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The load carried by a queuing system under equilibrium conditions is
the average amount of server usage per unit of time. In telephony, this
parameter s often evaluated by recording the number of busy servers at
regular time intervals; these readings are then cumulated and their sum,
after division by the number of observations, is an unbiased estimate of
the carried load. The purpose of this paper is to derive exact formulas
Sfor the computation of the variance of this measurement in systems with
arbitrary input and departure rates. The results obtained here thus apply
lo a wide class of teletraffic models which includes, in particular, the delay-
and-loss systems with finite- or infinite-source inputs, exponential service
times, and arbitrary defection rates from the queue. Problems related to
compulations are also considered, special attention being paid to the
reduction of both computer time and storage when the number of states is
large.

I. INTRODUCTION

Analysis of the stochastic behavior of traffic measurements is of
considerable practical relevance, as it provides means for appraising
field data as well as guidelines for selecting performance standards.
Load measurements play a central role in this effort, and determina-
tion of their accuracy is therefore of particular interest. The present
investigation yields an answer to this problem for a broad class of
teletraffic models.

Whenever statistical equilibrium prevails (and it is assumed to
throughout this paper), the load carried by a service system is the
average amount of server usage per unit of time or, equivalently, the
average number of busy servers at an arbitrary instant. In telephony,
an estimate of this parameter is often obtained by ‘“‘switch-counting.” !
This statistic, which is determined by recording the number of busy
servers at regular intervals and then by taking the arithmetic mean
of these discrete observations, is an unbiased estimate of the carried
load.
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The variance of this measurement, called hereafter the switch-count
load to distinguish it from the estimate obtained by continuous observa-
tion, was first determined approximately by Palm? and Hayward! in
the case of an infinite server group with Poisson input and exponential
holding times. This result was later extended by Beneg,* who obtained
the exact variance of the switch-count load for groups of finite sizes
without waiting positions (loss systems). A further generalization to
loss systems with recurrent input and exponential service is due to
Neal and Kuczura.* Their formal analysis stops, however, with a
derivation of the Laplace transform of the covariance function of the
underlying carried-load process. From this point on, they proceed
numerically, since explicit inversion of the transform appears to be
difficult in general.

In this paper we are concerned with derivations of exact formulas
for the variance of the switch-count load in finite systems with arbitrary
state-dependent input and departure rates. The results presented here,
therefore, fill a rather large gap, since they apply to a broad class of
teletraffic models that includes, in particular, the (finite) delay systems
with exponential holding-time distributions, arbitrary defection rates
from the queue (if one is allowed to form) and either Poisson or
quasi-random input (in the latter case, the traffic is generated by a
finite number of sources that place demands for service at the same
constant probability rate when free but that do not submit requests
while being either served or waiting).

Let N (f), the state of the system at time ¢, be defined as the number
of busy devices at that instant (by device, we mean here either a server
or a waiting position). Let ¢ and d be, respectively, the number of
servers and the number of devices.

Unless stated otherwise, we make the following assumptions:

(/) When N(f) = n and 0 < n < d, the probability that a re-
quest originates during (¢, t + h), h > 0, is of the form \.h
+o(h), with A, > 0.

(i1) The requests which are submitted when all the devices are
occupied are dismissed and, accordingly, \a is set equal to zero.

(i17) When N({) = n and 0 < n =< ¢, the probability that a service
time terminates during (¢, ¢t + 4) is of the form p.h + o(h),
where g, > 0.

(iv) When N ({) = n > ¢, the probability that either a service time
terminates or a waiting request defects from the queue is of
the form w.h + o(h) where p, > 0 and n = d.

(v) When a server becomes free, it is immediately reseized by one
of the waiting requests if any are present in the system at that
time.
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Let N.(t) be the number of busy servers at time ¢ and let ¢ A n be
the smaller of the two integers ¢ and n. Then

N(1) if N(t) = ¢,
Nty =c A N() =

¢ if N(&) > ¢,
and the switch-count load, L,(T), based on n observations (scans)
made over [0, T'] at times r, 27, - -+, n7, is, by definition, equal to
ntY N.(jr),
=1

where r = T'/n.

Let Cov [N.(t1), N.(t.)] be the covariance between N.(¢1) and
N.(tz). Under equilibrium conditions, this covariance depends only on
[ty — ta] so that

Cov [N(t), Nc(ta)] = Cov [Nc(0), Nc([tr — ta]) ]

Hence, the variance of L,(7), cast in a form that will be convenient
later, is given by the formula (Ref. 3, p. 137):

Var La(T) = v 3. (n — |k|)Re(kr), (1)

k=—n

where
R.(k7) = Cov [N.(0), N.(k7)]
Cov [N.(0), Nc([k[7)].

It is clear from (1) that the variance of the switch-count load is
completely determined by the covariance function R.(-) of the carried-
load process {N.(l), —» <t <=}, and therefore much of what
follows is concerned with expressing B.(-) in the most convenient form.

