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We present the power spectrum of a sinusoidal carrier, frequency
modulated by a random baseband pulse train in which the signaling-pulse
duration s finite and the signal pulses may overlap and have different
shapes. Symbols transmitted during different time slots are assumed to
be statistically independent and tdentically disiributed. The speciral
density appears as a Hermitian form suitable for numerical computation
by a digital compuler. Sitmple conditions in terms of the modulation
paramelers are given under which discrete spectral lines are present in the
spectrum. Several examples are given to illustrate the method.

I. INTRODUCTION

In recent years, digital-frequency and phase-modulation techniques
have been increasingly important in radio, waveguide, and optical
communication systems.

An important parameter in the statistical description of a signal is
its spectral density, which defines the average power density of the
signal as a function of frequency. In addition to furnishing an estimate
of bandwidth requirements, the knowledge of the spectral density is
also essential in the evaluation of mutual interference between
channels.

In this paper, we extend the techniques developed in Ref. 1 for
digital psx to the case of digital Fsk with phase-continuous transitions,
such as may be obtained at the output of a voltage-controlled oscillator
driven by a digital baseband wave. We assume that the sinusoidal
carrier is frequency modulated by a random, baseband pulse train in
which the signaling pulse duration is finite and the signal pulses may
overlap and have different shapes. It is generally assumed that the
symbols transmitted during different time slots are statistically inde-
pendent and identically distributed.

We express the spectral density of such an ensemble of continuous-
phase, constant-envelope, digital, FM waves as a compact Hermitian
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form that provides an appropriate division between analysis and
machine computation. The present work permits simpler numerical
computation of digital rsk spectra than earlier studies,”~* and contains
a simpler statement of the conditions, in terms of the modulation
parameters, that determine whether discrete spectral lines are present
in the spectrum or not.

Examples give the spectra of binary and quaternary Fsx waves with
overlapping baseband modulation pulses of several shapes.

1l. M-ARY FREQUENCY-MODULATED SIGNALS
We seek the spectrum of the digital frequency-modulated wave:

x(t) = cos [2nft + ()], f.> 0. (1)
o) = [ " falw)du. )
falt) = ki ho(t — kT), s =1,2, -+, M. (3)

The symbol ¢ is the phase and f, the frequency deviation of the carrier at
frequency f.. The signaling alphabet consists of M waveforms h;,
ha, - - -, har, that may have different shapes; one of these is transmitted
for each signaling interval of duration T'. The different signaling
waveforms in (3) may overlap, but are statistically independent in
most of the present work; i.e., s; is statistically independent of s; for
k==L
Define for convenience

p(t) = ei*®); (4)
then
z(f) = Re {7 (t)}. (5)
The spectral density of »(f) is
P, (f) = * (I)n(-r)e—ﬂrf'rdr, (6)
where
[ . 1 A 5
o.(r) = &0, 1) = lim o [ &0 1 (7)

®,(t, 7) = (w(t + 7)*(t)) = (eletrn—4 1)

= <exp (j ft ™ falw)du )> (8)

denotes average on ¢ throughout.

§ The symbol
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An arbitrary constant of integration is implicit in the notation of
(2), whieh defines the phase. This is of little consequence in the re-
mainder of the present paper, since most of our study is directed to-
ward the speetrum of the complex wave v(t) ; as seen by the final line
of (8), the absolute phase is irrelevant in determining P,(f). The
absolute phase must be rendered explicit only for the following three
purposes in the present work:

(i) Relating P.(f) to P.(f) (the spectra of the real rFsk wave z(t)
of (1) and of the complex Fsk wave of (4), respectively).
(77) Separating possible line-frequency components from the Fsx
wave.
(i72) Specializing the present Fsk treatment to the prior psk results.!

To make the absolute phase explicit, we write
t
o(t) = fu fa(w)dp + ¢(0); v(0) = e*®, (9)

The term ¢ (0) is the phase of the Fsk wave at ¢ = 0. We consider three
representative assumptions for ¢(0):

(i) ¢(0) deterministic, e.g.:

¢(0) = 0. (10)
(7¢) ¢(0) random, uniform, and independent of the modulation s;:
Prl¢<o(0) S¢+ds]=52, 0=¢<2r (D)

(77f) #(0) dependent only on the modulation parameters (or signal-
ing pulses) that contribute to f;(04)% in (3):

—kT
6@ = T [ s (12)s
kihy (—FT+) =0 J—c

The signal-pulse duration is assumed finite; consequently, in
(12), the ¥ has a finite number of terms, and the lower limit
on the S becomes finite. Specific examples of (12) appear in
Section IV below. In other words, the net phase contributed by
all past signaling pulses that are over by ¢t = 0, i.e., for which
h..(—kT+) = 0,8 is normalized to 0.

§ The +'s indicate that fy and h,, are to be evaluated an infinitesimal time later
than 0 and —kT, respectively, if any of the signal pulses have discontinuities at their
upper limits at a time-slot boundary (see Section I'V). If the signal pulses and, hence,
t]he instantaneous frequency deviation fi(f) are continuous, these two +’'s may be
dropped.
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In the appendix we show that, except for special modulations with
low carrier frequencies f. that take on special values, the following
simple relation gives the spectrum of the real wave z(t) of (1):

Pz(f) = %’Pv(f - fc) + i’ u(_f - fc) (]-3)i

The first term of (13) is the spectrum of the complex baseband wave
v(t) shifted to the carrier frequency + J.; the second term is the spec-
trum of v*({) shifted to — f.. More specifically, (13) is valid if any of
the following are true:

(1) Eq. (11) holds, independently of any other considerations.

