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Closed-form expressions are obtained for the impulse response of
graded-index fibers whose relative permaittivity s a homogeneous function
of the two transverse coordinales x, y, and for the impulse width in graded-
index fibers whose profile departs slightly, bul otherwise arbitrarily, from
a square law. The inhomogeneous dispersion of the material is taken into
account. Pulse broadening can be reduced by a factor of 12 from the value
obtained for square-law fibers. Simple expressions are found for the
acceplance of highly oversized fibers.

. INTRODUCTION

Light-emitting diodes supply their optical power in a time and space
incoherent form. The line width is typically of the order of 200 A,
and the radiation is approximately lambertian with an emissive area
of the order of 50 X 50 um. Time and space incoherent optical pulses
can be transmitted by oversized optical fibers. However, optical pulses
propagating in such fibers tend to broaden as they travel. This is in
part due to the nonzero line width of the source and the dispersion
(d*k/dw?) of the fiber material. The other cause of pulse broadening
is associated with the fact that the time of flight of a pulse along a
ray depends on the ray trajectory. Pulses traveling along axial rays
usually go faster than pulses traveling along rays of large amplitude.
Because both types of rays are excited by spatially incoherent sources,
the difference in axial group velocity causes a broadening of the input
pulse. In the main text of this paper, we assume that the carrier is
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monochromatic and that the spatial distribution of the rays is time-
invariant. This is the case, for instance, when the source is an injection
laser that oscillates simultaneously on many transverse modes. The
difference in frequency between these various transverse modes can
usually be neglected.

It was first pointed out by Kompfner' that pulse broadening in
step-index fibers could be drastically reduced by introducing ray
equalizers at various locations along the fiber. The role of ray equalizers
is to exchange fast and slow rays. A possible implementation of this
idea is shown in Fig. 1 together with the calculated impulse response
for uncorrected and corrected step-index fibers.? Because natural
mode mixing appears to be very small in the most recently made
optical fibers, ray converters may be practical. They have not been
experimented with, however, and we shall therefore restrict ourselves
to uniform, uncorrected fibers.

Important results concerning the broadening of spatially incoherent
optical pulses in graded-index fibers have already been reported. In
Refs. 3 to 9, the difference in group velocity between the various
modes that can propagate in step-index and graded-index fibers has
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Fig. 1—Ray converter that minimizes pulse broadening in step-index fibers. (a)
Angular spread of a step-index fiber. (b) Optical arrangement with confocal lenses.
The first and last lenses are unconventional. (¢) Calculated impulse response for
uncorrected [P (f) = 1 within the pulse] and corrected step-index fibers (from Ref. 2).
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been evaluated. The impulse response is obtained by adding the con-
tribution of each mode, under the assumption that all modes are
equally excited by the source. The ealculation of the group velocities
can be simplified with the help of the W.IX.B. approximation (see,
in particular, Ref. 4).

Let us now deseribe an alternative ray-optics method. The time of
flight of a pulse along a ray is first evaluated according to the laws of
geometrical opties. A ray can be defined by the point x, y where it
intersects the input plane of the fiber (plane z = 0), and by the
transverse components, k., &k, of the wave vector k. k is, by definition,
directed along the ray and has magnitude (2w/A¢)n, where Ao denotes
the free-space wavelength and n the refractive index of the fiber
material, usually a function of x and y. Thus, the time of flight of a
pulse (at a fixed carrier frequency) is, in general, a function of the
four parameters x, y, kz, k,. These four parameters can be considered
the components of a four-vector p, in the so-called phase space. The
impulse response is subsequently obtained by assuming that the
density of rays is equal to (27)2 in the phase space. In other words, we
assume that the number of rays whose points of intersection with
the input plane are between x, x 4+ dr and y, y + dy, and whose
direction is defined by values of k., k, between k., k. + dk. and k,,
k, + dk,, is equal to dxdy dk.dk,/(27)*. The total power transmitted
is the aceeptance (or number of modes) of the fiber. This is the power
transmitted for a source of luminance unity (see, for example, Ref. 10).

The approach used in Refs. 11 to 13 is based on the conventional
ray equations. We have shown in Refs. 14 and 15 that it brings a
considerable simplification to write the ray equations in the Hamil-
tonian form. The relationship between the ray-opties method and the
W.I{.B. method becomes more obvious with the Hamiltonian form.
It can be shown that the W.IX.B. method and the ray-optics method
are essentially identical "

An important difference, however, should be noted. In the W.IKX.B.
method, modes whose axial wave number k. is less than the free wave
number k, in the surrounding medium (or cladding) are assumed to
leak out so rapidly that they can be ignored. On that basis, the aceep-
tance of a step-index round fiber with radius a, for example, is found
to be

Nt = (k2 — k})a/2 = V?/2.

The radiation loss of leaky modes can be small in the case of highly
oversized fibers, however, as was pointed out by Snyder.!® The ray-
optics condition is distinetly different: Only those rays are ignored
whose tangential component of the wave vector at the core-cladding
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interface [ (k2 + k%)}, where &, denotes the azimuthal wave number]
is less than the free wave number k, in the surrounding medium.
According to ray optics, the acceptance of a step-index fiber is N2 = V2
instead of ¥2/2. The influence of the slightly leaky rays on the im-
pulse response of fibers has not been observed. This is perhaps because
high-order modes are more sensitive to irregularities than low-order
modes. Slightly leaky rays may become important when highly over-
sized fibers of good quality are fabricated. This is even more so for
graded-index (e.g., near-square-law) fibers, because the field decays
exponentially beyond the caustic line, which bounds the ray
trajectories.

