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This paper presents models for the behavior of trunk groups containing
short-holding-time faulty trunks. The models, referred to as ordered selec-
tion, two-sided selection, random selection, or quewing selection, are
applicable to selection procedures used by a number of swilching systems.
Each model is analyzed to obtain the fraction of group attempts carried
on @ faulty trunk in the group, and the corresponding fraction of group
attempts that find all trunks busy (blocking or overflow). N umerical
resulls for the basic models are also presented. The resulls indicate that
factors such as the trunk selection procedure or the type of group (high
usage or final) can lead to significant differences in the performance of a
group containing a faulty trunk.

I. INTRODUCTION

A message trunk, the basic connecting link in the switched telephone
network, provides the supervising, signaling, and ringing capabilities
essential to call set-up, as well as the communication path. When a
condition that prevents proper functioning of a message trunk occurs,
and causes a call failure, the trunk is normally released by a switching
system on customer abandonment of the failed attempt and is then
available to fail another call. As a result, a single undetected faulty
trunk can fail a disproportionate fraction of the offered attempts to a
group. Figure 9 shows an illustrative case where one trunk, subse-
quently verified to have been faulty, carried 35 out of 77 attempts
offered to a trunk group during one hour. Because of their potential
service impact, such trunks are of major concern throughout the Bell
System and the object of many preventive maintenance and trouble
detection programs.

This paper presents models and analyses for the behavior of trunk
groups containing short-holding-time trunks. This terminology is used
to emphasize that the faulty trunks of interest are accessible by the
customer, as opposed to faulty trunks that inhibit seizure by a
switching system (false busys) or that result in an automatic retrial on
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another trunk when an abnormal condition is detected. The models
were developed to provide tools for quantifying the potential impact
of short-holding-time trunks, to help determine more effective ways
to use the trouble detection resources in the network. Although the
main emphasis here is on the analytical development of the models,
some numerical results are also presented. The reader primarily
interested in these results can refer directly to Section I1I. (Necessary
terminology and the relationship of the idealized models to switching
systems are summarized in Section 2.1 and Table I, respectively.)
A more detailed outline follows.

The basic models studied, referred to as ordered selection, two-sided
selection, random selection, and queuing selection, and the switching
systems to which they primarily apply, are summarized in Table I.
Justification for the choice of the models is given in Ref. 1. Basic
assumptions are Poisson input, exponential holding times for both
normal- and short-holding-time trunks,” and no retrials because of
blocked or ineffective attempts.! Within this framework, the impact
of a short-holding-time trunk depends on its position in the group and
on the way idle trunks are selected. Impact is quantified in terms of the
fraction ineffective (fraction of offered attempts carried on the short-
holding-time trunk) and the blocking (fraction of offered attempts that
find all trunks busy in the group). These measures enable total ineffec-
tives for both high usage groups (fraction ineffective) and final groups
(fraction ineffective plus blocking) to be determined, as well as permit
the distortion in standard traffic measurements (group usage and
counts of offered and overflow attempts) owing to a short-holding-
time trunk to be assessed. It should be noted that blocking, used here
in a conventional traffic engineering sense, is used by some to refer
to call failures resulting from any cause.

In Section II, prior work is briefly discussed and analysis for the
various models is developed. Terminology common to the models is
summarized in Section 2.1. In Section 2.2, ordered selection is con-
sidered. An exact solution for the fraction ineffective is obtained. The
computations for the special case of one short-holding-time trunk are
summarized in (14) to (18). Blocking is treated in an approximate way,
using the equivalent random method.?

For two-sided selection (Section 2.3), the fraction ineffective is
approximated by using results for ordered selection. The computa-

* Although our main interest is short-holding-time trunks, some results hold for a
short or long holding time on one trunk. In these cases, the trunk is referred to as
abnormal.

T The models, however, can be used with retrials, if these are also treated as Poisson
(this approximation was found to be reasonable). However, the inclusion of retrials
(which are an important factor in considering volume changes) does not substan-
tially change the service impact of a short-holding-time trunk.
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Table | — Summary of models for machine trunk selection

Trunll\(dgglgzlction Description Switching System*
Ordered selection Fixed-order hunt for an idle Step-by-step, Panel, No.
trunk. 4 Crossbar

Two-sided selection | Traffic split into two parts. Each | No. 1 Crosshar, Cross-
part uses a fixed-order hunt for bar Tandem, No. 4

an idle trunk, with the two Crossbar (two-way)
orders reversed.

Random selection Equally likely choice of an idle No. 5 Crossbar
trunk.

Queuing selection Trunk that has been idle the No. 1 Electronic
longest is chosen. switching system

A

Groups are assumed one-way (trunks are selected from only one end of the
group), except for No. 4 Crossbar (two-way), where a two-way group between No. 4
Crosshar systems is assumed. The applications are not always precise; trunk assign-
ments to frames, gradings, and certain subgrouping arrangements can affect the
selection procedure of some systems.

tions summarized in (25) to (37) give good results for the fraction
ineffective. Blocking is also treated in an approximate way.