(#5) Eq. (10) or (12) holds, and P,(f) [and hence P.(f)] has no
line components.

(i35) Eq. (10) or (12) holds, P,(f) [and hence P.(f)] has (equally
spaced) line components, and f. is low enough so that the two
terms of (13) overlap, but f. is such that the line components
of the two terms of (13) do not coincide. The discrete values
forbidden to f, under these conditions are given by (146) in
the appendix.

(iv) The carrier frequency is so large that the two terms of (13) do
not significantly overlap, independently of any other
considerations.

Consequently, we study only P, (f) throughout the remainder of this
paper. This suffices for all cases except that of a low carrier frequency
f. that takes on special discrete values related to the baud rate 1/T
and the modulation, for very special modulations that result in line-
spectral components (psK is one such case, but there are others).

The condition expressed by (12) is assumed in much of what follows.
This results in no significant loss in generality in treating the spectrum
of the real wave z(t), as discussed above. It permits economy of nota-
tion in the general case, a convenient treatment of line components
present in special cases, and simple specialization of the present FsK
results to prior psk results.!

lll. NOTATION AND STATISTICAL MODEL

We introduce the vector-matrix notation of the prior psx study.'
Since that study allowed correlated modulation parameters s, while the
present work is largely restricted to independent sx, only a portion of
Section III of Ref. 1 need be summarized here.

§ Compare (5) of Ref. 1.
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We write (3) as

fa) = ¥ aht — kD), (14)8

where
8= o] = [of af? - o], (15)
h(t) = h(t)] = [h(t) ha(t) --- hue(t)]. (16)

For a given k (i.e., for a given time slot) one of the a,’s is unity and the

rest are zero:
af? =1; af =0, s (17)

Thus, a; is a unit basis vector, i.e., a; has one component unity and all
other components zero.

The modulation process s; is assumed stationary, as in the prior
psK study,! but here we make the stronger assumption of independence
in most of what follows. Define the first-order probability

w; = Pr {8 = 1} (18)

as the probability that the 7th signaling waveform is transmitted in
the kth time slot. w; is independent of k by stationarity. By
independence,

Prisy =4, 8:= j} = waw;, k=1 (19)
Then
wi=Prila=[00 -~ 0 1 0 - 0]l (20
12 e i1 i i+l M

Normalization of the total probability requires

M
> wi=1. (21)

=l
We use the following vector notation for the probabilities:

w,=w] = [wr wp - wal (22)

§ The following notational conventions are adopted throughout:

(z) Boldface quantities denote matrices.

(7i) Row and column vectors are distinguished by the additional notation . and
7, respectively.

(7#7) Ordinary matrix multiplication is indicated by -, Kronecker matrix products
by X (see second footnote, page 908, Ref. 1, for properties of Kronecker
g‘roducts used throughout the present paper).

(iv) The transpose of a matrix is indicated by ' .

(v) The Hermitian transpose of a matrix is indicated by 1.

(vi) Multiple Kronecker products are indicated by [Ix (see footnote, page 911,
Ref. 1) and the Kronecker power is indicated by an integer exponent enclosed
in square brackets.
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Further define a vector (here of dimension M) with all elements unity
as

1=17=[1 111 (23)
Then (21) may be written
lLw]=w1]=1 (24)
Finally, for convenience later, define the diagonal matrix
Wy 0
Wy = v : (25)
0 - Wn
Then, from (22) and (23),
wa-l] = w), Lws =w, (26)
Note that
(ax) = w, (27)
(a:]-ax) = Wa. (28)

IV. FSK AS A BASEBAND PULSE TRAIN
We seek an expression of »(t), given by (4), (9), (12), and (14), of
the form

v = ¥ ewrlt— kD) (29)

for signaling pulses of finite duration. Assume the A:(t) of (3) are
strictly time-limited to an interval KT, as follows:

h()]=10], t=< Lg, t> Uz (30)%
_KE-1p Kodd
— 2
Lg = K
—5 T, K even.
(31)
K+lp  Kodd
2
Uk = K
5 T, K even.

Lx and Ug are respectively the lower and upper limits of the pulses.
Figure 1 shows portions of fa(¢) for four different maximum signal-
pulse durations; the terms k = —1, 0, 1, 2 of (14) are shown, and for

§0,= 0] is a vector of appropriate dimension (here M) with all elements zero.
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Fig. 1—Frequency modulation for different signal pulse durations. Index % is
shown near peak of each pulse. Also, for simplicity, same signal pulse is shown for
each k. T = time slot duration or signaling period. KT = maximum signal-pulse
duration. Note different pulse center location for odd and even K.

convenience a, has been taken the same for each of these time slots.
The pulses are positioned along the time slots such that the limits of
each signal pulse lie on the boundary between adjacent time slots (i.e.,
t = integer-T'); this results in different definitions for Lx, Ug for K
even and odd. Since symmetric pulses have been chosen for illustration
in Fig. 1, their maxima are centered in the time slots for K odd, and
lie on the time-slot boundaries for K even. Discontinuities are permitted
at the pulse edges (and elsewhere), but are not present in the example
of Fig. 1 (and would not normally be present in a mathematical model
of a physical system) ; discontinuities at the time-slot boundaries are
restricted by the inequalities at the right of (30). Examine the (0, T]
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time slot in Fig. 1 as typical; then the number of pulses contributing

to fi(t) at every instant equals K.