In most previous works, the effect of inhomogeneous dispersion* on
quasi-monochromatic pulse broadening was neglected. This effect,
however, was taken into account for square-law and linear-law graded-
index fibers in Appendix B of Ref. 14, and by Gambling and Matsuhara?®
for cireularly symmetric modes in square-law fibers perturbed by an
r* term. The result for arbitrary small deviations from square-law was
given by Arnaud in Ref. 15. Olshansky and Ieck® first pointed out
that inhomogeneous dispersion is of great practical importance, at
least for fibers doped with TiO.. Dispersion for the promising GeO:
doped fibers is not known at the time of this writing. The variation of
the loss of that material as a function of doping is likewise unknown.
If we consider further that the sources used in pulse broadening experi-
ments are not fully characterized in terms of their distribution in
phase space, it appears that a precise comparison between theory and
experiment is difficult at the moment. We shall therefore restrict our-
selves to the theoretical evaluation of pulse broadening.

Il. GENERAL RESULTS

The derivations of the general results given in this section appear in
Appendix A. They follow in a straightforward manner from the Hamil-
ton equations for pulse trajectories in space-time.

Fibers are most often characterized by a refractive-index profile:
n(z, ¥, w). However, the quantity that enters directly in the expressions
for pulse broadening is the square of the wave number k*(z, y, )
= (2x/Ao)?n%(z, ¥, w), where A\, denotes the wavelength in free space.
We shall therefore deal directly with &%(z, v, w).

Let z(2), y(2) denote a ray trajectory. Assuming that the fiber is
time-invariant and uniform and that the material is isotropic, we ob-

* Inhomogeneous dispersion refers to the spatial variations of the ratio of the local
phase to group velocities in the material. This parameter should not be confused with
the parameter d?k/dw?, usually refered to as ‘‘material dispersion.” The latter is
important only for broadband carriers.
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tain from the ray equations the following differential equation (see
Appendix A):

G (X 4 Y)/dz® = k2 — ki 4+ Xak?/aX 4 Yak*/aY, (1)

where we have set, for convenience, X = 22(2), ¥ = #?(2). The quantity
k. in (1) denotes the axial (z) component of the wave vector k and
is a constant of motion. In other words, k., remains the same along
any given ray. In a wave theory, k. corresponds to the propagation
constant of a mode (sometimes denoted 8). Note that, in spite of the
fact that we are using the language of wave optics, the theory given
in this paper is based strictly on ray optics, except when we impose
the condition k. > k, to make contact with previous results.

It follows from the space-time ray equations that the ratio of the
time of flight of a pulse along a ray to the corresponding time on axis
is (see Appendix A)

t = (ko/k:)(0k*/ 9?)/ (dki/des?), 2a)

where ky = k(0, 0, w). The sign { ) denotes an average over a ray
period. For any function a(z, ¥, w), we have defined

{a(z, y, w)) = Z7! ];Z alx(z), y(z), wlde, (2b)

where x(2), y(z) denotes a particular ray trajectory and Z the ray
period. If the ray trajectory is not periodie, (a) should be understood
as the limit of the right-hand side of (2b) when Z — «. In the special
case where the inhomogeneous dispersion of the material can be
neglected, k is proportional to w and, consequently, 94%/dw® = k*/w®
Thus, (2a) reduces to

t = (k2)/ (kok.). (2¢)

Finally, if the source of rays has a distribution f(p) in the phase
space p = {x, y, k:, k,}, the response of the fiber to an input P’(f) is
(see Appendix A)

P(t) = f Pt — t(p) 1/ (p)T (p) (dp)- (©)

The quantity 7'(p) is the transmission of a ray (usually 7' < 1), and
(dp) = dxdy dk.dk,. In the special case of a uniform lambertian source
of luminance unity, we have f(p) = 1/(2x)% For simplicity, we can
assume that 7'(p) is unity when the point x, y is within the core cross
section and the components k., k, of p are within some area to be
defined later for specific examples and zero outside that area. All the
subsequent results follow from (1), (2), and (3).
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Il. IMPULSE RESPONSE WHEN Kk*(x, y) — k3 IS A HOMOGENEOUS
FUNCTION OF x AND y
Let the differential equation (1) be averaged over a ray period.
The left-hand side of (1) vanishes because d(X + Y)/dz assumes the
same values at the ends of the integration interval. (In this integra-
tion, k. can be considered a constant.) Thus, we have

(K — k2 + Xakt/0X + Yaki/aY) = 0. (4)

Let us further assume that 4(X, ¥) = k*(X, ¥) — kis a homogeneous
function of degree x in X = 2? and ¥ = 3% This means that, for any A,

EOAX,\Y) = M»h(X, 7). (5)
If we differentiate (5) with respect to A and set A = 1, we obtain
Xoh/oX 4+ Yoh/aY = kh(X, Y). (6)
Thus, going back to k*(z, y, w),
Xok*/oX + Yak*/aY = «k(k* — k). (7

In that case, a simple and general expression for the relative delay
in the absence of material dispersion is readily obtained from (2e),
(4), and (7),

t = [(ks/ko) + x(ko/k:)]/ (L + «). (8)

The relative delay ¢ is plotted in Fig. 2 as a function of k./ky with «
as a parameter. This result is applicable, for example, to the index
profile

k2(m)y)=k3_a|$| _ﬁlylr (9)

where @ and § denote constants. In that example, « = . Note that
the fiber deseribed by (9) is not circularly symmetrie, even if & = 8.
Examples of circularly symmetric fibers that satisfy (5) will be given
in the next section.

In almost any z-invariant focusing system, any initial distribution
eventually reaches a steady state. This steady state in general differs
from the initial distribution. A lambertian distribution f = constant,
however, remains lambertian because it is a (trivial) solution of the
Liouville equation (see Appendix A). Note that the distribution f in
(3) represents a ray (or pulse) density. If the medium introduces a
nonuniform attenuation on the rays, the power density T (p)f(p) in
phase space needs to be distinguished from the distribution f.