Random and queuing selection are considered in Section 2.4. It is
shown that, for fraction ineffective and blocking, these are equivalent.
Simple exact solutions involving the Erlang B formula are obtained.
Equation (60) gives the fraction ineffective, and eq. (61) gives the
blocking.

Numerical results are given in Section III. For reasonable values
of normal- to short-holding-time ratios as suggested by field data
(about 5 to 30, depending on the type of fault and type of traffic), the
results confirm that a single short-holding-time trunk can have a
severe impact on service. For example, Fig. 6 shows the impact of one
short-holding-time trunk in a group with random/queuing selection.
It is apparent that the short-holding-time trunk has a significant
impact over a wide range of conditions.

For any group, assuming that a short-holding-time trunk is equally
likely to be in any position,” the various disciplines can be compared.
We find that (see Fig. 8)

(Average

. Average Average
fraction a8 a8
. ; fraction fraction
ineffective . . . .
ineffective ineffective

for = =
random or for for

weuin two-sided ordered
q ng selection selection

| selection

* For random /queuing selection, the position is irrelevant.
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ie., the random/queuing selection tends to minimize the impact of a
short-holding-time trunk. Of course, for a fixed position for a short-
holding-time trunk, either ordered or two-sided selection can have a
significantly lower fraction ineffective than random/queuing (e.g.,
last trunk for ordered selection). These results suggest that, if ex-
pected service improvement is used as a criterion, then, all other
things being equal, there is a higher service payoff in eliminating faults
from trunk groups in older switching systems than in more modern
systems. Conversely, the more modern systems provide better service
for a given level of trunk faults.

Section 3.5 briefly discusses practical limitations to the model
assumptions and gives further consideration to Fig. 9.

Il. ANALYSIS MODELS FOR GROUPS CONTAINING SHORT-HOLDING-TIME
TRUNKS

In this section, the equilibrium behavior of groups containing short-
holding-time trunks is considered. Prior work in this area is limited.
Klimontowicz?® appears to be the first to give the problem attention,
considering random selection of idle trunks, ordered selection, and
cyclic random (sequential with initial starting point chosen randomly).
He develops some analytic results for special cases such as zero holding
time on the abnormal trunk, but relies on simulation for most of his
results. In support of work to detect faulty trunks from operator
trouble reports,* Forys® has considered ordered selection for a trunk
group with mean holding time dependent on trunk position. In this
general case, the fraction of attempts carried on any trunk can be
determined by applying renewal theory, but the results are numeri-
cally inconvenient. (For completeness, these results are included in
Section 2.1.) However, ordered selection with a single abnormal trunk
permits application of a known recursion formula from Ref. 6, to give
the computationally convenient solution developed in Section 2.1.

The random selection model has also been considered in the context
of fault detection from trouble reports.” Except for limiting cases,
analytic solutions were not obtained in Ref. 7; numerical solutions of
the state equations to determine equilibrium occupancy probabilities
were obtained. For a single abnormal trunk in the group, however,
a simple exact solution to the state equations is possible. This is given
in eq. (62). Subsequently, Kaufman® has shown that this solution
can be generalized to an arbitrary number of abnormal trunks. How-
ever, the fraction ineffective and the blocking can no longer be ex-
pressed in terms of the Erlang B formula, which is the case for one
abnormal trunk.
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2.1 Terminology

N Number of trunks in group, considered to be numbered from

1, 2, ---, N. (For ordered selection, search for an idle trunk is
from 1, 2, .-+, N. For two-sided selection, one traffic parcel
searches from 1, 2, - - -, N, and the other from N, N — 1, ..., 1.)

K Number of the short-holding-time trunk.

Arrival rate for the Poisson traffic offered to the group.
Hang-up rate for normal trunks, i.e., the holding-time distribu-
tionis F(z) =1 —e*5, 2 =2 0.

Hang-up rate for short-holding-time trunk.

i

r  Normal- to short-holding-time ratio (&/u).

a Normal offered load to the group (M/g). (For two-sided selec-
tion, @ = a; + as, where a; corresponds to the load offered in
direction 1, - - -, N and a. the load offered in direction N, N — 1,
S 1),

P TFraction ineffective (probability that an offered attempt is
carried on the short-holding-time trunk).

B Blocking* (probability that an offered attempt finds all trunks
busy in the group).

2.2 Analysis for ordered selectiont

In this seetion, we derive results used to determine the effects of
an abnormal trunk in a trunk group with an ordered selection of
idle trunks. We first derive results for the case where each trunk has
a different holding time. We then specialize our results to the case of
one abnormal trunk because convenient computational algorithms
are available for this case, and because it is the case of most interest.

Of main interest is the proportion of offered calls serviced by each
trunk (in equilibrium). Denote these by Px, K = 1,2, ---, N. The
Pks may be obtained by first calculating the stationary occupany
probabilities. If px is the stationary occupancy probability of the
Kth trunk, then, using (for example) Little’s Law,® one can show that

Pg = urpx/A, (1)

where ux is the hang-up rate for trunk K.