It remains for us to express the pulse shapes r(t) and coefficients c
of (29) in terms of the signal pulses h(t) and coefficients a; of (14). We
give separate treatments for the cases K = 1 and K = 2, and extend
these results to general K. The treatment is an extension of that for
the psK case, given in Section IV of Reference 1.

4.1 Nonoverlapping pulses: K =1

The top portion of Fig. 1 shows digital frequency modulation for
which the signal pulses in different time slots never overlap; in this
case from (30) to (31),

h®)]=0], t=0, t>T. (32)
Define

[exp (i [ M) exp ([ s

- exp (_7 _/;‘hy(p)dy)]: 0<t=T.

al),= (33)
0, t=0, t>T.
Equations (4), (9), (12), (14), and (33) yield
#(0) = 0; »(0) = 1. (34)
v = 3 Sl — k)], (35)
where

1T 2y-a* ()], k<O,

i=k+l1

Sk = 1, k=0 (36)
k
HacaD] k>0

Comparing (35) and (29), the parameters of the latter are given as
follows for nonoverlapping signal pulses:

e, = Siby,  bi = 84
()] =q@®];
Sk in (37) is, of course, given by (36).

K=1. (37)

§ The same conventions were used in Fig. 1, Ref. 1, for the baseband modulation
pulses in digital psk.
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4.2 Overlapping pulses: K = 2
This case is illustrated in the second portion of Fig. 1. In the (0, T']
time slot, the & = 0, 1 pulses contribute. We have from (30) to (31)

hit)]=0], t=-T, t>T. (38)
Define

[exp (j [ hman) exo (i [ h-z(#)du)

t
-t exp (j j,y hu(n)d#)]’ -T<t=T.

q() = (39)¢
0 t< -7, t>T.

-

Equations (4), (9), (12), (14), and (39) yield
s0 = [ °T g (). (40)
o) = ¥ Selagat — kD] lawaalt — k+ 1D, (@D

where S, remains as given in (36), the same as for the prior K = 1 case.
Proceeding exactly as in (51) of Ref. 1, (41) above yields (29) with the
following parameters, when no more than two signal pulses overlap:

Cr, = Siby by = 26 X ey

()] =q()] X q(t — T)];

Sk is given by (36), and X denotes the Kronecker product [see foot-
note to (14)J. The term by, like ay, is a unit basis vector, i.e., it has one
element unity and the remaining M? — 1 elements zero.! Note from
(42) and (39) that

rt)]=0], t=0, t>T. (43)

Binary rsk offers a simple example of these results, governed by the
same relations between a, and b, as for binary psk given in (57) of
Ref. 1.

K =2 (42)

4.3 Overlapping pulses: general K

The general case follows by straightforward extension of the above;
see (58) to (62) of Ref. 1. Figure 1 illustrates the frequency modulation
for K = 3, 4. The modulation pulse restrictions are given by (30) and

§ Comparing (39) with (33), note that the definition of q(t) is different for different
K ; q(t) # 0 over the same interval in which h(¢{) may be nonzero.
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(31). Define

[ew (i [ mds) e (7 [

palu)da

H
veeeXp (j fLK hM(u)d,u)] v Lg <t = Ug.

9,

¢(0) of (12) is
(K—=3)/2

k= --(g—l)/2

¢0) =
(K=2)/2

—kT

[, Pt

—kT
f hu(“)d“!
k=—(K-2)/2 JILg

The parameters of (29) are
(K—-11/2
IIx
i=—(K—1)/2

bk=

—_

Lx, = Sibe;
Kj2

ITx

1=—(K—2)/2

(K—1)/2

ITx

i=—(K—1)/2

r(t)] =

: P

s

q(t — 7],

(44)

t = Lg, t> Uk

Kodd, K > 1.
(45)

K even, K > 0.

K odd.
(46)

K even.

K odd.

(47)

K|2
IIx 4q( —:T)], K even.

i=—(K—-2)/2

II x denotes a multiple Kronecker product [see footnote to (14)]. Si

is given by
0
IT ai—x+n2q*(Ux)],
1=k+41
Sk = 1,
k
IT ai_xs1y2-a(Ux) ],
i=1
0
i_"H+1 a:_x/-q*(Ux)],
Sk = 1,

f[ a_xn-q(Ux)],

i=1

1104

kE<0;

K odd. (48)

K even. (49)

THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1975



Note that
r)]=0], t=0, t>T. (50)

4.4 Discussion

It is instructive to obtain the prior psk results! by specializing the
present FsK results. Define the phase shift produced by each signaling
pulse as

gi(t) = fL' h(w)du, i=1,2, - M (51)

or in vector notation

g01= [ b6l (52)

and substitute into (44)% (or into (33) or (39) for special cases K = 1,
2). Then the present results of (29), (31), and Section 4.3 are similar to
the former psk results of (43) and Section 4.3 of Ref. 1, except for the
factor Si; in particular, the equations for q(t), by, and r({) have an
identical form. The additional factor S; present in the Fsx case ac-
counts for the total phase shift introduced by each of the signaling
pulses.

To specialize the present rsk results to the psx case, we require the
total area of each of the present modulation pulses to be zero. Thus,
(51) and (52) become

Uk
g:(Ux) = f h(t)dt =0, i=1,2 .., M (53)%
Lk
or
Uk
gUnl= [ "h@lit = 0] (54)8
Lg
Substituting in (44),
q(Uk)] = 11]. (55)
Therefore, (17) yields
8iq(Ug)] = 1. (56)
Substituting in (48) to (49),
S, =1, allk K, (67)

completing the specialization of the present Fsk results to the psx
case.!