A fiber is usually surrounded by a homogeneous material, called
the cladding, with wave number k,. For fibers that are not highly
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Fig. 2—Relative time of flight in a fiber where k*(z, y) — k} is a homogeneous
function of degree « in z and y (ko = k(0, 0)]. For most fibers, k./k, is close to unity.

overmoded, the transmission law

Tz, y, k k)=[1 it &, >k, (10)
1 e T 0 if k.=k,
is often acceptable. Equation (10) says that rays whose axial wave
number is less than the free wave number in the surrounding medium
are leaking sufficiently rapidly to be ignored. The distribution f of
the lambertian source is set equal to 1/(27)? so that the luminance is
unity. In that case, the total power transmitted is the acceptance of
the fiber. The relative time of flight is, within the present assumptions,
solely a funetion of k.. The upper and lower bounds on k. are k(z, y)
and k, respectively. It remains to express the volume element
dk.dk,dxdy in (3) as a function of dk., dx, dy. For given x, y, a constant
value of k. corresponds to a circle of radius squared k*(z, y) — k% in
the k., k, space because k2 + kZ = k*(z, y) — ki Thus,

dkdk, = =dk3. (11)

Let us evaluate the acceptance of the fiber. The light acceptance of
any optical system is, as we have seen, the volume in phase space of
the accepted rays divided by (2r)% It is also equal to the effective
number of modes that the system can transmit. If we integrate P(f)

PULSE BROADENING 1185



fromt = — o tot = 4 » in (3), the integral over P’ in the integrand
is unity, and we obtain

N2 = (1/4r) ff [k, y) — k%]dxdy, (12)

where we have used (10) and (11). Thus, 47N? is the volume enclosed
by the profile: k%(x, y). For a step-index fiber of any shape with cross-
section area A, for example, we have from (12)

N? = (A/4x) (k* — k2). (13)

This expression should be multiplied by 2 to take into acecount the
two states of polarization.
The pulse transformation in (3) becomes, using (11),

PO = (/an) [dzdy [777 PLO— 0T (14)

Let the input pulse P’(t) be a symbolic & function (e.g., a rectangular
pulse of width At and height At in the limit A¢ — 0). The output
pulse in (14) becomes

P@t) = (1/4x)|dk3/dt| A (k), k. > k., (15)

where |dk%/dt| denotes the absolute value of dk%/df and A (k.) denotes
the cross-section area that satisfies k(x, y) > k.. k. can be expressed
as a funetion of the delay t by inverting the relation ¢(k,) given earlier.
We obtain, from (8),

dk2/dt = 2(1 + &)k [1 — (x/k2)], (16)
where

kz = ke/ko = (1 + x)t/2 £ {[(1 + 0)t/2T — «}* (17)

If « > 1, there is only one value of k; between k; = k,/k, and 1, for
any k,. If
k< k<1, (18)

there are two values of k, that need be considered. Their contributions
to P should be added. If k < k72, there is again only one relevant value
of k,.
Let us consider as an example a (noncircularly symmetrie) square-
law medium
k2 (x, y) = K3(1 — Q%2 — Q2y), (19)

where Q., @, denote arbitrary constants. 2x/Q, and 2x/8,, for small
z, y, are the periods of ray oscillation in the xz and yz planes, respec-
tively. The area A (k.) defined earlier is the interior of an ellipse

Ak = =(1 — k.2)/2.9,. (20)
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The impulse response is obtained from (15) and (16) with x = 1,
and (20),
k2l (Q.4,) k.>k
P 1) = 0fve o5y z 8 21
(t) 0 .k =h, (21)
where, from (17), k. = t — (&2 — 1)%. Because, in most fibers, k. re-
mains close to ko, the variation of k; ean be neglected, and the pulse
response is almost rectangular.
For a step-index fiber, the area A is the area of the core cross sec-
tion, and { = ko/k.. Thus, the impulse response of a step-index fiber
with cross-section area A is simply

P(l) = k§A /278, 1 <t < ko/ks. (22)

Because, in most fibers, ¢ remains close to unity, the pulse response is
almost rectangular.? The pulse width, however, is considerably larger
than for square-law fibers, as we shall see in more detail later.

IV. CIRCULARLY SYMMETRIC FIBERS WITH k*— ki A POWER
OF THE RADIUS

Let the wave-number profile be of the form
k (R, w) = ki(w) — ki(w)Rr, (23)

where R = X 4+ Y = 12 denotes the square of the radius. The relative
time of flight is, substituting (23) in (2a),

t = (ko/k.){(0k2/du?)/ (dki/dw?)
= (ko/kz) (1 — &De(R*)), (24)
where we have defined
& = ki/ki (25)
D, = k2 (dk}/de?) [k (dk/dw?). (26)

D, is a dispersion factor equal to unity in the absence of dispersion.
Thus, we need to evaluate {R*). It is interesting that we can do that
without solving the ray equations. The quantity (R*) is, of course,
independent of dispersion, so we may omit the « arguments.