The method used to compute the pgs is conceptually straightfor-
ward. The interarrival time distribution funetion of the traffic pre-
sented to the Kth trunk is determined, and known results for a single
trunk with renewal inputs are used to find pk.

* The term blocking is used without reference to whether a group is a high usage
or final. Blocked attempts for finals are also ineffective attempts.
T This section reproduces and extends some of the results in Ref. 5.
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Thus, if the interarrival distribution function of the traffic into the
Kth trunk is Ax(f), and

ax(s) = j " erdAx(t), )
ax = f “dA g (1), (3)
PE = GKI”K; (4)

then, using the results in Ref. 10, p. 93,
prx = pr[1 — ar(ux)]. (5)
Hence, the proportion of calls carried by the Kth trunk is
Px = [1 — ax(ux)]/axh. (6)

Following the same argument as in Ref. 10, p. 37, we can obtain

Ag(t) = ﬁ‘ {exp (— ur—1z) + [1 — exp (px17) JAk(t — ) }dA g1 (2).
)

The idea behind the argument is to consider that an overflow from
the (K — 1)st trunk occurred at time 0. In order for the next overflow
to oceur in less than ¢, we have two cases: an overflow occurs from the
(K — 2)nd trunk at time z, 0 < z < ¢ and the (K — 1)st trunk is
busy, or the (K — 1)st trunk was free at time z, and so the next over-
flow from the (K — 1)st trunk must come in less than ¢ — z units of
time.
Since the input to the entire trunk group is Poisson,

A1) =1 — e (8)
and

ar(s) = — 5 )

Taking the Laplace-Stieltjes transform of (7), we obtain

_ ax—1(s + pr—1) :
ak(s) = 1 —ag_1(8) + ag_1(s + pr-1) 10

Equation (10) can be used to obtain ax(ug) for computing Px
via (6). Unfortunately, this computation is quite cumbersome if K
is large.
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To evaluate ax, we make use of the fact that

ax = — % ax(s) y (11)
After some algebra,
1
ag = ————— GKk—1 (12)
aKul(nu-K—l)
and, hence,
ax ! (13)

T N (pr)as(uz) - ag-1(pr-1)

where a;(u;) can be obtained from (10). Equations (6) and (13) com-
bine to give the obvious result,
1 — ar(p1) K=1
Pr = Jasu) - analur ) (1 — axur)),  K>1,

i.e., the probability that an offered attempt is carried on trunk K is the
probability it is blocked on the first K — 1 trunks times the probability
it is carried on trunk K, given that it is offered to trunk K. The prob-
ability that a call is blocked on the first K — 1 trunk is simply the
product of the individual call congestions, i.e., Bx = Br_iax(ux),
where Bk is the blocking probability on K trunks, with B, = 1.

In the special case of pj = p, j=1,2, -+, K — 1 and px = f, we
obtain from (10) and (13)

1+ j’g: (K;l))\_js(8+“)...(s+ (j — Du)

CEK(S) = K K
14+ _):1 (J.)?\*J'S(s+#)-~(s+ (7 — Du)
=
ax = 1/AB(K — 1, a). (15)
Here B(n, a) is the Erlang B formula for n trunks offered load a,
(@ = Np).

In this case, a simple recursion exists for ax(s). From Ref. 6 we can
obtain

aii(e) = SHAEU =D (ko for jS K. (6)

There is also a simple recursion for B(j, a):

B~ (j,a) =1+ m ) (17)

with
B(0,a) = 1. (18)
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Use of recursion (16) with s = g together with (17) makes the cal-
culation of the fraction ineffective Px = B(K — 1, a)[1 — ax(g)]
straightforward.

The blocking B (the probability of a call finding all N trunks oc-
cupied) can be obtained by calculating the load overflowing the last
trunk. Thus,

B = aN(,uN)/)\aN. (19)

Even in the case where there is only one abnormal trunk in the
group, this calculation of B can be quite tedious. This is especially
true in the case where a large number of trunks follow the abnormal
trunk in the ordering. Instead of (19), we shall approximately calcu-
late B for the special case u; = u, j = K.

We consider offering the overflow from trunk K to a hypothetical
infinite trunk group with normal holding times. The mean m and
variance » of the number of occupied trunks in the infinite group can
be calculated from (this follows from Ch. 3 of Ref. 11, or p. 36 of
Ref. 10)

m = 1/pag1 (20)

Using (13) and (10}, we obtain
m = ag(f)/exn = aB(K — 1, a)ax () (22)
v=m[1—m+i%]' (23)

Recursions (16) (used with s = g, &, & + %) and (17) again make the
calculation of m, v straightforward.