In the general F8x case, the results of Sections 4.1 to 4.3 above reduce
the Fsx problem to determining the spectrum of (29). This is ac-

§ Only the range L; <t S Uy is relevant in (51), (52), since q(¢) = 0 outside this
range.

§ Equations (30) to (31) and (53), (54) render (51) and (52) zero for ¢ = Lk,
t 2 Uk, satisfying (58) of Ref. 1.
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complished by deleting (149), (153), and (163) to (171) of Ref. 1,
Appendix B.# Then the spectral density of (29) above is given by setting
b — ¢ in (150) to (152) and (160) to (162) of Ref. 1 as follows:

P.() = pRUP.UT) R (D] (58)
P.(f) = ¥ enrd.(n) (50)8
B.(n) = (cren]-ch) (60)
RNI=RUY = [ el (61)

In these relations R(f) is the Fourier transform of r(t) of (37), (42), or
(47), depending on K (i.e., the amount of pulse overlap). ®c(n) is de-
termined from (36) and (37), (36) and (42), or (46) and (48) or (49)
in Section VI for K = 1, 2, and general K, respectively.

V. FSK WITH LINE COMPONENTS
From (21), (22), and (44),

\w-a(Ux)]| = L. (62)85

We show in the present section that equality in (62) corresponds to
the presence of line components in the Fsk spectrum. Conversely, if
the inequality of (62) is satisfied, we see in Section VI that the Fsk
spectrum contains no line components.

Assume throughout the remainder of the present section that

lw:q(Ur)]| = 1. (63)
This yields

u
fKh,-(t)dt=21rf;+integer-21r, i=1,2 -, M, (64)
Lg

where 2rf; is defined as the common area (mod 2r) of all of the Fsx
signaling pulses in the line case. For definiteness we take

—31<fis4 (65)

Equivalently,
QUr)]=e¢*11], —3<fiZ4% (66)

§ These deleted portions were relevant to the study of line s?eqtra.l components of
psk.! The line spectral components of Fsk are treated separately in Section V.

§§ See footnote, page 905, Ref. 1.
§§8 This follows because |g:(f)] = 1.
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Now substitute (66) into (48) and (49); we have
S; = e all k) K. (67)
Thus, when (62) is satisfied

o(t) = kf; et b (t — kT)]. (68)

The relation (68) is the same as the psk result of (43) of Ref. 1

except for the factor e#2"/!; as noted following (52), b and r(f) have

the same form in rsk and psk. Consequently, when (63) is satisfied, the

FSK spectrum may be obtained by simple transformation of the psx
results of Ref. 1. One way this may be done is to rewrite (68) as

v(f)eRrIUTI = f: b (e-#rGUT U—*Dp(f — kT)7]). (69)
k=—u0 —

Comparing with (43) of Ref. 1, all the psx results of Ref. 1 apply
directly to the present case by making the substitutions

U(t) — U(t)e_.ﬂ'(f”T)f’
1(f)] — e 2riDer(f)],
Therefore, when (68) is satisfied, and consequently (68) holds, the

FSK wave has line spectra. We separate the line and continuous com-
ponents as

(70)

v(t) = v;(8) + ve(b). (71)
The line component is given from (70), and (114)% of Ref. 1, as

vi() “lqi‘i'.m' _i R (” ‘; Ji )] eF (/D 1T

) (72)8
%2 ‘WIKJ.R(f)]L2u=Z_:n s (f _ n_';ifi)

Py ()

The spectral density of the continuous component is found from (70),
and (69),8%% (96), or (116) of Ref. 1 as follows:

P = mRY 1R¥N] (73)

§ Or from (66) and (95) of Ref. 1 for the special cases &k = 1, 2.

8§ See footnote to (14); an exponent enclosed in square brackets denotes the
Kronecker power, i.e., the Kronecker product of a matrix (or vector) with itself the
indicated number of times.

§8% This is equation (69) of Ref. 1 specialized to independent signal pulses, i.e.,
with (32) used for all n = 0, yielding (72) or (73), of Ref. 1. If this restriction is not
imposed, and (70) above is used in the general form of (69) of Ref. 1, we obtain the
spectrum of digital rsx with line spectra, with nonoverlapping signal pulses having
arbitrary correlation (rather than being independent, as in the remainder of the
present paper). This is the only correlated case that can be readily treated by the
present methods.
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{ J=wi—wlw, K=1 (74)

{ } = W«Eﬂ — W:lm -‘\_r.r_ll't’r]
+ (&x wg X W:l — w:l[ﬂ] .E[ﬂ)e—ﬂr(!’f—f!)
+ (W] X wa X W, — W]kl wih)etaruT-ro, K = 2. (75)3

_ expression in { } in (116) of
U} = Ref. 1 with T — fT — f,, general K. (76)

The condition of (63), that has here been shown sufficient, is shown
in Section VI also to be necessary for line components to be present
in sk spectra. This condition has a simple physical interpretation.
Every signal pulse must introduce the same total phase change in the
modulated carrier in order to have line components. This phase change
has been denoted as 2xf,; the line components appear at frequencies

:l:(fc—l-f:;,_n): n= .., =101, - 77

When f; = 0, (73) to (76) show that the Fsx spectra are identical to
the prior psx results.! However the wave in this case is not necessarily
a psK wave. The stronger condition of (563) or (54) is required to have
a PSK wave; this condition demands the net phase shift introduced by
every signaling pulse to be zero. A wave with f; = 0, but one or more
signal pulses with net phase change equal, for example, to =2, will
have a spectrum given by the psk formula, but will not be & psk wave.