The covariance function can be stated at first in terms of the transi-
tion probabilities, and the resulting expression can then be reduced
by taking the structural properties of the process into account. But
alternate forms can also be obtained by making use of the fact that
the conditional expectations, E{N .({)|N(0) = m}, m =0, 1, ---, d,
satisfy simple linear differential equations. The covariance formulas
obtained by these diverse procedures exhibit distinet features that may
be exploited in the computations. In all cases, however, R.(f) is ex-
pressed as a diagonal, positive-definite quadratic form which reveals
that R.(-) is completely monotonic.?

Expressions for the transition probabilities, the covariance function,
and the variance of the switch-count load are derived in Sections II,
III, and IV, respectively. The variance of load measurements based on
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continuous observations can be found in Section IV. Extensions of
the results of Sections IT to IV to reversible Markov processes are also
considered. Questions of a computational nature are dealt with in
Section V, while Section VI is concerned with some asymptotic
properties (d large) of the spectrum of the underlying process.

The formulas presented here have been programmed and used to
explore the effects of parameter changes on the variance of the switch-
count load. The result of that investigation will appear in another

paper.

1l. TRANSITION PROBABILITIES

In this section, we express the transition-probability matrix as a
symmetric product of vectors and matrices. As becomes apparent later,
this representation makes it possible to write the variance of the switch-
count load in a way that greatly simplifies its evaluation.

Let pm.(t) be the probability of a transition from state m to state n
in time ¢:

Pun(t) = Pr[N() = n|N(0) = m], myn=20,1, -+, d.

These transition probabilities satisfy the following system of
differential equations:

d
g& Pmo = H1Pm1 — ;\meﬂx
d
apmn = Mnt+1Pm,n41 + AM—1Pm,n—1 — O\n -+ ,Un)pmn, 1=n< d,
d
i Pme = A1Pm,a—1 — HaPmd. (2)
Let
—No Ao
o — ) Ay
A= 17} — (hatp2) A
M1 — (Aa—1tpa-1) M1
Hha —pa
and

Pi(t) = [pma(®)], mn=0,1,---,d,

be the transition-probability matrix. Capital and lower-case bold-face
letters are used exclusively to designate matrices and vectors, re-
spectively.
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With this notation, the system of differential equations (2) becomes

Lpt) = Pu)A, 120, 3)
so that, fork = 1,2, ---,
k
d -2 Pall) = (;tk_ Pi(t)-As, 120. (4)

It follows from our assumptions that if the system is in state m at
time zero [N(0) = mJ, then limuopmm(t) = 1 and limuyepm.(t) = 0
for n # m. Hence, with I; the identity matrix of order d 4+ 1, the
initial conditions take the following form:

P.(0) = lim P,(f) =
g0
and by (3) and (4) we therefore have

hm(}r Pu(t) = ()]
The initial conditions state that P,(-) is right-continuous at { = 0 and
imply that P4(-) is continuous for all t > 0. By (3) and (4), all the de-
rivatives of Py(-) exist for ¢ > 0, and by (5) they are also right-
continuous at { = 0. An application of Taylor’s theorem then yields
(Ref. 6, pp. 240 ff.)

Pu(t) = exp (Al) = )i %Aﬁt", ’

v
o

(6)

The elements of A, situated immediately either above or below the
diagonal are all strictly positive and so As can be symmetrized. In-
deed, let

D, = diag [do, 81, * -+, 8a]
with

au:g- and GmEr(H)Izsl);%! "”=1r"'sd:

where (i) ¢ is a nonvanishing but otherwise arbitrary constant, (1)
the pn are the equilibrium state probabilities, and (ii7) & = {p}.
Without loss of generality, we can—and shall—set { = p} so that
£=1and

= diag (p§, pi, -+ -, pil. (7

It is easy to verify that
S¢=D7"-Ay-Dy (8)
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is symmetric, its nonvanishing elements being

Sam = — Am + pm), m=0,1,---,d, (Aa=0),
Smomil = Smiptm = (Amimy1)?, m=40,1,- ---,d—1.
Hence, by (8) we have
At =D, S§D;', k=012 -, (9)
and, by (6),
Py(t) = Daexp (S:) Di' = ¥ 7 (Da-SEDIE (10)

The representation of A, in terms of the symmetric tridiagonal matrix
S, entails substantial formal simplification of the final results. And it
is also particularly convenient computationally, since the determina-
tion of the characteristic values of A; (which are needed for an exact
solution) is best carried out after symmetrization.

The matrices Ag and S, clearly have the same characteristic values,
To, T1, - - -, Ta. But Sg is symmetric and is therefore unitarily similar to
the diagonal matrix

Cd = diag [To, ry, -, Td:].
This means that an orthogonal matrix B, exists such that
S, = B;-C.4 By, B.-B; = By'By = I, (11)

where B; is the transpose of B,.

But S; is also tridiagonal, and its off-diagonal elements never vanish.
Hence, S, is nonderogatory and its characteristic values are necessarily
distinet (Ref. 7, p. 26). The elements in the nth column of B; are then
the components of the (uniquely defined) normalized characteristic
vector associated with the nth characteristic value r.(n = 0,1, - - -, d).

