8; nor o} — 8% con-
tain » consecutive zeros in their coefficients. Further, we are to assume
@s and o% each have dimension at least v. If we define

b = (o, o, BY% —1, By, az, as) € By (21)
a® = (lﬂ%’ a12', 0211', ]_, o, 02, ﬁa) - A, (22)
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the proof that (a®), a®, b, b*) is a rectangle can be carried out using
the same techniques as earlier.

Figure 4 makes it clear why, if a® is transmitted, terms like b* do
not have to be included in the right-hand side of (10). The term

(5

in (10) is the probability that, if ¢ is transmitted, the received signal
will be on the ‘“wrong side” of the hyperplane H which perpendicularly
bisects the line (b'a'). Now b* only needs to be included in (10) if its
associated decoding region contributes some set of points of positive
measure not accounted for in some other way. Thus, from Fig. 4, this
is only the case if these new points were on the same side of H as
aV. But any point on that side is closer to a® than b* and, hence,
would never be decoded into b*. Hence the gaussian measure of the
decoding region for b* is already included in the term

If we calculate further upper bounds for (10) by letting N = o,
we obtain a bound independent of k. Averaging this over the possible
transmitted symbols gives precisely Forney’s upper bound. The fact
that the resulting upper bound converges for N, small enough (for

b('ll'_

b':l Ijam

IrI———f—_———— e — T

Fig. 4—The actual relationship of the four signal points defined in the text.
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N = =) has been recently discussed by Foschini.* This last step is an
important one in a full proof, and was overlooked in the initial work.?
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