VI. FSK WITH NO LINE COMPONENTS
Assume throughout this section that the inequality of (62) is
satisfied :
wa(Ur)]| <L (78)

We demonstrate that under these conditions the F8K spectrum contains
no lines. The properties of Kronecker products given in Ref. 1 in the
second footnote, p. 908, and in the first footnote, p. 915, are used
throughout without further comment.

6.1 FSK specirum with no line components: nonoveriapping pulses, K =1
From (37) and (60),

Be(n) = ((SusnS) (Br4n]-80). (79)
From (36),
SheaSh = E diaira(D], 1 >0, (80)

§ See footnote to eq. (72).
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Let us first consider @.(0). Since SuS; = |S:|2 = 1, for all k, we
have from (79) and (28)
$:(0) = wa. (81)

Next, (79) and (80) yield
&) = | Tawra®l} a0y adllanda, n21 @6

where we have split off the first factor of (80). For n = 1, the first
{ ], containing the [T, is dropped. The first { } is independent of the
remainder of the expression by (19); using the fact that g(1')-a:] is a
complex number or equivalently a 1 X 1 complex matrix, and using
(27) and (28),

®.(n)

Il

(W, (1) 1 aeen]-9(T) 8] 8s)
wa(M 1wl o(T)-wa}, n21, (83)

the last step following from the independence of a,.» and a;.
Finally, taking the Hermitian transposet of (79),

®f(n) = ((Sk+nSk) (8] Bitn))- (84)
Alternatively, setting n — —n in (79),
®.(—n) = ((SeSk—n) (@r-n]-as))- (85)

Since (79) has been shown independent of k, we may set k —k + n
in (85), to yield upon comparison with (84)

@ (—n) = ®(n). (86)
From (58) to (61), (81), (83), and (86),
P.(fT) = A + A", (87)

A = wy + errtw] (D) -wa 3 (e 7T wq(T)])" (88)

Because of (78) the geometric series in (88) converges, and

1 et w]g(T) W
A= 5 Wa + 1= egjszT!I,q(T)]' (89)
Finally, the spectrum of the complex rsk wave of (4) is
1
P.(f) = 7 R{) (A + A ‘R*(f)], (90)

with A given by (89) for nonoverlapping pulses, K = 1.
§ See footnote to (14).
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It is clear that the restriction of (78) renders A and, hence, P,(f)
finite for all f; consequently, there can be no line components in the
FeK spectrum. If we take the limit as |w;q(7)]| — 1, and substitute
(66) into (88), (90) yields directly the appropriate results for the line
case, i.e., (72) and (73) to (74) of Section V.

6.2 FSK spectrum with no line componenis: overlapping pulses, K =2

Bo(n) = ((SurnS) (be] by)) (91)
with
be= 8, X Buar (92)

We have noted in Section 4.4. that the present b, for Fsk has identical
form to the prior b, of Ref. 1 for psk. In Section 4.2, we saw that S, is
identical for K = 1 and K = 2; therefore, (80) applies to the present
case as well. Comparing the psx analysis of Section VII of Ref. 1, we
evaluate (91) above by inserting (80) above inside the ( ) in (87) of
Ref. 1.

For n = 0, (87) and (90) of Ref. 1 yield

®.(0) = wi?l. (93)
For n = 1, (87) and (91) of Ref. 1 yield
&.(1) = ({a(D7) a]} X ar X {ar1] X giga} X aei2])

= ({a(T)-ax]-ax} X {ari1]-grir} X 8rsel). (94)
Sinee ay, 8x;1, and a;,. are independent, (27) and (28) yield
®.(1) = {q(T)-wa} X wa X W]. (95)

Finally, substituting (80) inside the ( ) of the third line of (87) of
Ref. 1,

®.(n) = <[,j.—_I:EmQ(T):|] (9(T)-a: 1HQ(T), arsil} {arsn]-an)

1%

X [ak+n+i]'ak+f}>’ 2, (96)
where we have split off the first two factors of (80). For n = 2, the
first { |}, containing the [], is dropped. Regarding the factors g (7", -a:]
and g(7') -ax;1] as complex numbers or alternatively as 1 X 1 complex
matrices, and using the independence of the different a;, (96) yields

@c(n) = (wa(D) I *{aipn ] a(T) 2] as)
X {ak+ﬂ+!] w Ayl ak+i})
= (w-q(T) ]} *w]-g(T)-wa}®, n =2 (97)
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The remainder of the analysis proceeds as in Section 6.1. The Fsk
spectrum for overlapping pulses with K = 2 is given by

P.(f) = pRU) (A + A)-R*(1)], (98)

where
(e-ertw] g (T) Wa)
1 — e27Tw-q(T)]
(99)

P,(f) again contains no spectral lines by (78) ; the limit |w-q(7)] —1
again yields the appropriate results of Section V for the line case.

A = LW+ emTI(T) Wa) X Wa X W] +

6.3 FSK spectrum with no line components: overlapping pulses, general K

Similar analysis yields the generalization to any overlapping signal
pulses. From (46) and (60),

®.(n) = ((SksnSi)(be]-by)) (100)
with by given by (46) and S, by (48) to (49). Thus,

L K 1
H1 Ak k+1/n+i' 4 ( ;_ T)], k odd,
=
SHnS; = n > 0.