We now substitute (11) into (10). This yields

P, (l) = kzokl, (D.-Bj-C5-By- D),

so that
Pd(t) = Dd-Bé-exp (Cd't)'Bd'D;l
= Dy-Bj-diag [e™, ent, -+, er#]-By-Di . (12)

We note now that all the row sums of A, vanish and one of the
characteristic roots, o, say, must therefore be equal to zero. Further-
more, known extremal properties of the characteristic values can be
used to show that ry, s, - - -, re are negative. It is also readily seen that

p = (b, o, -+, DY

is the characteristic vector of S, that corresponds to the vanishing
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characteristic root 7o. Indeed, let es and 04 be the (d + 1) dimensional
(eolumn) vectors whose components are all equal to 1 and 0, respec-
tively. Then, since As-es = 04, we have, by (8) and (7),

D, Si-Di'-es = Da-Sa-pf’ = 0
But none of the diagonal elements of D, vanishes and the relation
Dd'Sd'p&h = 0q

can hold if and only if S, p{’ = 0s. Thus, p§¥ is the characteristic
vector associated with ro(=0), a fact that may be of relevance in the
computations, as a comparison of p§? with D; ! provides an accuracy
check for the method used to determine the characteristic vectors.

In the derivation of formula (12), advantage was taken of the fact
that the transition-rate matrix A, is symmetrizable. It is worth
noting that this relatively simple expression for P, is a consequence of
this property, and therefore holds for all (and actually only for)
reversible Markovian processes with finite state spaces. Indeed, by
definition, the class of these processes—which includes those of the
birth-and-death type—is fully characterized by the following condi-
tions (Refs. 8 and 9):

pmpm"(t) = p"p"m(t)J m, n = 0) 11 Ty d) (13)
or, equivalently, by the single relation:
3Py = P,-Di2 (14)

Hence (12), written in terms of Sg, implies that

D;%-P;, = Di'-exp (Sat)-Dg!
(Dz'-exp (S4f)-Dg')’ = P,-Dg?

and (14) is therefore satisfied.

Conversely, we show next that (14) is a sufficient condition for
(12) to hold.

Pre- and post-multiplication of (14) by D, yield

D;'-P, D, = D;-P,-D; .. (15)

Substituting the expansion of Py as given by (6) into (15), and perform-
ing the multiplications by D, and D;' under the summation sign
(which is clearly legitimate), we obtain:

T 4 (DFASDt = ¥ 4 (Da (A DI 20
F=0 r=o k!

However, this relation cannot be satisfied unless

l_l'Ad'D,-z = Dd'A;'Dd_l,
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so that, by transposition,
(Dd;_I'Ad'DJ)’ = Dd_l -Ai-Da.

This means that Ay is symmetrizable by pre- and post-multiplication
by D;! and Dy, respectively, and (12) then follows as shown earlier.

Under the assumption that the process is reversible and that all the
states communicate with each other® (ie., pua(f) >0, m,n =10, - -,
d, t > 0), the characteristic roots of Ay are necessarily simple. (Note
that A,, and hence S; = D;'-Aq-Dy, need no longer be tridiagonal.)
This can be proved as follows.

The matrix S, is symmetric and can therefore be tridiagonalized by
a method from Householder (Ref. 7, pp. 152, 153, 290-293, and 343). Ac-
cording to this procedure, the tridiagonalization of S, is achieved by
successive right and left multiplications by symmetric orthogonal
matrices, Uy, Us, - - -, Ua_y, of the form

U-,- = Id - 2W,.'W;-,

where w, is a suitably chosen d + 1 dimensional (column) vector
whose first » components are zero. (All the U, are of order (d + 1)
and U2 =1,7=1,2 ---,d — 1.) A direct application of the results
derived in Ref. 7, above, shows that S, admits of the following repre-
sentation:

Sy = Uy Uy -+ -Usy-Ta- Uy -+ Uz Uy,

where T, is a symmetric tridiagonal matrix of order d + 1.

Let 8;; be the elements of Ta.

We are now faced with two possibilities. Either #: i1 = 8iy1,i # 0
fori=0,1, ---, d — 1, or there is an index j(<d) such that 8; ;..
= 0;41,; = 0 so that

T; 0
Tq = : (16)
0 Taija

In the first instance, all the characteristic roots of 84, and hence of
Ag, are distinct (Ref. 7, p. 26). To complete the proof, it is therefore
sufficient to show that the second contingency cannot occur when all
states communicate with each other. To this end, we proceed in-
directly. We assume that (16) is satisfied for some j < d and show
that some states then do not communicate with others.