We now apply the equivalent random method.? That is, we approxi-
mate the overflow from trunk K by the overflow from an ‘“‘equivalent”
trunk group having normal trunk holding times, and which produces
the same m, v on a hypothetical infinite trunk group. To determine
blocking, we proceed along the same lines as in the equivalent random
method, giving

B%?\.;B(N-—K+N,,);J)/?\, (24)

where N, is the number of trunks in the equivalent group and A, is
the attempt rate for the traffic offered to the equivalent group. (This
approximation is exact where one trunk follows trunk K. In other

cases, small errors can be expected.)
Although the results in this section have assumed that the input
stream is Poisson, it is a simple matter to extend them to handle
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peaked* (overflow) traffic. In particular, one can use the equivalent
random method to model the peaked traffic as the overflow from a
single trunk group offered Poisson traffic, append this “primary”
group to the trunk group of interest, and assume an ordered hunt
selection for the extended trunk group. The hunting is done first over
the primary group. Thus, if the Kth trunk were faulty in the trunk
group of interest and there were N, trunks in the primary group
modeling the peaked traffic, the faulty trunk will now be in the
(N, 4+ K)th position.! The proportion of calls carried by the faulty
trunk is determined by solving the extended trunk group problem and
scaling the resulting proportion up by the ratio of the mean traffic
intensity of the input to the extended group to the mean traffic in-
tensity to the original trunk group.

This completes our treatment of ordered selection. Numerical results
are given in Section ITI.

2.3 Analysis for two-sided selection

In this section, two-sided selection is considered. We derive approxi-
mations for the fraction ineffective P and for the blocking B.

First, consider the extreme case with trunk K having zero holding
time. The fraction ineffective seen by each trafficis P, = B(K — 1, ay),
P, = B(N — K, a:), where B(-,-) is the Erlang B formula. This
case motivates the approximation to be deseribed which, in its simplest
form, ignores interaction between the separated subgroups of good
trunks, and in more refined form accounts for some interaction.* This
approximation, which is quite accurate, was used because a computa-
tionally feasible solution to the state equations proved difficult.

The notation to be used in this section is indicated in Fig. 1: m;, v;
are the mean and variance of the traffic offered to trunk K, and
¢ij, vi; are the mean and variance of the “crossover traffic.” To use the
convenient recursions developed in the preceding section, only the
mean of the crossover traffic is used. This has a negligible effect on
the computation for P, but can have a somewhat larger effect on the
computation for B, because the peaked crossover traffiecs would ex-
perience a higher blocking than the Poisson traffics. However, their
mean is normally small compared to the Poisson traffic, which reduces
the effect of their peakedness somewhat. In particular, for a; = a.

* The peakedness factor z(u) of a traffic stream is the equilibrium variance-to-mean
ratio of busy servers when this traffic is offered to an infinite group of exponential
ser;?iars with service rate x. The peakedness factor is larger than one for overflow
traffie.

' Since nonintegral N, can occur in the equivalent random method, interpolation
may be necessary.

* The only real difference is that the refined form requires iteration.
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Fig. 1—Terminology for two-sided selection.

(the condition for which the approximation is intended) we usually
have c12 < @3, €21 << a;. When this is not the case, such as a large
trunk group with the short-holding-time trunk in the first position,
so that ¢;» may be of the same magnitude as a,, then ¢;» has a low
peakedness.

To describe the computations, assume that the c¢;; are given and
independent of the a;. Thus, consider a load a; = a; + ¢;: (treated as
Poisson) offered to a group of n; trunks with hang-up rate u, overflow-
ing to a trunk with hang-up rate &. From the results in Section 2.1,
the mean and variance of the overflow (in terms of hang-up rate i)
can be determined. First, we define \; = a;/u and solve the recursion

[see (16)]

i+ A j— 1 .
aj_l _ K + M+ ’(J )F- _ (] _ 1) E,a,;;, (25)
Ag Ai
given .
= — (26)
B+ N
for j=1,2, -+, n; + 1. The parameter & = a1 is the call con-

gestion on a (fictitious) trunk with hang-up rate g. The mean and
variance of the offered load to this trunk is

, 1 ., .
my = P aB(n; ay) (27)

. 1 ,
o= mi( 25— mi) (28)

We must now get the mean and variance of the overflow traffic corre-
sponding to a;, i.e., for the traffic offered to trunk K. Since ¢;; is
treated as Poisson, clearly

m; = %_aiB (ni, ay). (29)
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To get the variance, we use a result from Ref. 12 on the peakedness
of split overflow, which gives

‘v—i_=1+£"(1—_1ﬁ_4nu—1) (30)
Unless a; = a, this gives a value less than v;/m;. The total mean and
variance of the offered traffic to trunk K is then

m = m; + ms (31)
v = v + va. (32)

To compute the call congestion for trunk K, we assume (as in the
equivalent random approach) that m, v are the mean and variance of
a renewal input to trunk K. If a(-) represents the Laplace-Stieljes
transform of the interarrival distribution for this renewal process, then
the call congestion is given by & = a(@). But for the renewal model,

v=m (#_ — m) (33)
1 —a

._m+4z— 1 _
G=— (z = »/m). (34)
This results in a fraction ineffective for the total offered traffic to the

group given by

and, hence,

rm 1
P—al—i—ag'm—l—z (35)

and an approximation for blocking,

o[l — B, a)] 4 a[1 — By, a)] .
ay + as (36)

B=1-P—

Finally, we require that the crossover traffics assumed be consistent
with the mean call congestion on trunk K,

m—+ z — l
0 m 4+ 2 (37)

This condition can be met by a few simple iteration steps, beginning
with ¢;; = 0, and using (37) to update the c;;.