I'or circularly symmetrie fibers, (1) ean be written

2R /dz2 = d(k*R)/dR — k. (27)
Averaging (27) over a ray period, we obtain
ki = (d(k*R)/dR). (28)
We have also, directly from (23),
(k*) = ki — kZ(R*) (29a)
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and, from (28) and (23),

(k*) = (k2 + xk3)/(1 + ). (29b)
Equating the two expressions (29a) and (29b) for (k?), we obtain
e(R) = (1 — &%)/ + «), (30)

where k, = k./ko. Thus, substituting (R*) from (30) into (24), the
relative time of flight is

t =k, — De(k:™" — k2)/(1 + «). (31)

In applications, we need k, as a function of ¢. Solving (31) for &, and
setting D, = D,/(1 + «), we obtain

k, = (t/2Dy) & [(¢/2D,)* + 1 — D,7']%. (32)
By differentiating (32), we further obtain
dk?/dt = 2k[D, — (1 — D)/k*T. (33)

To obtain explicitly the impulse response in (15), we need the area
A(k.) defined by k., < k(R). For k(R) in (23), this area is

Aks) = wR(k:) = «[(1 — k)/ e (34)

If ¢ were kept a constant as the parameter « varies, the core radius a,
defined by k(a) = k,, would vary. Thus, it is preferable to express &
as a function of the core radius a. We have

&/ = (1 — k2)Ux/a, (35)

where k; = k,/ko. The impulse response is finally obtained from (15),
(33), (34), and (35);

P@t) = (kja*/2)k[(1 — k*)/ (1 — k) ]"/[Dy — (1 — DYk, ~*].  (36)

The possibly doubled value k; is expressed as a function of ¢ by (32).
Thus, a closed-form expression has been obtained for the impulse
response of a fiber with &2 — &2 a power of 7, that takes inhomogeneous
dispersion into account.

In the absence of dispersion, we have D, = 1/(1 + «), and (36)
reduces to

P(t) = (kga?/2)kL(1 — k)/(1 — k) T(1 + 1)/ (1 — «k;7%).  (37)

As indicated in the previous section, there are in general two values
of k, that contribute to P. Note that the shape of the impulse response
does not depend on the core radius a.

The impulse response P(f) in (37) is shown in Figs. 3 and 4 for
various values of the parameter . These curves are essentially the
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Fig. 3—Impulse response of a circularly symmetric fiber with k(r) = k} — kir*
for a lambertian source and various values of x. The optimum impulse response is for
K == k; = 0.9.
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Fig. 4—Continuation of Fig. 3 for larger values of «.
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same as those shown in Ref. 4. Figures 3 and 4, however, are much
more detailed. We have assumed that k,/k,=0.9, that is, An/n =109,
a rather large value. For « = 1 (square-law fiber), the pulse width =
is 0.0054. For example, if n = 1.45 and the fiber length is 1 km, the
pulse width is 26 ns. For x = 0.9, however, the corresponding pulse
width is only 7 ns. We find, in agreement with Ref. 4, that the mini-
mum pulse width occurs when « = k;. For a step-index fiber (k — ),
the pulse width would be as large as 630 ns. Note the following detailed
features on the curves in Figs. 3 and 4. For (0.9)? < x < 1, the re-
sponse starts from infinity because of the minimum in the £(k.) curve.
For « = 0.85, P drops suddenly for ¢ & 0.998. This is because, at that
time, the smaller of the two k, becomes less than 0.9, and is rejected.
Tor « = 0.95, the response crosses the { = 1 axis.

Tigure 4 is applicable to larger values of x. We note that, for a
very large « (step-index fiber), the response is almost rectangular. The
slow decay in power shown in Fig. 4 would be almost negligible for
small An/n.

The effect of inhomogeneous dispersion is shown in Fig. 5. The
parameter « is kept equal to 0.9 (this is the optimum value in the
absence of inhomogeneous dispersion), but D, is made to vary in the
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Fig. 5—Impulse response for a fiber with k2(r) = k3 + k2(r?)?? for various values
of the parameter D that expresses the inhomogeneous dispersion of the material.
D =1 corresponds to the absence of dispersion. D # 1 merely introduces a shift
in the optimum value of .
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neighborhood of unity. These curves have a striking resemblance to
those in Fig. 3. This means that the effect of inhomogeneous dispersion
merely consists in shifting the optimum value of x. The impulse re-
sponse remains essentially the same, at least for « =2 1.

The total pulse power is the acceptance of the fiber, a function of «.
The acceptance is, in the present case,

N? = f T Pwd = @) j; “[E(R) — k21dR

= (DLKE — kDa® — kia*(a®)*/ (k + 1)]
= [x/4(x + 1) J(k§ — k)a®. (38)

The coefficient in the last expression in (38) is § for step-index fibers
(k> o) and 1 for square-law fibers. The acceptance given in (38)
should be multiplied by 2 to account for the two states of polarization.
The same rule applies to all the expressions given in this paper. It is
more difficult to obtain the ray-opties acceptance of fibers. The result
is derived in Appendix B.

In the next section, we consider fibers whose profile departs slightly,
but otherwise arbitrarily, from a square law.

V. NEAR-SQUARE-LAW FIBERS

Let us rewrite the differential equation (1) for eircularly symmetric
fibers

AR/ dz = d(k*R)/dR — k3. (39)
For square-law fibers
k*(R) = ki — kiR, (40)
the solution of (39) is
R(z) = Ro + (R} — B/kD cos (2Qz/F,), (41)
where
Ry = 3(k§ — k3/k = (1 — &)/ (42)

and @ = ky/ko. We have introduced in (41) the axial component of the
angular momentum (or Bouguer invariant)

l. = zk, — yk., (43)
which is the second constant of motion. Let us set
0 = (lz/klRM)?', (4"1-)

where R denotes the maximum radius squared. Note that, for merid-
ional rays, 8 = 0 and, for helical rays, § = 1. Equation (41) can be
written in the convenient form

R = 3Ry(1 + 6) + 3R (1 — 6) cos (2Qz/k:). (45)
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For later use let us evaluate (R”), the average of RB" over a ray
period. Using the binomial expansion and the result

{cos™) = m!12-m[ (m/2)1]? (46)

for m even and 0 for m odd, we obtain

T n 14+ g1 — o™
) =R 3 - w1 D

In particular,
(R*) = R3(36* + 20 + 3)/8 (48a)
(R*) = R3/(1 + 6)(56* — 20 + 5)/16 (48b)
(RY) = R3,(356* + 206° + 186° + 206 + 35)/128. (48c¢c)
Let us now show that a closed-form expression can be obtained for
the times of flight in fibers whose permittivity profiles depart slightly

from a square law. Inhomogeneous dispersion is taken into account.
Let the profile be of the form