When (16) holds for 7 < d, we have, for any k£ = 0,

Af = Dy-Si-Dyg!
T 0
— D, Uy - Uyy Ugnr -+ -U-DFt (17)
0 Ti-,o
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The first row in Dy is (pg} 0, ---, 0) and the elements in the first
column and first row of each of the U,’s are zero except for their first
component, which is always equal to 1. Hence,

(1,0, ---,0)-Dy-Uy- -+ -Usr = (p5 4, 0, -+, 0). (18)
Similarly, since the U,’s are symmetric, we have
Uisqe -+ -U-D7 (1,0, -+, 0) = (p}, 0, ---, 0). (19)
Hence, by (17) to (19),
Poo(t) = (1,0, -+, (2;% -)(10---,0)'
= = e (20)

where 6" is the element belonging to the first row and first column
of T%

Let @mn and Sma, m, n = 0, 1, ---, d, be the elements of A; and S,
respectively. Under the present assumptions, @m.-@.. = 0 and
Sman = (@mn-@um)t, m, n =0, 1, ---, d, m % n. The elements in the
first r rows and columns of S, are therefore uniquely determined by the
elements in the first r rows and columns of A,. Similarly, the vector w,
depends only on the components, $,.., of S for which eitherm < r — 1
and n=r—1, -+, d or, by symmetry, n =r — 1l and m =r — 1,

-, d (Ref. 7, pp. 290 ff). Consequently, the elements of T (which are
all obtained after j — 1 steps) depend only on the elements of the
first 7 + 1 rows and columns of A,. This implies that the transition
probability P (t), as given by (20), is independent of the rates au., m,
n > j. However, the process being Markovian, this can only be true
if Pon(t) = 0 for m > j which means (since, by assumption, j < d)
that state 0 does not communicate with states 7 4+ 1, ---, d, as was to
be proved.

Ill. COVARIANCE FUNCTION
3.1 First version
The covariance function of the earried-load process is, by definition,
d
R = X (can)-(can)ppint) — Mh
m,n=0
d

= 2 (ean)-(cAm)ppumt) — pm];

m, n=0
where

d
My = EN0) =3 (¢ A n)pa.

n=0
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However, if v is an arbitrary constant, the covariance of the process
{N.(t) + v, t = 0} is also R.. Hence, with the notation

pa = (c A n)+7, n=201,---,4d,

we also have

d
Re(t) = 3 pupnpalpun() = pul. (21)
Let
Po 1 - Pd
f’d — 'p:n jD.1 I{d
Po D1 - Pd
and

Gau(t) = [pan(t) — Pl
The matrix P, can be obtained by letting ¢ — o in (13). Hence,
P, = D,-B;-diag [1,0,0, ---, 0]-B;- D’

and
Ga(t) = Pu(t) — Py
= D,-B,-diag [0, ent, - -, em¢]-By- Dyt

We now introduce two auxiliary row vectors:
;= (po, p1, -+ *, pa), s¢ = (Popo, P1p1, * ', Pdpa)-
Then the coefficient of e’ in the linear form
81-Gy(t)-ra = s;-Da-By-diag [0, e, - -+, er]-By-Di'ry
is the same as the coefficient of e%t in (21), and we may conclude that
R.(t) = s;-Dy-Bj-diag [0, ett, - - -, er]-B,;-Dg ' 1.

With the notation )
qa = (popd, -~ -, paph),

we have
Q¢ = Sq-Dy and g = Di' 1y,

so that
Rﬂ(t) = q:ind-la‘g [Os er".v T e,dl]'Bd'qd (22)

or, alternatively,

R.(t) = i blerit (23)

with b; the 7th component of the row vector q,-B,. This last expression
shows that the coefficient of e’ in either (22) or (23) is necessarily
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nonnegative. Furthermore, since all the »/s (i = 1, - - -, d) are nega-
tive, we also have

k
(- RO 20, (20, k=01,

and R, is therefore completely monotonic over [0, «<).?

If we now set v = — ¢, the last d — ¢ components of q; are equal
to zero, and so the determination of R. by means of (22) necessitates
only the computation of the first ¢ components of the characteristic
vectors. Formula (22) is therefore often well-suited to the ease of delay
systems. But unless the number of waiting positions exceeds the
number of servers, greater reduction of the computations can be
achieved by means of the formulas derived below.

In the preceding derivation, the p’s are independent of the arrival
and departure rates, and the formulas of this subsection therefore hold
for arbitrary, reversible, Markov processes with finite state spaces.
In contrast, the results of the next subsection are restricted to birth-
and-death processes.

3.2 Alternative forms

Multiplying the nth equation in (2) by (¢ A n) and then summing
with respect to n(0 = n = d), we obtain, after rearranging and
canceling terms,

d d c—=1 ¢
Z (C A R-) m Pmn = z }\npmn - Z MaPmn- (24)
n=0 n=0 1

n=

But

Y (¢ A W)panll) = EIN.Q)

n=0

N(0) = m},

so that, by (24),

d c—1 ¢ _
CEE[AICU)“V-(O) = HI] = Z_Oknpmn - gl#upmn- (20)
Adding and subtracting «E{N.(t)|N(0) = m} on the right-hand
side of (25), we obtain
d
%E{N:(t)\N(O) =m} = kE{NA)|IN@Q) = m} + X pa()Pmn,
n=0
m=20,1, ---,d, (26)
where
(An — g — &n) fn=01---,¢—1, (o = 0),
pa(k) = 9 = (ke + pe) if n=oc¢,
— ke fn=c+1,  ---,d 27)
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In the preceding formulas, « is an arbitrary real number that may
be positive, negative, or null. We see later that the covariance formulas
can occasionally be simplified by appropriate choices of «.