When COHdlthﬂ (37) is satisfied, eqs. (35) and (36) give the basic
results for the two-sided selection procedure. It should be noted that,
in addition to the treatment of each crossover traffic as Poisson and
independent of the Poisson traffic offered to the same subgroup of good
trunks, a second (minor) approximation is implicit in the computa-
tions. This is the use of the average call congestion in (37) to update

ci; = a;B(n; a
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each crossover traffic. It is a straightforward matter to determine a
separate call congestion for each traffic offered to trunk K, but the
approximation is sufficiently accurate without this refinement. Nu-
merical results using the approximations and comparisons with exact
solutions (for small problems) are presented in Section III.

2.4 Analysis for queuing and random selection

To derive results for the case where the idle trunks form a queue,
we define a two-dimensional state that represents the number of idle
trunks in the queue together with the position of the abnormal trunk
in the queue. We then derive equations for the equilibrium proba-
bilities of each state. One can show that these probabilities exist and
are unique.” The equilibrium probability that the abnormal trunk is
busy, denoted by $, is then simply a sum for states in which the ab-
normal trunk is busy. As indicated in Section 2.2, it is easy to show
that the mean number of requests serviced by the abnormal trunk in
a unit of time is given by

p (38)
and, hence, the proportion of requests serviced by the abnormal trunk is
P = gp/\ = rp/a. (39)

In the course of deriving our results, we show that it is equally
likely that the abnormal trunk occupies any position in the queue of
idle trunks. This, however, is equivalent to a random selection of idle
trunks as far as the fraction ineffective and blocking are concerned.
Hence, the results derived for P, B also apply to the random selection
model. Strictly speaking, the two selection procedures are not equiva-
lent, of course. For example, with queuing selection, an abnormal
trunk would not serve two successive attempts if other trunks were
idle, but this is a possibility with random selection. Under other as-
sumptions, e.g., dependent retrials or non-Poisson input, these differ-
ences become important.

To proceed with the derivation, define

E;; = the event that there are j idle trunks in the queue and that
the abnormal trunk is in the 7th position in the queue.
P,‘j = Prob {EIJ}
We let 7 = 0 denote that the abnormal trunk is occupied. Thus,
_ N—1
p= Z Py;. (40)

j=0

*We have a continuous-time Markov process, with a well-behaved embedded
Markov chain (see Ref. 13).
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The following equations can be readily derived relating the Pyj’s:
[a+ (N — DpJPew = MPo + APy, (41)

[+ (N — 73— 1Dp+ AP = AP+ (N — JuPoja + APy i
for 1=j<N-—-1, (42)

(& + MPox—1 = APy + uPo,n_2 (43)

[N — e+ AX]Py= (N —j+ DuPi1+ AP
for 0<i1< j=N, (44

[(N — ju+ N]Pj; = @Poja + AP,
for 0< j =N, (45)

and, trivially,
Pj=0 for ¢>j, or j>N;
Py=0 for j=N.

These equations appear quite formidable because of the apparent lack
of simple structure. A brute force algebraic approach seems unfruitful,
as does a generating function approach.

Instead, we make the conjecture that

P1j=P2j="'=ij forallgél (46)

We should note that (46) is equivalent to assuming that the idle
trunk is selected at random. This is true because P;; represents the
probability of seeing the state (7, j) at a random instant in equilibrium
and Poisson arrivals see the same distribution.

We justify our conjecture by using (46) in (41) to (45) together
with the fact that the probabilities must add to 1 and showing that
the resulting equations have a simple solution. This solution can be
substituted into the original equations to show that we indeed have
the correct solution. However, since there exists a unique equilibrium
solution to these equations and we have, in effect, solved them by
adding additional constraints, the proof is complete without this step.

Proceeding in the manner described, we first use (46) in (41) to (45)
and obtain the following equations:

[i.'i + (N — 1)#]Pnn = APy + NP, (47)

[a+ (N —j—Du+ NPy = NPojs1+ (N — DePojr+ APj1in
for 1Sj<N—1, (48)

[+ APoy—1 = \Pxy + pPon_s, (49)

[N — P+ AP = (N — j+ DuPiaja + APjin
for 0< j =N, (50)
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and
C(N — pu 4+ A]Pj; = @Po 1 + MPj1in1
for 0 < j=N. (51)

Putting j = N in eq. (50), recalling that Py 1,x1 = 0, we get
A
Py_ano1= ;‘PNN = aPuyn. (52)

Repeatedly reducing j by 1 and solving for P; 1 ;1 in terms of Pyw,

we get
aN—i .
P = =7 Pyny, j=1-N. (53)