Hl &i—x/2)+i' 4 (é—{ T)] ) k even, (101)
jep——

Since the present b; have identical form to b, of Ref. 1, (100) is
evaluated by substituting (101) inside the { ) of (106) of Ref. 1, and
making corresponding changes in the remainder of Section VII, Ref. 1.
The factor

I:IIEL'Q(UK)] (102)%

is inserted inside the ( ) of (107) of Ref. 1. In the following we recall
that the factors of (102), a-q] = g a|, may be regarded alternatively
as complex numbers or as 1 X 1 complex matrices.

In (109) of Ref. 1, the first factor of the second line is modified as

(&L) —q(Uk)-(a:] '&‘) = q(Uk)-wa; (103)
consequently,
&.(1) = {q(Ux) -wa} X wiE"11 X w]. (104)

In (110), Ref. 1, the first two factors of the fourth line are modified
§ Uk is given by eq. (31).

SIGNAL POWER SPECTRUM 1111



as in (103), yielding
®.(2) = {g(Ux)-wa} @ X wh*21 X w]il. (105)
By induction,
®.(n) = {q(Ux) - wa}™ X W™ X w]", n < K. (106)

Next, for » = K, inserting (102) inside the ( ) of the second line
of (107) of Ref. 1, associating the factors of (102) with corresponding
factors of the second []x of (107), Ref. 1, with n — K factors of (102)
left over, and then noting that all factors have different indices and,

hence, are independent,

@ (n) = w]iKl-{g(Ux) -wa} ¥1{q(Ux) -w]j"*
(w:a(Ug) ) *{w]-q(Ux) - wa} ¥, n 2 K. (107)

Finally, from (108) of Ref. 1 and (100) above,
&.(0) = wiFl. (108)

The Fsk spectrum for overlapping pulses with general K is given by

P,(f) = —R(f) (A + AY)-R*(f)], (109)

where

A=g WE"J + Z e=mefT q(Ug) -whd X whe—"1 X w]in!
{e=Tw]-q(Ux) wa} ]
1— eTw;q(Ux)]
The condition (78) again guarantees no spectral lines; as equality is
approached in (78) the present results approach those of Section V for
the line case. The condition (63) is, therefore, necessary and sufficient
for P,(f) to have line components.

(110)

VIl. ILLUSTRATIVE EXAMPLES

The computation of the digital ¥ spectral density from the above
methods is straightforward. For a given set of baseband signaling pulse
shapes and symbol probability distribution, we determine K, the over-
lap parameter, and the probability row vector w. We then evaluate
q(Ux) and w;q(Ux)]-

If |w-q(Ux)| < 1, we know that there are no line components in
P,(f). The continuous part of the spectrum is evaluated from the ap-
propriate Hermitian form given in Section VI.

If |w-q(Ux)]| = 1, we know that there are line components in the
spectrum, and also that
q(Ur)] = e*-1], |fil £ 4 (111)

We determine f;, and then P,,(f) and P, (f) from the methods given
in Section V.
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In the following examples, the digital computer is programmed to
work directly with the Hermitian forms (both ordinary and Kronecker
matrix multiplications are performed by the computer). In this way,
complicated cases involving multilevel signal pulses overlapping
several time slots may be simply treated.

The case of rectangular-pulse Fsk modulation is treated in Ref. 3,
and consequently will not be considered here.*

We make the following assumptions for convenience; none are
essential.

() The number of frequency levels is a power of 2,

M = 2%, N an integer. (112)
(#i) The M baseband signaling pulses have a common shape;
ge(t) = Cig(t). (113)
(727) All signal pulses are equally likely;
1
ﬂ=%q,m=ﬂm, (114)

where I, is the identity matrix of order M.

7.1 Raised-cosine nonoverlapping signal pulses: K =1
If the pulses have a common raised-cosine shape,

Ay

"“f 1rf,g|:1 —cosg;Tt]: 0<t=T, fi>0,

Ay

g)] =
0], otherwise, (115)
where Ay, As, - -+, Ay are the peak-frequency-deviation parameters of
the Fsk signals. We assume that A, = 1, A, = —1, Az = 3, Ay = —3,
coe Ay = — (M —1).
Since K = 1,

R(f)=T i J. (f_"gﬁ) e~ fade1 T

n=—w 2
sinw(fT—%-}-n)

w(fT—'Eézﬁg-‘-{—n)

where J,(z) is the Bessel function of the first kind and of order n.

, (118)

§ This is the only discrete-frequency-modulation spectrum given in Ref. 3.
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7.1.1 Raised-cosine signaling with no line spectrum: K =1

Since
q(U,) = iiefaT gibyrfal ... gibM=fdT (117)

—_—

line spectra are absent if and only if f;T" is not an integer. In this case,

P.(f) = Po(f) = nR() (A + A)-R(D', (118)

(a)

[ )
(0.360)

A
L

SPECTRAL DENSITY P, {(f)/T

(0.0171)

Tm.oosm]

|
1.5 2.0 2.5 3.0
fT

Fig. 2—Spectral density of binary rsk system with raised-cosine sigmﬂin%l and
pulse duration 7. K = 1. 2f, is the spacing between two adjacent a prior: chosen
frequencies.
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(b)

* 0.108)

2 4 0.194)

SPECTRAL DENSITY P {f)/T

(0.0481)

0 0.5 1.0 1.5 2.0 25 3.0
T

Fig. 2 (continued).

where R(f)] is given by (116) and

e #7 1]-q(Uy),
— e~ 12%/T _]_‘_ W
M sin 7 f,T
For M = 2, 4, and 8 and various values of £ = f;T, P,(f) is plotted
in Figs. 2, 3, and 4.