Taking the initial conditions,

E{N,(0)|N(0) = m} = (c A m), 0=m=d,
into aceount, the solution of (26) is
E{N.()|N(0) = m}
= e amen+ [T | piwpant) |-du (28)

n=0

so that

Zd (¢ A mM)paE[{N.t)|N(©) = m} — M%

m=0

Mcze"t - M?l
+.[ ex(t—u) Z c A m)pm[ E Pn Prrm(u)]

m=0

R.(D)

ll

where M., = EN2(0). By means of (13), the preceding relation can
be expressed in a much more convenient form:

R.(t) = M et —
t d . d
+fNW“ZmMm[Z@AmmmM]M
0 n=0 m=0
= M ext — M2
t d
+LWW“%£MMMNMHMW=MdM(M

Next, substituting (28) into (29), we obtain
R.(t) = M et — M%) + text Z (¢ A n) pp() pa

—l—f e 3 () [ P n(0) -do-du.
0

nm=0

Let R* be the Laplace transform of R, and pys, that of p,,. The pre-
ceding relation then yields

R R S (PO OIS
+ B e a0 pe 220 G0)

We know, however, that p..(t) is of the form

d
pum(t) = pm + ;annier's,
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so that

d d
R(t) = X (ean)-(c AmpnY, Yoem€"t
i=1

m,n=0

This implies that the only poles of R are r;, ¢ = 1, - -+, d, and that
lim,,., R.(t) = 0. Taking these two facts into consideration, we see
at once that (30) reduces to

* _ 'Yn'm! 1
Rc(s) = n;_ Pn( ) Pm('{) Dn Z (P — K)g s — 71’
provided « # »;, 2 = 1, 2, -+ -, d. And referring back to the derivation
f (22), 1t 1s readily seen that

erlt erdt

R = (60T Bidiag [0, T, oy A)g] Bu-qi(o),
K # 714 =1, ---,d, (31)

where
[a2(0)]" = Leo(k)-pb, - - -, palk) - pE]-
The modifications needed when « is equal to one of the characteristic
roots are immediate. Let

diag@ [aq, a1, - - -, @4

be the diagonal matrix obtained by setting the jth diagonal element of
diag [ao, a1, - - -, aq] equal to zero. Then if x = r; we must have, with
some as-yet-undetermined constant ¢ and ¢% the variance of N.(0),

R (t) = (o2 + a)e
Q)] By diag® [0, (]%’{)2 i=1, - d]-Bd-q:(fc).
But R.(0) = ¢2, so that
a = — [qq(«)]"-By-diag® [0, (ri — )7 i = 1, - -+, d]-Ba-qa(x).
Hence,
R.(1) = 0% + [q3(x)] By diag® [o, ﬁ i=1, d]
‘Ba-qa(x). (32)

It should be noted that (32) is valid even if ¥« # »r;, 2 =1, -, d,
and that it should be used in the computations [rather than (31)]
whenever « is “‘close” to one of the characteristic roots so as to avoid
accuracy losses (see below). Since « is arbitrary, one could always
choose it so that it is not “close” to any of the characteristic roots.
But, as shown next, it is often preferable to select it in such a way as
to reduce the amount of computation, and this, in turn, may dictate
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the use of (32). As we have seen,

— [a* ()7 -B.-di et e | gt
R.() = [ah0T Bieding [0, =D s B0
But, as noted previously, p{? is the characteristic vector associated
with the vanishing root (ro), so that

erit erdt

(28" B.-diag [0, | B =0 )

rn— 2 (ra — &)
Consequently, (31) remains valid for all [qa(x)]" of the form
{[P;(K) + 'Y:I'pé: ) [p:’(K) + 'Y]Pﬁ},

where v is an arbitrary constant. [The same remark, of course, also
applies to (32).]

We are therefore always at liberty to add the same constant to all
the pj(x)’s. Under some circumstances, this degree of freedom, together
with the one provided by the introduction of k, can be used to reduce
the dimension of B’ and B: entire rows in B’ and the corresponding
columns in B can be set equal to zero without affecting the computation
either of (31) or (32), or of the variance of the switch-count load. It
is relevant to note here that this reduction would be largely illusory
were it not for the fact that the normalized components of any of the
characteristic vectors can be obtained without having to compute
other components of that vector (see below).

According to the result of Section 3.1, the covariance can always be
cast in a form that involves only the first ¢ components of the character-
istic vectors. But when the input and departure rates for 0 = n <e¢
are linear in n, the covariance can also be expressed in terms of the
last d — ¢ + 1 components of these vectors. Indeed, the rates are
then of the form

Aw = An + N,
un + ', n=01--,¢—1,

I

Hn

so that
A — = (A —pn+ (N — ).