N
k*(R) = ki — kiR + X kiR™. (49)
n=2
We assume that ¢,R*, n = 2, is of the order ¢ < 1, where ¢, = k2/kZ.
Substituting (49) in (2a), we obtain (with Q* = ¢ = ki/kj)

L= K1 — D@ R) + % eDu(R™), (50)

n=2
where we have defined inhomogeneous dispersion factors
D, = (k3dk2/do?)/ (kidkE/dw?). (51)
The D, are unity in the absence of inhomogeneous dispersion. Because
the perturbation is small, (") in the sum (50) can be replaced by
the expression (47) applicable to square-law fibers. This approximation
is not permissible, however, for the term (R) in (50) because this term

is not small. We need an exact expression for (K). We proceed as in
the previous section. We first observe that, for &£ in (49),

d(kR)/dR = 2 — I3 + 3 (n — 1)k2R™. (52)

n=2

Integrating (39) over a ray period, the left-hand side vanishes and,
using (52), we obtain an expression for (k?) that does not involve

(R)
() = BE K+ 1 3 (1 — mE(R). (53)

n
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We also have, directly from (44),

() = K — B(R) + 3 k2(Rn). (54)

n=2

Thus, by comparing (53) and (54},
N
kH(R) = 3(ki — k2) + 3 Z=:2 (n + 1kZ(E™). (55)

Substituting this expression for (R) in (50), we obtain the relative
time of flight for circularly symmetric near-square-law fibers

t=k{1—-31 - kD + é [D. — 5(n + 1)D1Jeu(B™)}.  (56)

Alternatively, ¢ can be expressed in terms of the azimuthal and radial
mode numbers. The result is given in Appendix C.
In the absence of inhomogeneous dispersion, (56) reduces to

(= TR+ 1+ T (= m)elR)] 57)

Limiting ourselves to an 7* correction to the square-law profile,
e = e =--- =0, and setting e = ¢ (57) becomes, using (48),

=31 —pa(1 + 012 — par(L + 6) — epar (36 + 260 + 3)/8]
1+ pu[(2 — 3¢ + (4 — 2600 + (2 — 36)6°1/16 + 0(p3r)
oy = LRy (58)

o~

The first two terms in (58) give sufficient accuracy when py < 0.01,
that is, when the total relative change in refractive index An/n =2 pa/2
is less than 0.005 (p. = Q%a?).

The total pulse width 7 is the maximum variation of £ for 0 < 6 <1
and 0 < p < pa. For the square-law fiber [e = 0 in (58)], we obtain

= pa/2 (ray optics). (59)

It should be noted that, in defining = in (59), we have specified that
the maximum radius of the ray be less than a for any 6. This condition
is different from the condition used earlier that k. be larger than k..
The ray-optics condition puy < pa is applicable to highly oversized
fibers.

If we now consider the expression in (58) with a correction term in
7, we find that ¢t = 1 for meridional rays (f = 0) when e = } in
agreement with Ref. 17, where it is shown that all the rays have
exactly the same optical length when k*(z) = [cosh (z) [~ 1 — a*
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4+ (8)z* + ---. We also find that ¢ = 1 for helical rays (§ = 1) when
e = 1, in agreement with Ref. 3, where it is shown that helical rays
have exactly the same optical length when £2(r) = (1 4+ )11
—r2 4+ + ... By considering all rays whose maximum radius is
less than @, we find that the minimum r is obtained for es = 0.91. In
that case, 7 = 0.046p3. The improvement compared with square-law
media is therefore as large as 11. If we had imposed instead the wave-
optics condition k. > k,, the vertical scale in Fig. 6 would be divided
by (1 4 6)% For e = 0, for example, the wave-optics pulse width is
pa/8 instead of p2/2 as in (59). With the wave-optics limit, the opti-
mum value of e turns out to be % instead of 0.91. The improvement
over the square-law case is only 4, instead of 11.

Let us now consider the effect of r° terms. I'igure 7 shows the varia-
tion of the pulse width r, defined as the maximum variation of ¢ for
any 0 < 0 < land any 0 < pyr < 0.002, as a function of e for various
values of e;. The effect of e; is essentially to shift the optimum value
of e to lower values. The reduction in pulse width is rather modest.
Nevertheless, a small improvement is obtained, compared to the case

05

0.4 Ry £ 0.01

€2=0

03—

(t=1)/R

0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0= 14, /Rm)
Fig. 6—Variation of the normalized time of flight for a fiber with k*(r) = k} — k¥*
+ea(ki/k)rt in the absence of material dispersion for various values of the parameter

e2. # = 0 corresponds to meridional rays and 6 = 1 to helical rays. e has been
redefined to be dimensionless.
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Fig. 7—Variation of the width of the impulse response with e, for various values
of e for a fiber with k2(r) = k2 — k¥ + ex(ki/E2)r* + ea(kS/kd)rs.

where e = 0 when

ko %k (r) = 1 — p 4+ 0.6150* + 70p%, p. = 0.002

p = Q&2 (60)

We give only the result when the departures from a square-law
profile are not circularly symmetric. The free wave number in the fiber
is now in the form

N n
K (x, y, @) = ki(w) — k@R + X ¥ kulo) XY, (61)
n=1 =0
where, as before, X = 2%, Y = 32, R = 2* + y* = 1% The ratio, ¢, of
the time of flight along a ray to the corresponding time on-axis is found
to be