A= oLyt o

20 M (119)

7.1.2 Raised-cosine signaling with line spectrum: K =1

The ¥M spectral density P, (f) contains lines if and only if |w-q(U1)]|
=1; that is, if and only if

fuT =1,2,3, - (120)
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(a)
| (0.244}
f4T=0.25
L _faT=0
rd
v
v
/
/ 1.00
rd
L 050
e -~
B ,/0‘75 (0.0199)
= -
= / -
o / (0.0105)
>
=
w
Z 5 ] ]
[=]
-
&
© (b)
Q
w
[-W
w
4 (0.141)
B 4 (0.140)
1 -
1.75
Fd
/
/
(0.0005)
— R
0 05 1.0 1.5 2.0 25 3.0

fT

Fig. 3—Spectral density of quaternary sk system with raised-cosine signaling
and pulse duration 7. K = 1. 2fs is the spacing between two adjacent a priori chosen

frequencies.

1116 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1875



1l(D.164l

(a)

SPECTRAL DENSITY P, (f)/T
o

T 10.00412)
(b)
1
)\ 10.0991)
(0.0969)
1
f(T=2.00
; 1.25 1.55
/ / e
- /
A / e 1.75
/ / 4 -~
/ / Ve
/ / s/
E 4 (0.00981)
[ — |
0.5 1.0 1.5 2.0 25 3.0
T

Fig. 4—Spectral density of octonary rsk system with raised-cosine signaling and
ulse duration T. K = 1.2f; is the spacing between two adjacent a priori chosen

requencies.
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In this case,
fuI'=1,3,5,---, (121)

fiT = 2,4,6, ---. (122)

fi=
fi=

(== T

’

From Section V,
P = ggp WROIE £ (5= "52)
+ LR B+ BY)R(). (123)

b (0.221) (@)

_—1qT=0.125

o

SPECTRAL DENSITY P, (f)/T

0.5

r(g.ssaxm*)

k |1,559xm*ﬂ>T
!

1.5 2.0 2.5 3.0

Fig. 5—Spectral density of binary rsk system with raised-cosine signaling and
pulse duration 27. K = 2.2f, is the spacing between two adjacent a priori chosen
frequencies.
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(b)

¢ (0.182)

— 1410625

_ 0750

v
=}
T

SPECTRAL DENSITY P_{f)/T

0.5

4
(0.0125)

T (2.88X10~7)

!

0 . 2.0 2.5 3.0

T
Fig. 5 (continued).
wheret
B+B = L1,— - 1]1 (124)
M M? =

For M = 2, 4, and 8 and for some integral values of f,T, P,(f) is
also plotted in Tigs. 2, 3, and 4.

§ Note that B 4+ Bt for K = 1 is given in (74).
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20
(a)

$ (2.064%10"2)

- fdT=0.125

/ 4 (2673x102)

SPECTRAL DENSITY P {f//T
o
|

0.250

0.5

3.0

Fig. 6—Spectral density of quaternary rsk system with raised-cosine signaling
and pulse duration 27. K = 2.2f, is the spacing between two adjacent a prior
chosen frequencies.
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(b)
[ ]
(3.206X10™2)

(2.87X1072)
0.750

t4T=0.625 //
s

SPECTRAL DENSITY P (f)/T
o
wn

i
0 0.5 1.0 1.5 2.0 25 3.0

T
Fig. 6 (continued).

7.2 Raised cosine overlapping signal pulses: K — 2
1f a raised-cosine signal pulse just fills up two time slots,

Ay
Aq i
. mfa 1+COST y =T <t=T, fu>0
Ay
gl)] =
0], otherwise, (125)

K = 2, and the spectral density may be calculated from Sections 4.2,
V, or 6.2 according to whether

lwq(Us)]l =1 (126)
or
lw,q(Us)| < 1. (127)
If Al = ]., A;} = —1, A; = 3, Ay = _3, Tty A.\!—l = (ﬂ[ - 1),
Ay = — (M — 1), (116) can be shown to be satisfied if and only if
2f4T is an integer. Further,
fi=0, if T =1,2,3,---, (128)
and
fl = %1 if de = %1 %; %J (129)
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In this case, note that
1 sin QM= f.T)

W q(T)] = 37 = @rfuT) (130)

In this case, the Fsk spectrum contains line components, and the con-
tinuous and line spectra for M = 2 and 4 are shown in Figs. 5 and 6.

If 2f,T is not an integer, the Fsk spectrum does not contain any lines,
and the continuous spectrum given by (97) to (98) for M = 2 and 4
is also plotted in Figs. 5 and 6.

Several observations can be made from Figs. 2 to 6. For both K = 1
and K = 2, discrete spectral lines appear as f;T approaches the limiting
value and the power in the lines is substantial for K = 1 and M = 2.
Also note that power in the line components with K = 2 is smaller
than the power in the lines with K = 1.

For the same value of f3T and K, the principal portion of the spec-
trum of binary Fsk is narrower than that of quaternary rsx. For K = 1,
quaternary FsK spectrum is narrower than that of octonary Fsk spec-
trum for the same value of f,T.

Since lines can appear in the spectrum for a set of values of fuT),
the Fsk spectrum is quite different from the psk spectrum even when
lines are present in the FSK spectrum.

VIIl. SUMMARY AND CONCLUSIONS

Matrix methods are given to express the spectral density of a carrier,
frequency-modulated by a random baseband pulse train, in a concise
and computable form. Arbitrary pulse shapes may be used for M-ary
digital signaling, and they may overlap over a finite number of signal
intervals.