Hence, with«x = A — gand v = 4" — A, (27) yields

0 iftn=20,1, -+, ¢c — 1,
pnA —p) =1 —Ne—u+u =N ifn=cg
(w—Ne+p =N fn=c+1, - -, d

For the random (Poisson) and the quasi-random inputs, the p’s take the
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following simple form whenever the service time is exponential with
mean 1.

(/) Random input (A, = a, n =0,1, ---):

[0 ifn=201,---,¢—1,
—a ifn=c¢,
¢ — a fn=c+1, - - d

pa(—1) =

(77) Quasi-random input [\ sources, A\, = (N — n)A,
n=201---, N]:

[O fn=01,---,¢—1,
pal— (1 + N =1 (c — N if n=rg
¢+ (e — N ifn=c+1, ---,d

From the preceding developments, we see that the p’s can be chosen
in such a way that the number of components of the characteristic
vectors needed to express R. is the smaller of the two integers ¢ and
d — ¢ + 1. In particular, in the case of loss systems, only the (¢ +1)st
component of each vector is needed.

The parameters « and v can also be chosen so that only the first
¢ + 1 components of the characteristic vectors actually enter in the
expression of R.. This will be the case if we set « = pe—1 — Me—1 and
Y = (7(#;-_1 - Ar:—l)-

In Ref. 3, the derivation of the covariance function for loss systems
[d =¢, N.(t) = N()] with Poisson input and exponential service
time makes use of the differential equations

%Em"(t)\x\'(O) =m} = — E{NW@)IN@O©) = m} + a[l = puc(D)],
m = 0,1,

These equations appear here as that particular instance of (26) for
whichk = = 1, A\, =a,n=0,1,---,ce—lL,andp,=n,n=1,--- ¢
Note also that now 2 :Z8 pun(l) = 1 — pa.(t). But we stress that, in
Ref. 3, the determination of the covariance relies on known recurrence
relations between the so-called ‘“‘sigma’ functions (Ref. 3, pp. 129 and
143 ff.); the more general problem considered in the present paper is
not as readily amenable to such a treatment because of the greater
complexity of the expressions that would now have to be used instead
of the sigma functions. As we have seen, however, relatively simple
formulas for R, ean be obtained without extensive algebraic develop-
ments as long as the underlying process is reversible.
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IV. VARIANCE OF THE SWITCH-COUNT LOAD

The variance of the switech-count load is now readily obtained.
Depending on which expression we select for R,, we have either

(7) Var L.(T)

= n2 k_zﬂ: (n — |k|)R:(kT)

n2-q,-By-diag [0 2 (n — |k|eril®e ¢ = 1, d]

'Bd qd(K), (34)
with
q = (pﬂp?]t ] pcflpz—]; 09 ] 0)1 or

(1) Var L.(T) = n~2[qa(x) T -Ba

er ril k|t

d1ag[0 _}: (n—*|l‘|) )o,1=1,---,d]

-Ba-qa(x), (35)
withk #r,1=1, ---, d, or

(i73) Var L.(T) = n2{e% — [qa(x) ] -Ba
.diag@® [0, (r; — &) % i=1, ---, d]-Ba-qa}

. (n— [kDe#r 4+ n[ql(0)] By

k=—n

aing [0, £ (0= kD) o i =1, d
Baqi(0, (36)

where « # r; for 7 # j.
We now make use of the following identity (Ref. 3, p. 137):

k 1 — e—2nu
Y (n— |k|)e e = n-cothu——2~—-csch2u
n=—*%k

By means of this relation, (34) to (36) can also be written as

Var La(T) = n~'-qa-By-diag [0, coth ( _m) -

2 2n

-esch? ( _27-“) ,1=1, -+, d]'qud; (34a)
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Var L.(T) = n~'-[q}(x)] B,

. 1 — Ty 1 — enrri
-dlag [0, (P‘——K)", !C()th( B) ) - on
-csch? ( _Tﬂ')} yi=1, - d]‘Bd‘q;(")1
K Z 7 1=1,---,d; (35a)

and

Var L, (T)
=n"ort—[qa(x) ] -By-diag® [0, (ri—x)"2, i=1, ---, d]-Ba-qa(x)}

‘{coth( T“) ! _-_),f"" esch? ( ﬁ:—)} + n~-[qa(x)] By

2

. ) 1 — T 1 — enrmi
-dla,g“[ N r—F {coth( 5 )— o

-esch? ( —‘:-r.- )} ,i=1, -+, d]-B.:'q;(K), (36a)

&

where x # r; for 7 = j.