Using (53) in (51) results in
aijfl

m, Pruy. (54)

P0j=

=1

Finally, from (47) we get
aNfl

A
AV = 1)1 Pun. (55)

Pnn=

One can check that expressions (53), (54), and (55) satisfy eqs. (48)

and (49), which proves the conjecture.
We compute Pyy from the fact that the sum of the probabilities

must be 1. This yields

1] " i IN—G |
PNN=N[§T!§+---+%( NJ+—]{,‘—;)+---+1]- (56)

Thus,
N—-1 a’
~ N-1 ua jgn }’ 7
P=J_§0PGJ ~;\v§a_J(N_l+_Jﬁ) (5)
- i=0 ] N i
and
N=1 gi
_ > =
_TP _ /=0 J!
P= Nf:a_f(N—j_'___L)’ (58)
_,=0_]! N rN
recalling that » = g/u.
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Equation (58) can be rewritten in terms of Erlang’s loss function as

N—1 a’
X
P = i=0_J
vig+(i-1) Lo
= r = = D!
N—-1 gi
_ Jgﬂ 3—'
- N—1 i NaV¥ 1 N=1 qgi
NE T (i )en s

Thus,

P = (59)

a4+ Nr —ar[1 —B(N —1,a)]

An alternative form of (59) can be obtained via the standard recur-
sion for Erlang B [see (17)], giving

r[1 — B(N, a)]

P = =G —Dal - BNV, 9] (60)
To get an expression for the blocking B, notice that
B=Pu=j (Nai_ll) = \_[(A%)E;I(A/f(f ;_J:)Jr) )]
LS g\ N rN
or
B NB(N, a) (61)

= Nr— (r — Da[l — B(N,a)]

Although (61) and (62) also apply to the random model, it should be
noted that the equivalence between random and queuing selection
extends to the equilibrium distribution for redefined states (3, 7,
where 1 is the number of good trunks occupied and j is 1 if the abnormal
trunk is occupied, 0 otherwise. In fact, it is straightforward to show
from (53) to (55) that the redefined probabilities must satisfy

P = ‘E%“,i) pm{
ai-!—l” 1::0111"':1\7_11 (62)
Pu= frgPo |

!N

which solve the somewhat simpler equations for the random model
(these equations are given in Ref. 4).
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Ill. NUMERICAL RESULTS

This section presents selected numerical results obtained with the
solution procedures of Section II.

3.1 Ordered selection (Figs. 2 to 5)

Figure 2 gives the fraction ineffective for » = 5 and the blocking* for
r=5, N =20. Even for this relatively small value of r, the short-holding-
time trunk has a significant impact, which decreases as the position
in the order of selection increases. For large values of offered load, the
dependence of fraction ineffective on K (position of the short-holding-
time trunk) is decreased. In fact, it follows from Little’s Law® that,
for all K (and all selection procedures), P = r/a, with the bound
approached as the time congestion on the short-holding-time trunk
approaches 1.0; i.e., for very large a. For a = 25, K = 1, we note that
P =017, r/a = 0.2.

The results for fraction ineffective do not depend on the total
number of trunks ¥ = K. For blocking, N is important. For N = 20,
r = 5, blocking is decreased from Erlang B blocking by about 1 in the
(design) range for 20 to 30 percent overflow, with the decrease rela-
tively insensitive to K. Blocking results are approximate, with errors
resulting only from the application of the equivalent random method.
In cases where exact solutions were compared to the approximate,
the agreement was good. The decreased overflow resulting from a
short-holding-time trunk can contribute substantial errors in estima-
tion procedures for which overflow enters. Usage measurements are
also affected by a short-holding-time trunk, with mean carried usage
given by aP/r + a(l — P — B).

Figure 3, for r = 15, is similar to Fig. 2, but with larger impacts
and more spread between the curves. The ratio r = 15 is typical for a
short-holding-time trunk and shows that P > 0.4 can easily occur,
even for relatively large loads. The limiting ratio r = « (zero-holding-
time trunk) would result in P = B(K — 1, a), and B® = 0, which
are substantially different from the r = 15 results. For example,
P2 =1for K = 1.

3.2 Two-sided selection (Figs. 4 and 5)

Figure 4 gives the behavior for N = 5, r = 15, including a com-
parison with the exact solution obtained by solving the state equations
for the system. The approximation for P displays essentially no error
for low blocking. This is to be expected for conditions under which the

* Recall that blocking refers to the fraction of attempts that find all trunks busy in
the group, whether or not it is a final or high-usage group.
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OFFERED LOAD IN ERLANGS

Fig. 2—Behavior of ordered selection for r = 5, N = 20.

offered load to trunk K comes from only one side (e.g., K = 1, low
offered load), since the approximation for P becomes exact. For other
low blocking conditions (such as K = 3, low offered load), no dis-
cernible error indicates that modeling the traffics offered to trunk K
as a renewal stream introduces essentially no error in the computed
call congestion for trunk K. As the crossover traffics increase, and,
hence, there is interaction between the separated subgroups of good
trunks, the approximation shows some error. The error is well-behaved,
and increases to only about 2 to 3 percent. For larger groups, the error
is generally less and is not shown on the figures.
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Fig. 3—Behavior of ordered selection for r = 15, N = 20.