N n
t =K1 —31—-kE)Di+ X X [Du— 3+ 1)Di]
n=1 1=0
Xen(X1Ym1)},  (62)
where e, = k%/kZ and D,; is defined as D, in (51) with k. replaced
by k... Let us assume that it is permissible to use the sinusoidal rays
of the square-law medium to evaluate the quantity (X'¥~!). Because

the average over one cycle of the product of powers of sinusoidal fune-
tions is known, the relative delay ¢ ean be written in closed form.
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Let the ray trajectory be written
x(z) = xocos (az + ¢z) (63a)
y(2) = yocos (az + ¢,). (63b)

The coefficient « does not enter in the final result and is henceforth
omitted. We evaluate

(X1Y 1) = (glyr(nD)
23 yo™ " ([cos (z + ¢2)]"[cos (z + ¢,) I P).  (64)

It can be shown that!®

([eos (2 + ¢2) J*'[cos (2 + ¢,) D)
=2_2n{2 5 (2(n ) )(li"s) cos [25(¢z — )]

ssi\n—1—3s
(D)@ o

(‘;) - ﬁr (66)

Thus, given a ray trajectory, defined by the parameters xq, yo, ¢,
and ¢, (or, equivalently, by the values of z, y, k2, and k, at the input
of the fiber), we can evaluate in closed form the quantity (X'¥Y"!)
that enters in formula (62) for the relative time of flight, from (64) to
(66).

The above calculation is incomplete for the following reasons. When
the power law n?(r) of a fiber departs from the exact square law, pro-
jected ray trajectories in the (ry) transverse plane are precessing
ellipses.* That is, the principal axes of the near-elliptical trajectories
slowly rotate as a function of z. This precession is unimportant for
circularly symmetric fibers. For noncircularly symmetric fibers, how-
ever, the ellipse precession introduces an averaging effect. Further-
more, the noncircularly symmetric components of n2(r, ¢) change the
eccentricity of the precessing ellipse. The axial component k. of the
wave vector remains a constant, but the axial component I, of the
angular momentum varies. Finally, in real fibers, slow (adiabatic)
changes of the refractive index law along the fiber axis are likely to
occur that must be taken into account. The twists of the fiber axis
must also be taken into account. Thus, a realistic assessment of the
effect of small nonecircularly symmetric departures of the index law

where

*It is well known in mechanics that the only 72 potentials (potential U ~ n?)
that give closed trajectories are the harmonic potential U(r) ~ n*(r) = 1 — r? and
the Newton potential U(r) ~ ni(r) = 1/r.
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from square law on pulse broadening requires a deeper and more
intricate analysis than the one given in the present section. However,
the result in (62) and (65) can be used as a basis for more complete
analyses.

VI. CONCLUSION

From a rather straightforward application of the Hamilton ray
equations, we have obtained closed-form expressions for the pulse
width in graded-index fibers when %%(z, y) — k% is a homogeneous
funetion of x and y, and for fibers whose profile departs slightly, but
otherwise arbitrarily, from a square law. Inhomogeneous dispersion
was taken into account. The expressions obtained are exact. The small
angle (or weakly guiding) approximation need not be made. We have
also given simple expressions for the wave optics and ray optics
acceptance of weakly guiding graded-index fibers.

The algebraic results given should prove more accurate and require
much less computer time than the straightforward numerical integra-
tion of time along ray trajectories. We have carried the perturbation
only to first order in the small parameter e. T'o obtain more accurate
results, up to order ¢, we need a more accurate expression of the ray
trajectory. This expression can be obtained, for example, by the
method of strained coordinates.!® These more accurate expressions are
probably not needed, however, in most practical eases.
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APPENDIX A
The Hamilion Equations of Ray Optics

The Hamiltonian form of the ray equations are well known in
mechanics and wave dynamies,® and they have also been used fre-
quently in opties (e.g., Refs. 14, 15, 17, 21, and 22). However, their
simplicity and power is not always appreciated. The physical difficulty
is that it is not always recognized that ray momenta and wave vectors
(or photon momenta) are identical concepts. On the other hand, ray
momenta (proportional to the wave vectors) need be carefully dis-
tinguished from mass-carrying momenta (proportional to the group
velocities).?® On the mathematical side, we need distinguish a function
such as k.(z, y) and the value k. assumed by that function. We must
also be aware that da/dz denotes a total derivative, that is, in the
present context, the variation of the quantity a along some given ray.
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If @ is a known funetion of z and ¥, and @ = z(2), y = y(2) denote a
known ray trajectory, then da/dz = (da/dz) (dz/de) + (da/dy) (dy/dz)
can be evaluated explicitly as a function of z. Here again, an arbitrary
point in space z, y should not be confused with a specific ray trajec-
tory x = x(z), y = y(2). Unfortunately, it is not possible to go into
more details here. An exeellent reference is Lighthill’s paper.® A com-
parison between the W.I{.B. method and the Hamilton equations is
given in Ref. 14.

Let X = (a, v, 2, ict) denote a point in space-time (¢ is time) and
K = (k;, ky, k., iw/c) denote the four-wave vector, with w the angular
frequency. An arbitrary medium is characterized by a function of K
and X that we denote

H(K, X) = 0. (67)

The Hamilton equations for light pulses X(s), K (o) are
dX/de = aH/IK (68a)
dK/do = —aH/dX, (68b)

where ¢ denotes an arbitrary parameter.

Equations (68a) and (68b) can be considered the basiec postulates
of geometrical opties. From a wave-optics point of view, (68a) follows
from the requirement that the wave lengths and periods of the waves
that constitute a wave packet be the same in the direction of a ray.
Equation (68b) follows from (67), (68a), and the fact that K is the
gradient of an eikonal function. Thus, in wave optics, the Hamilton
equations (68) are derived from first principles and need not be
postulated.