Let Var L,(T) = lim,., Var L,(T) be the variance of the load
measurement obtained by continuous observation of the number of
busy servers. If we replace 7 by T/n in (34a) to (36a) and then let n
tend to infinity while keeping T fixed, we obtain the following formulas:

Var Lo(T) = — 74,8,

.diag[ (1 yloe” ),:‘= L d].Bd.qd, (34b)

Tri

Var Lo(T) = — 7 (6] B,

-diag | 0 ! 1+1_eﬁT) =1, -+, d | Ba-qix)
1ag ’1‘,‘(1‘,'—!:)2 TJ',‘ y 1= 1, y @ d*qalk),
K #= 7 i=1,---,d, (35b)

and
Var L.(T) = T {a2 — [qz(x)] - By

~diag [0, (ri — k)i =1, -+, d]

o1 1 — esT 2 o,
‘Ba-qa(x)} - 1+ e )T T [CL:(K)] -B,
. . 1 1 — e" . *
‘dlﬂ.g(” [0, m(l + I, )rl - 17 ”'1d]'Bd'qd(K)!
K& 7 for 1 # j. (36b)
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We note that the formula for the variance of sums of dependent
random variables makes it possible to compute the covariance between
load measurements performed over distinct time intervals. Indeed,
consider for instance a sequence of load measurements over the
intervals (0, T, (T, 2T7, (2T, 377, ---. Let L{"(T) be the switch-
count load over the ith interval ( = 0, 1, ---), S.(f) = n*L.(t), and
re = Cov [L(T), LY (T)]. Then

Var Sysn[(k + DT = (k + 1) Var 8,(T)
F23% (k41— i (T)

=1

and

o) = EED var L + 077 = B2 Var 1)

k—1
— X (7).

i=1

The preceding formulas may be used to determine the I'\°(T) re-
currently. But the results of such computations shall be exact only if,
for some choice of the time origin, all the scanning instants are multiples
of 7.

We conclude this section with the remark that the variance formulas
(34), (34a), and (34b) are valid for arbitrary reversible Markov pro-
cesses with finite state spaces.

V. NUMERICAL CONSIDERATIONS

The exact variance formulas of the preceding section are very well
suited to electronic computation and are easily programmed since,
apart from straightforward evaluations of hyperbolic functions and
simple products of matrices and vectors, they only involve the deter-
mination of characteristic values and vectors for which powerful sub-
routines are readily available. The fact that Su is symmetric and tri-
diagonal (or reducible to tridiagonal form by an orthogonal similarity
transformation) allows us to use the subprogram TQL2, which is par-
ticularly efficient under the present circumstances (Ref. 11, pp. 227-
240). Without going into details, we mention here only that this sub-
program is based on the so-called QR-algorithm and relies on the con-
struction of a sequence of symmetric tridiagonal matrices, s,
n=1,2, .-, unitarily similar to Sg, which converges to diag [0, r1,
7s, -+ -, ra). At the nth iteration S{® is expressed as a product of an
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orthogonal matrix Q§” and a lower-triangular matrix L{" :
S = QM-L{y.

In Ref. 11, this decomposition is carried out by the Givens’ triangular-
ization in which the Q§"’s are expressed as products of simple plane
rotations (Ref. 7, pp. 239-240).

The (n 4+ 1)st iterate of S, is then given by

Seth = L. Q,

whose unitary similarity to S{* (and hence to S,) follows from the
relation

L{-Q" = (Qf)-S{”- Q.

This method avoids the numerical difficulties frequently associated
with the computation of the zeros of the characteristic polynomial.
As shown in Ref. 11, p. 228,

QM =RPM. --- -RY, (37)
where R{? is of the form:
1
Ci S;
-8 C; «— row 1. (38)

1

According to Ref. 11, p. 231, the matrix B; (whose columns are the
characteristic vectors of S4) is given “almost to working accuracy” by

Q- - -Qf, (39)

where n (=30) is the number of iterations needed for the (numerical)
symmetrization of S,. Taking (37) to (39) into account, it is then
readily seen that the elements of B, can be determined row by row
which, as we have remarked earlier, is a desirable feature in the present
context.

Computations have been carried out for systems having as many as
400 devices (and hence transition-rate matrices of order 401) to deter-
mine the numerical accuracy of the approach described in the preceding
sections. Checks were performed by comparing the value of Var L,(T)
obtained by means of (35a) or (36a) with the corresponding o%, which
can be calculated directly and independently from the equilibrium
state probabilities. These two quantities, which are theoretically equal,
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turned out in all cases to agree to at least 10 decimal places with the
greatest difference occurring when d was largest. Hence, our procedure
indeed yields very accurate results for the type of systems that are
likely to occur in practice. But when d is large, the storage require-
ments and the amount of computations become critical. It is therefore
always important to select x and v in such a way as to minimize the
number of B’ rows that actually enter into the computations. (It
follows from earlier remarks that this number, for proper choice of &
and v, never exceeds the integral part of (d + 1)/2.) Further reduction
can also be achieved by excluding the states whose probabilities of
occurrences are so small that neglecting them will not materially affect
the final results. In this connection, we make the following remarks.

The variance of the switech-count load is perturbed by at most

[o5(x) - p;- ot

if p; is set equal to zero in the particular formula used to evaluate
Var L,(T). Hence, since

Var L.(T) = o¢%/n,

we always have the following upper bound for the relative error, e,
induced by setting p; equal to zero:

€ g I:p;(l():lz'pj'ﬂ, J. = Ol ]-r T d.