The spectral density is expressed as a compact Hermitian form
suitable for numerical computation by a digital computer. The com-
puter is readily programmed to perform matrix operations directly,
rather than expanding the Hermitian form and evaluating the indi-
vidual terms. In this way, quite complicated cases involving multilevel
signal pulses overlapping several time slots may be treated simply.

Simple conditions in terms of the modulation parameters are given
under which discrete spectral lines are present in the spectrum. A
method is given to evaluate the power in the discrete spectral lines.
The utility of the method is illustrated by giving several examples.

The present results are restricted to independent signal pulses,
except for the very special case of nonoverlapping (K = 1) signal
pulses with line spectra present [see footnote following (72)]. In Ref. 1
we saw that for overlapping signal pulses with K = 2 (i.e., signal
pulses that occupy no more than two time slots), psk with correlated
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signal pulses required the fourth-order statistics of the digital modula-
tion process. FsK is more complicated; the correlated K = 2 case
requires statistics of all orders for the modulation process, except in
the line spectrum case. However, certain special cases with correlated
signal pulses have been handled by extension of the present methods.

APPENDIX
Spectra of Complex and Real FSK Waves

From (130), (131) of Ref. 1, Appendix A, we see that (13) of the
present paper holds true if

TG 1) = 0, (131)

where
Bye(l, 1) = (0t + M) = (erleurnHeO1), (132)

From (3) and (9),

b, (t, 7) = <e’“(°’ exp (j j_:m[ f_ :—” + f_ :T] h.,,(#)d#)>-

(133)

If ¢(0) is independent of the modulation parameters s, (133)
becomes

tunlty ) = 20y (oo (3 £ | [0+ [ i) -

(134)

Thus, if (11) holds, the first factor in (134) = 0, and (131) and, hence,
(13) follow immediately.

If, instead, (10) holds, and imposing in addition the independence of
the s, (134) becomes

I R (J[ [ f;”]h.,‘(p)dn»- (135)

For large enough |¢{| and finite pulse length, the integrals in the ex-
ponent fall into three classes, depending on &:

(7) Both limits on both integrals lie to one side of the signal pulses.
The integrals equal 0 and the corresponding factor in the in-
finite produet equals 1 and, hence, may be ignored.

(#3) The limits on integrals straddle the pulse, and the limits may
consequently be replaced by /7%, where the maximum pulse
length is KT and Lk, Uk are given in (31).

(7%7) The common lower limit, or one or both upper limits, lie within
the pulse.
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Therefore, for large enough |¢| (depending on the pulse length and
on r)

U
B,s(t + T, 7) = Byuslt, 7) <exp (j2 f * h,k(p.)d,u)>;
Lk
t sufficiently positive. (136)

Uk
Dot — T, 7) = Doty 7) <exp (— 2 h,,,(u)dg)>,
K
t sufficiently negative. (137)

Condition (12) may be substituted for condition (10) with only minor
changes in the above discussion, and identical results (136) and (137),
From (44),

exv (i [ o))

awe1= |2 (0 ﬁ:ﬁ’“(")d“) ; (138)

[k
exp (Jf hM(u)d#)
v K

the integrals in the exponents are the areas of the signal pulses. We
consider the two cases of Sections V and VI:

-~

J

(7) All pulse areas are identical (mod 2w); line components are
present in the spectrum.
(#7) The contrary; no line components are present.

In case (7), from (6)
QUk)] = e?”1], —3 < fi =%; (139)

2rf, is the common area (mod 2) of all the signal pulses and 1] is the
unit column vector of (23). It therefore follows that the final factors of
(136) and (137) satisfy the following:

U
<8XD (=i=.’1'2 f " h.k(ﬂ)dﬂ)> = ex#/1  Jine spectrum present. (140)
Lk

U
Kexp (:l:j2 f * h,k(,u.)d,u)>’ <1, line spectrum absent. (141)
L

K

With line spectra absent, (141), (136), and (137) show immediately
that (131) holds for all f., and, hence, condition (10) or (12) guarantees
the result of (13) for independent s; without further restriction.

With line components present, (140), (136), and (137) show that
®,,(t, 7) regarded as a function of ¢ contains a periodic (line) com-
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ponent. Therefore, we write

f])m-'(t; T) = (IJ”*([, T)I + q)vv‘(t} T),;, (142)
where
®,,+(t, 7). = 0, |t] sufficiently large, (143)
and
By (1, )y = eATNIT) i @n (7)eim2m (T, (144)%

Only the line component (144) can possibly contribute to the average
on the left-hand side of (131):

eArIetd, W (1, )
o l‘ 1 A
- ﬂ:Z— o ‘Pn(T) Alinw ﬂ -4
- . sin2x[2f. + (2fi +n)/T1A
LX) lim e B + /T A
The lima .o — 0 if 2f. + (2/i + n)/T = 0 for every integer n, thus
satisfying (131). Hence, condition (10) or (12) and

2(ft ) g n=00,28 (146)

2T 2fcH @) TI ]y

(145)

T T

guarantees the result of (13) for independent si. Since, by (72), the line
spectral components of v(f) oceur at (f; + n)/T, (146) is equivalent to
requiring that the line components of v(f)e”/<* and of v*(t)e”#/e
never coincide. Note that condition (5) of Ref. 1 is the special case of
(146) above for f; = 0.

Finally, (135) to (140) of Ref. 1, Appendix A apply also in the present
case, and establish that (13) is a good approximation if f, is high enough
so that there is no significant overlap between the two terms of (13).
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