Let ¥ denote a point in phase space (k., &y, @, 2, y, ) at the input
plane, and ¥ a point in phase space at the output plane. The optical
system maps the input phase space into the output phase space, that is,

£ = (&) (69)

It follows from (67) and (68) that the Jacobian of the transformation
(69) is unity, a result often used in photometry. Equivalently, we can
say that the determinant of paraxial ray matrices is unity or that the
ray density in phase space is a constant of motion (Liouville theorem).
These three statements are obviously equivalent, provided the rays
are not reflected.

A source of light that is time and space incoherent is described by
a distribution S(&) in phase space. Each small volume in phase space
can be pictured as an optical pulse, provided the dimensions of the
volume are larger than unity. More precisely, this picture requires
that AwAt >> 1, Ak.Axz >> 1, and Ak,Ay 3> 1. The detailed structure
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of the pulse is ignored in ray optics. Only the motion of the center is
considered.

The transmission 7'y of an optical pulse through the optical system
is a presumably known funetion of ¥ that we denote as

Ty = T:1(¥). (70)

For lossy optieal systems, T; < 1. Because the Jacobian of the trans-
formation ¥ — ¥’ is unity, the output distribution is simply

S'(E) = S(HT1(8). (71)

The power emitted by the source and the power that can be collected
at the output of the optical system are obtained by integrating S
(or 8’) over all variables, except ¢ (or {’). Thus,

PO = [ S®@) (722)
Pty = f S’ (£ (d2), (72b)

where ¢ = (ks, ky, w, , y) and ¢’ is similarly defined. The terms (d{)
and (dt’) denote elementary volumes in { and {’ spaces, respectively.
The response of the detector could be described by a function D (E).
For simplicity, we do not take the detector response into considera-
tion. All subsequent results follow in a rather straightforward manner
from the above results, through a succession of approximations.

Let us assume that the properties of the fiber do not vary with time.
This means that the Hamiltonian in (67), the transmission T, the
mapping £ — &, and the pulse delay do not depend on time. In
particular,

' =1t+ (). (73)
Sources that are t-separable, on the other hand, have the property that
8(8) = POF(2). (74)

That is, the distribution in {-space does not vary with time. For a hot
tungsten wire whose temperature varies with time, the spatial phase-
space distribution is almost lambertian at all times, but the frequency
spectrum (approximately given by the Plank law of radiation) varies
with time. Thus, (74) is not applicable to that source. For consistency
with (72), we assume that F({) is normalized to unity.

For most sources, we can further assume that

F(Q) = 2(w)f(p), (75)
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where p = (k,, &y, z, ¥) denotes a point in spatial phase-space. That
is, we assume that the spatial distribution does not depend on what
part of the frequency spectrum we are considering. Both @ and f are
assumed normalized to unity. This ensures that F is normalized to
unity. When the spectral width of the source is small (e.g., less than
1 percent, as is the case for light-emitting diodes) and the fiber material
absorption does not exhibit sharp resonances in that band, we can
assume that

T:1(2) = To(w)T(p) (76)

() = to(w) + (p). (77

For definiteness, we assume that the maximum value of Ty(w) is

unity, and we define f,(w) as the delay experienced by axial pulses.

We evaluate in the main text £(p)/to at a fixed angular frequency.
The pulse response is obtained from (71) to (77),

and

P'(t) = f PLt — to(w) — 1(p)]2(w) To(w) f(p) T (p) (dp)dw

- [ PUI — to(w)]2(w) To(w)dw, (78)
where

Py = [ PLe' — t®) 1 ®)T @) (). (79)

In writing (78) we have used the fact that the Jacobian of the trans-
formation ¥ — ¥’ is unity and that de = dw’. The pulse response is
the convolution of the pulse response in (79), which we may call the
quasi-monochromatic pulse response, and the spectral width of the
source. In most cases, T’y (w) is a constant. For injection lasers, the quasi-
monochromatic pulse response is the most important contribution.

In what follows, we assume that the fiber is uniform and long com-
pared with the period of ray osecillation and therefore approximately
z-invariant. Let the Hamiltonian in (67) be written

H=Fk,— k.(ks ky, w, z, y) = 0. (80)
The Hamilton equations (68) are
dz/dz = — ok./ ok, (81a)
dy/de = —dk./dk, (81b)
dt/dz = ok./dw (81c)
dk./dz = k./dx (81d)
dky/dz = dk./dy. (81e)
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Let us assume further that the medium is isotropie, that is,

k2 = k2w, z,y) — k2 — k2. (82)
Thus, (81a) to (81e) are
dz/dz = k./k. (83a)
dy/dz = ky/k. (83b)
dt/dz = (dk?/dw)/2k. (83c)
dk./dz = (9k*/dz)/2k. (83d)
dk,/dz = (3k2/dy)/2k.. (83e)

According to (83¢), the time of flight of a pulse along a ray for a period
(period = Z) is obtained by integrating (8k*/dw)/2k. from z = 0 to
z=Z. If ko(w) = k(w, 0, 0) denotes the wave number on axis, the
time of flight of a pulse along the z axis is similarly obtained by inte-
grating (8k%/dw)/2ke. Thus, the ratio of the time of flight of a pulse
along a ray to the corresponding time on axis is

t = (ko/k:)(3k*/ dw?)/ (dki/dw?), (84)

where ( ) denotes an average over a ray period. If the trajectory is not
periodie, ( )is understood as a limit for z — . When k is proportional
to w, (84) reduces to

t = (k?)/kqk-. (85)

Let us now observe that, from (83a), (83b), (83d), and (83e},
124X + Y)/dz? = k* — k% 4+ Xok*/oX + Yak*/aY, (86)

where X = z?, ¥ = 32 This is easily verified by carrying out the differ-
entiations. Equations (86), (84), and (79) (with a slightly different
notation) are those used in the main text.