For a given relative accuracy of Var L, (T), these inequalities make it
possible to determine ahead of time whether some components of the
characteristic vectors can be ‘‘safely” eliminated from the computa-
tions. In large systems, the gains achieved by such a reduction may be
quite substantial, as either low occupation states [V (¢) small] and/or
high occupation states [N (f) large] have then frequently very small
probabilities of occurrences.

Computations could be arranged to determine only those character-
istic roots that are required to reach a given degree of accuracy
[plus those needed to compute Bi-qi(x)]. This is rather readily
achieved in loss systems with Poisson input and exponential service
times since, in this case, the coefficients b} of

— T 1 —enr™ o —Tr
coth( 5 ) on esch ( 5 )

in the variance formulas of Section 3.1 are then monotonically de-
creasing as |7;| increases:

b2 < b if |ri| > |rsl, B, j=1,---,d.
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Fig. 1—Spectral measure of the carried load process.

But, in general, one would encounter an additional difficulty, namely,
that the b%'s do not have the monotonicity property alluded to above
and may actually fluctuate widely. This is illustrated in Fig. 1, where
the roots are assumed to be indexed in order of increasing magnitude
and the ordinates are the corresponding b3's, normalized in such a way
that max; b? = 1.

The computations should be based on (35a)—(36a) or on (35b)—(36b)
in the case of continuous measurements—as these formulas provide
us with all the flexibility needed to eut down both storage space and
computation time. When choosing between (35a) and (36a) or between
(35b) and (36b), one should keep in mind that, for « close to r;, the

difference 7; — x may not be determinable with enough precision to
allow accurate computation of Var L,(7). This is shown in Table I
where x = — 1 and r, is the root of smallest positive absolute value.
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Table | — Loss system, 80 servers, Poisson input,
exponential service

Offered Var Li(T)

Load in 14+n ol

Erlangs Formula (36a) | Formula (35a)
10 1.09 X 10-1 10.000000 10.000000 0.034614
20 —9.90 X 1013 20.000000 20.000000 0.013173
30 —1.14 X 101 30.000000 30.000000 20.891365
40 —3.38 X 10-° 39.999986 39.999986 39.999926

(Note that the last two columns of this table should be equal and that
errors of the same magnitude would arise if one were to use (18) of
Ref. 3.) In all our computations, we have made use of (35a) and (36a)
whenever |k — 7:| < 10~* for some 7. This bound for [« — r;| is both
large enough to ward off appreciable accuracy losses and small enough,
under prevailing conditions, to be satisfied by only one root.

VI. REMARKS ON INFINITE SYSTEMS

It is known that infinite systems can be regarded as limits of finite
ones,? and it is therefore of practical interest to have information
concerning the spacing of the characteristic values as the dimension,
d, of these approximating systems becomes large. Indeed, as d increases,
computational difficulties may arise because of a lack of separation
between these roots. Such problems would certainly come up sooner
or later if the spectrum of A = lima..As happens to be dense over
some interval as, for instance, in the case of a single-server queue with
Poisson input, exponential service time, and unlimited waiting room
(Ref. 12, pp. 365-366). Infinite systems with well-separated roots do,
of course, also occur. As an example of this type, we mention the
systems with an infinite number of servers, Poisson input, and ex-
ponential service which often provide useful idealizations. (In this
case, as is well known, the nonvanishing characteristic roots are the
negative integers, —1, —2, —3, - --.) Other examples of systems with
discrete spectra are given in Ref. 12, where sufficient conditions for
this to occur are discussed in some details; but in all these instances
the A, and u. both increase as n” for some » > 0. This condition is un-
likely to be satisfied in queuing systems; generally, in this particular
area, the arrival and the departure rates remain bounded:

0= S A<, 0 p, EM <, n=20,1,---. (40)
As briefly described below, these inequalities imply the existence of

definite bounds for the spectrum of A.
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Consider an infinite system, and let A be its (infinite) transition-rate
matrix. Let A, be the matrix obtained by retaining only the elements
belonging to the first (d + 1) rows and columns of A and then setting
Aa equal to 0. Let rg0(=0) > 741 > - -+ be the characteristic roots of
A,. Then, under conditions (40) it can be shown that, for any &k = 0:

(7) [rax] <A+ M for d sufficiently large,
(H) |rd.d—k| < 2()\ + M) for d g k.

Either of these two inequalities implies that the characteristic roots
do not remain separated as d — = whenever (40) is satisfied. Under
the more stringent requirements that (40) holds and that

lim A, = A, limu, = M,

more precise statements can be made, namely, that, for all £’s and d’s,
lrax| < (VA + VM)?
and that the spectrum of A always comprises a closed interval, viz.,
@ = [~ (VA + I, — (VA — D)),

(In addition to Q, the spectrum of A may also include a finite number of
roots in [— (VA — ¥M)?, 0].) But it turns out (as will be shown
elsewhere) that, as d inecreases, the characteristic roots of A, fill @
rather ‘‘evenly’’; furthermore, for practical accuracy levels, large
values of d are needed only when the length of Q tends to be relatively
large (a circumstance corroborated by extensive computations).
Hence, within the present framework, it appears that root-spacing is
not likely to be critical except in the improbable event that extreme
precision is required.
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