Errors in the blocking are larger. Since peakedness is ignored in
determinining the crossover traffics and the carried load on the good
trunks, this is to be expected. However, the absolute error does not
increase significantly with offered load. As the change from Erlang B
blocking is the important factor in applications, this error behavior is
acceptable. As for ordered selection, the blocking is relatively insensi-
tive to K.

The interesting behavior for K = 1 is apparently due to the size
of the group. For K = 1, N = 2, qualitatively, one would expect that
the fraction ineffective seen by load a; monotonically decreases from
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Fig. 4—Behavior of two-sided selection for N = 5, » = 15.

1.0, while for a, it initially increases from 0, as the offered load in-
creases. The exact solution for N = 5 confirmed this behavior. How-
ever, the fraction ineffective seen by load a: increases fast enough to
create an increase in P, before its ultimate decrease. As a result,
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P =2 0.5 in the relatively wide range 0 to 10 erlangs. I'or larger values
of N, P was found to be monotonically decreasing for K = 1. On the
other hand, for N = 2, P can easily be shown to initially increase.
Since a1 = as, for N = 2, two-sided and random selection are equiva-
lent, and (59) applies. Thus, the conditions that produce the qualita-
tive behavior of Fig. 4 are difficult to predict.

Figure 5 illustrates the behavior for » = 15, N = 20. Compared to
ordered selection, the impact is less, and the dependence on K less
pronounced, especially for blocking. This is attributable to the diversity
introduced into the selection procedure by two-sided selection. How-
ever, a substantial overall impact is still evident. For N = 20, even
for the most favorable case K = 10, for a design overflow of 20 percent,
P ~ 0.2, and overflow is reduced to 5 to 6 percent.

The limiting case for r = = gives
_ B(K —1,a/2) + B(N — K, a/2)

2

P:a

For N = 20, K = 1, this gives a value of 0.5 over the range 0 to 25
erlangs, compared to the value of P = 0.29 for a = 25, r = 15. For
N =20, K =10, P* = 0.35 at a = 25, or about 50 percent higher
than the value for r = 15.

3.3 Random/queuing selection (Figs. 6 and 7)

In each case in Figs. 6 and 7, P begins at 1/N, then increases over
the range of offered loads shown. The 1/N initial behavior is intuitively
obvious for random selection. Queuing selection, on the other hand,
guarantees that, when a trunk becomes idle, trunks already idle must
serve calls before it can be picked for service. For very low offered
loads, a short-holding-time trunk essentially serves every Nth call
to give the 1/N initial behavior.

Analysis of eq. (59) indicates that P can have at most one extremum.
For » > 1, this occurs at the unique root of the equation

2 faf1 - BV ~ 1,00} = ;-
Thus, random/queuing selection never displays the complex behavior
observed in Fig. 4 for two-sided selection. Because the extremum occurs
for relatively large values of a, a short-holding-time trunk has a
larger impact in a high usage group than in a final group of the same
size. For example, for ten trunks, 4.5 erlangs is a typical offered load
for a final, and 9.5 erlangs for a high usage group. From Fig. 6, P = 0.17
at @ = 4.5 erlangs, whereas P = 0.28 at a = 9.5 erlangs, i.e., the
relative impact is larger. The time congestion aP/» for the short-holding-
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Tig. 5—Behavior of two-sided selection for N = 20, r = 15.

time trunk is 0.052 at @ = 4.5 erlangs, and 0.175 at a = 9.5 erlangs,
i.e., the absolute impact of the short-holding-time trunk is over three
times as much for the high-usage application. In terms of the expected
time congestion with a short-holding-time trunk equally likely in any
position, this general behavior also holds for two-sided and ordered
selection. This follows from the increase in average fraction ineffective
as the offered load inereases.
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Fig. 6—Behavior of random selection for r = 15, N = 5, 10, 20,
Figure 7 displays the behavior of random/queuing selection as r

varies. In all cases, P is close to its maximum over a fairly wide range.
The limiting case r = « gives [see (59)]

1
N—a[l-BWN —1,a)]

For N = 20, a = 25 erlangs, P* = 0.36, compared to the r = 20

Pe =
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Fig. 7—Behavior of random selection for N = 20, r = 5, 10, 15, 20.

value from Fig. 7 of P = 0.23. Since P is no more difficult to compute
than P®, the upper bound P= is of limited use in this case.

3.4 Comparison of selection procedures

To compare selection procedures, the measure taken is the expected
value of P, denoted by P, given that a short-holding-time trunk
is equally likely in any position. Computationally, it was found that

Random
plor <p Two—s.ided < B Order_ed
queuing | = selection selection | ’
selection
with equality occurring only at @ = 0. Figure 8 for N = 20, r = 15 dis-

plays typical behavior. The differences are substantial. It is likely that
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Fig. 8—Comparison of selection procedures for short-holding-time trunk equally
likely in any position (¥ = 20, r = 15).

any improvement over the random/queuing behavior would require
a selection procedure based on more information. For example,
choosing the idle trunk whose last holding time was longest would
further reduce the impact of a short-holding-time trunk.