APPENDIX B
Acceptance of Highly Oversized Fibers

The acceptance, or effective number of modes transmitted by the
optical system, is the volume of the accepted rays in phase space
divided by (27)2. We have said earlier that, if the fiber is very long,
all leaky rays are eliminated and the acceptance is simply the volume
enclosed by the profile k2(x, y) divided by 4x. If the fiber is highly
oversized, however, many leaky rays (k. < k,) are not significantly
attenuated.’® We need then consider the ray-optics condition that the
tangential (rather than axial) component of the wave vector be larger
than k, at the core-cladding interface. The ray-optics acceptance is
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now evaluated for cireularly symmetric fibers. We specify that
k24 k2 > 3 at r = a, (87a)

where k, denotes the azimuthal wave number at the interface. We

also have the condition
k3 > 0, (87b)

which is not implied by (87a). In this appendix, we restrict ourselves
to small differences in refractive index, in which case condition (87b)
can be ignored. Because of the conservation of . (the axial component
of the angular momentum), we have

rky, = ak, (88)

for a ray with x = r, y = 0, k,, k,, at the input plane, that can reach
the interface » = a. Thus, eondition (87a) is

B — k2 — k2 + (*/adkd > K2 (89)

Equation (89) defines an area in the k., k, plane bounded by an ellipse.
We have to make sure, however, that rays outside that area do in
fact reach the interface. This is not necessarily the case. The maxi-
mum ray radius 7y is defined implieitly by

B4+ (1 — 2kl = B — B, (90)

where 7y is the largest real number that satisfies (90). (The initial
radius r is considered a constant in the present discussion.) Equation
(90) shows that the k., k, that correspond to rjr are contained in an
ellipse with semi-axes squared k%, = k2(r) — k2(rar) and ki = [k*(r)
—k2(ra) ]/ (1 — /7%, respectively. If k2(r) is never increasing, we
are sure that k., keeps increasing as rr increases from r to a. We do
not have any such assurance for k,, however. When rjs reaches a,
there may be acceptable values of k., k, that are located outside the
ellipse defined above. For each profile, we need therefore verify that
kZy(rar) never exceeds ki (a). We easily verify that this is the case for
square-law fibers, because

kjo = ki(ri — )/ (1 — r*/ri0) = kirk (91)

increases with 7, for any 7.
Thus, for square-law fibers at least, we can proceed with the caleu-
lation of the area of the ellipse defined by (89). This area is

a[k*(r) — k31 — 2*/a®)h (92)

Substituting this result in the general expression for the acceptance
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factor, we obtain
N = @) [7 e — 10 = ey 93)
0

This expression simplifies if we introduce the variable u = (1 — ?/a?)%.
Equation (93) becomes

Nt = (2/2) fo 'R (u) — k2]du. (94)

Thus, the ray-optics acceptance of most circularly symmetric fibers is
half the area enclosed by the curve k%(u)a®. For a step-index fiber, we
obtain from (94)

N2 = (k§ — k%)a?/2 (step-index, ray optics). (95)

This is twice the wave-optics acceptance. Thus, for step-index fibers,
the slightly leaky rays carry half the power. Our result agrees with
that in Ref. 16 for weakly guiding fibers. For a square-law fiber, with
k(a) = k,, we obtain

N2 = (k2 — k%)a?/6 (square-law, ray optics). (96)

In square-law fibers, 25 percent of the total power is carried by slightly
leaky rays.*

APPENDIX C
Impulse response width of near-square law fibers

When the source distribution is lambertian, all propagating modes
are equally excited. It is convenient in that case to express the relative
time of flight ¢ for near-square-law fibers given in (56) as a function of
the mode numbers (azimuthal number: g =--- -2, —1,0, 1, 2 ---
and radial number:a = 0, 1, 2 - - -) rather than k. and .. This can be
done by quantizing the ray trajectories. [If the W.K.B. method is
used, it is essential to first remove the singularity of the Helmholtz
equation at r = 0. This is achieved by changing the independent
variable from r to log (r).] One easily finds that the axial component
of the ray angular momentum L. is equal to u. Furthermore, we can
use for k. the well-known expression applicable to square-law media.
The result (56) is written below as a function of @, g, for the reader’s
convenience. We have

taow) = (1 = By (1= $BD + T FaN,),  (9)

* This is in agreement with a recent result by D. N. Payne.
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where
B = 29KV*/K,

g=2a+ |u| +1; |u| = abs. val. (u)
F, = ~127[D, — (v + 1)D,]K,/ (K.K1"?)

@07 3 (2% = m)IL(m/DT L — /gy (98)

Ny

The parameters K, = k2, y =0,1 --- and D, y = 1, 2 --- are ob-
tained from the square of the wave number: K(R) = k*(R) = (w/c)?
n?(R) of the fiber as a function of B = #?, measured at the nominal
wavelength A\, and at a slightly different wavelength, ), expanded in
power series of R as follows

K(R) = Ko — KiR + K:R? 4+ (\) (99)
K'(R) = Ky — KiR + KGR+ (o).

The D, are obtained from (99)
D, = KB(K; - KT)/KT(KI; — Ky). (100)

If we can neglect the power in the leaky modes, the mode numbers
a, u are restricted by the condition k, > k,, that is,

B <1 — K./K¢=2An/n, (101)

where K, = k2 is the square of the cladding wave number. The root-
mean-square impulse response width is defined as

¢ = 5,000[{2) — (£)*]* ns/km, (102)

where ( ) denotes an average taken over all the modes permitted by
(101). Thus, it is a straightforward matter to evaluate from our ex-
pression in (56) the root-mean-square width of the impulse response of
any circularly symmetric near-square law fiber, provided the wave-
number profile can be measured with sufficient accuracy at two
wavelengths.
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