The expected blocking does not show much difference from one selec-
tion procedure to another, but all disciplines show a substantial reduc-
tion from the Erlang B results.

3.5 Validation remarks

The basic traffic assumptions of the model concern holding times
and the arrival process. For normal trunk holding times (which result
from a mix of conversations, busys, don’t answers), the exponential
assumption is reasonable. For short-holding-time trunks, this assump-
tion may be less valid. For example, trunks resulting in immediate
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reorder returned to the customer would not likely display the expo-
nential behavior. However, since the Erlang B formula holds for
arbitrary holding-time distributions, it is reasonable to expect that the
results should not be too sensitive to the form of the distribution.

The Poisson assumption for the arrival process can be invalidated
due to time variations, to peakedness (for groups receiving overflow
traffic), or to retrial behavior. For ordered selection with K =1,
peakedness clearly reduces the impact of a short-holding-time trunk.
This behavior may be reversed for higher values of K since peakedness
increases the mean attempt rate to trunk K. For example, for r = =,
K = 2, P is increased. However, several peaked traffic computations
for r = 15 give values of the fraction ineffective that are very close
to the Poisson value.

Even if the Poisson assumption is valid with all trunks good, it can
be violated in the presence of a short-holding-time trunk. The short
time between a retrial and the failure that initiated it gives the retrial
a high probability of meeting the same conditions as the initial failure.
For two-sided, ordered, and random selection, this could increase the
impact of the short-holding trunk over what would be expected from
a Poisson assumption.

The model is also susceptible to variations from the idealized selec-
tion procedures. This holds particularly for applications to older
systems where grading and multipling arrangements can lead to many
different selection procedures. It also holds for applications to 5XB
systems, where any irregularity in the distribution of trunks on the
frames can distort the selection procedure from the idealized random
selection model. In fact, individual circuit usage results would seem to
indicate that significant discrepancies from (cyclic) random selection
may be quite common in 5XB. Thus, for any specific application,
suitability of the model would have to be determined.

Figure 9 shows data obtained by special measurements from a Cross-
bar Tandem group containing a short-holding-time trunk. The peg
count and usage measurements during the study hour indicate that
trunk 2 had a short holding time relative to other trunks in the
group, and a failure condition was subsequently verified. Thus, all
35 attempts on the trunk are assumed to have failed. The large im-
balance in the offered attempts from either side of the group could be
statistical, or it could be due to irregularities in incoming trunk
assignment to frames (which determines the order of selection). It is
more likely due to retrials. Thus, the reasonable assumption that
a; = a; can be violated in some situations.

Since the measured hour was not the busy hour, the left side of the
group can be treated like ordered selection. The estimate for a mean
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STUDY RESULTS—TANDEM COMPLETING FINAL TRUNK GROUP
JUNE 21 1972, 3-4 PM

77 ATTEMPTS
49 ATTEMPTS I I 28 ATTEMPTS

SELECTION TWO-SIDED HUNT —— | GE
TRUNK NUMBER 5 as e 23| 24 |25 | 26 | 27 | 28
NUMBER OF ATTEMPTS 0 L 0 3|3|5|8|(89

“~FAULTY TRUNK

HOLDING TIME ESTIMATES FROM INDIVIDUAL CIRCUIT
USAGE AND PEG COUNT DATA

AVERAGE NORMAL HOLDING TIME = 246 s
AVERAGE HOLDING TIME FOR TRUNK 2 = 19s

Fig. 9—Example of a short-holding-time trunk.

attempt rate for a Poisson offered traffic is A = 49 attempts/hour. For
the offered load @ in erlangs, a normal holding time is associated with
each attempt, to give d = 3.3 erlangs. The ratio of holding times is
r = 13. For these values, the ordered selection model with K = 2
predicts P = 0.62. Thus, the realized value of ineffectives (35) is close
to the average value (30.5) predicted from the same data. The dis-
crepancy could be statistical, or to modeling the stream as Poisson,
which smoothes out the retrial stream.

The preceding very limited comparison is not a validation. Because
of the various factors noted, a comprehensive validation of the models
is difficult. Since the models are not intended for design purposes, but
only to estimate impact of short-holding-time trunks, such validation

has not been attempted.

IV. CONCLUSIONS

This paper has considered analytical models for groups containing
short-holding-time trunks. The models confirm that these trunks can
have a substantial impact on customer service. Although traffic and
system characteristics can differ from those of the model, it is felt that
the models are adequate for estimation purposes.

The numerical results indicate that the type of system and type of
group (high usage or final) lead to significant differences in performance
in the presence of a short-holding-time trunk. These models and results
are directly useful in devising optimum strategies for deploying main-
tenance resources to minimize the service impact of short-holding-time

trunks.
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