Copyright © 1975 American Telephone and Telegraph Company
Tue BerL System TEcuNIcAL JOURNAL
Vol. 54, No. 7, September 1975
Printed in U.S.A.

Upper Bound on Error Probability for Detection
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Forney's asymptotic upper bound for per-bit error probability in the
detection of pulse-amplitude-modulated digital data in the presence of
additive white gaussian noise was obtained for the case where the dura-
lion of the intersymbol interference is bounded. In this paper, we show the
validity of Forney's bound under much weaker assumptions that allow
unbounded inlersymbol interference.

I. INTRODUCTION

We consider the situation where a data sequence ao, - - -, ay—1 of £1’s
is transmitted via pulse amplitude modulation as 2 ¥=' h(t — kT)ax
and received in the presence of additive white gaussian noise with one-
sided spectral density ¢ In a recent series of papers, Forney,!
Foschini,? and Mazo® developed an asymptotic (as ¢ — 0) upper
bound on the error probability per data bit P,:

W0 +oway, M)

where d(h) is the minimum £, distance between distinct modulated
pulse sequences. This bound holds under the strong assumption that
the pulse h(t) is supported on finite interval.

In this paper, we show that (1) is valid for a considerably wider class
of h({). Roughly speaking, our assumptions are little more than that
h(t) is in £,(— =, =) and £.(— =, =), and that H(f), the Fourier
transform of % (t), does not vanish on an interval. The precise conditions
on h(f) under which (1) holds are given below. In particular, (1) is
valid when H(f) is a rational function.

In Section II we give a precise statement of our results, and the proof
follows in Section III.

P, =< exp{—

Il. FORMAL STATEMENT OF PROBLEM AND RESULTS

In this section, we give a precise statement of the problem and the
results that were stated informally in Section 1.

We begin with some definitions. We denote N vectors by boldface
superscripted letters, and components by subscripted letters, e.g.
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u¥ = (ug, - - -, uy—_1). When the dimension N is clear from the context,
we omit the superscript. Define the sets @y, Gfx @y by
Gy = {uV:u;= 1,0 j=N —1},
Qe = fuV:ue =+ 1, u; = =1, j#kj, (2)
Que = fu¥iup = —Lu;= £1, 7k}
Of course, @y = Gf: U @y Again, when N is clear from the context,
we write @y = @, Qi = QF, @y = Gr.
Next, let f(t), ¢(t), and — = <t <o be real-valued measurable
functions. The inner product of f and g is denoted by

o = [~ s, (3a)
and the norm of fis
1= = ([ f’(t)dt)

For a vector u¥ € @y, and f(f), — » < t < =, a real-valued function,
let the funection h*u = s be defined by

]
. (3b)

s = X 1t = kDus,

where T > 0 is a fixed parameter.

We are concerned with the following modulation scheme. Let
aV = (aq, -+, an_1) € Gy denote the data to be transmitted. Assume
that all the 2V vectors in @y are equally likely. The transmitted signal
is the function h#*a®, where the pulse i(t) is a fixed function for which
||h|| < =. The received signal is

y(t) = (hxa™)(@) + 2(1), —o<t <=, (4)

where z(t) is a sample from a white gaussian noise process with zero
mean and one-sided spectral density o

The decoder associates with the received signal y, a vector
D(y) = &Y € @y. Corresponding to a given decoder function D, let
the bit error probability be

1 N=1 i
P.x(D) = v kgﬂ Pr {d; #= ax}. (5)

Also, define the optimum error probability
Piy = Piy(h, ¢%). = inf P.x(D). (6)
D

We are concerned here with the asymptotics of Piy(h, ¢?), as o> — 0,
i.e., as the signal-to-noise ratio approaches infinity. Accordingly, define

Ey(h) = — liminf o2 log Piy(h, o%), (7a)

a?—0
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so that, as ¢> — 0,
f.'uv(h)

Ple(h, o%) < exp [ +o]|- (7b)

Next, consider a particular decoder that is of special interest here—
the maximum-likelihood decoder, denoted D,. In the present problem,
Dy(y) can be taken to be that & & @y such that for all u € @y,

u # 4,
lyr — k]| <l[lys — hsul], (8)

where y; is the projection of y onto the subspace of £2(— «, =)
spanned by the signals h*u, u € @y. With probability 1, (8) will be
satisfied for some i € Q@x.

Now, subject to the condition that A (¢) has finite support, i.e., there
exists a tp > 0 such that

h(t) = 0, for [t] > t, (9)

Forney,! Foschini,? and Mazo® have shown that E(h) = d?(h)/4, where
the “minimum distance’ d(h) is defined by

d(h) = lu'n inf min |h*u — hxv]|. (10)
No= uveQls
uFv
Thus, as ¢ — 0,
& (h

Piy(h, a*) = exp [1+o(M)]}- (11)

Inequality (11) is established by showing that the error probability
for the maximum likelihood decoder, P.x(D4), is overbounded by the
right member of (11). This is done by writing (this is not as difficult as
it looks)

y
P = 5 2 L 2O PriDIG) € Qialy = o + 2}
=1 uc Gy«
= ST 5 200Pr| U {Dily) = vi[y = heu + 2]
k ue@f veE Gk
1 .
- 2*(.\—].)
N % ug:&:

Pr | ga_{“yl — hsu|| 2 |lyr — hav||} |y = heu + 2}

=y X 2D U {(z hx(v —u))
b ugE @l ve Qi

Z jlhx(v — )|}
A

= yn(h, o%). (12)
Relation (12) is valid for any A ({). Subject to condition (9), it is then
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shown that, as ¢* — 0,

¢ﬂhaagen4—f%§£1+oﬂnﬂ, (13)

where 0:(1) does not depend on N. Thus, since Piy £ P.v(Dy), (11)
holds. Further, the o(1) term in (11) does not depend on N. An
interesting by-product of these results is that the performance indi-
cated in (11) is achievable via the decoder Ds. This decoder can be
instrumented (using the Viterbi algorithm) with a complexity which
remains bounded as N — .

We now drop the assumption that A(t) has finite support. Instead,
we assume that A (t) satisfies the following conditions:

(i) There exists a nonnegative £, function go(), i.e.,
[ aoae <=,
such that
[R(B)| = go(D), —w <t <=, (14)
and such that g, is monotone in [¢].
(i7) Let
a) = [ hoea,  —e<f<e ()
be the Fourier transform of h(t). By (2), S |h(f)|di < o, so that H(f)

is well defined for all f. We assume that there exists a nonnegative £,
funetion ¢1(f) which is monotone in | f|, such that

|H(f)]* = Ga()), —el f <o, (16)
(7i7) Let the “folded spectrum’ of A be

S(f)=n=):jm H(f+"%)‘z, ogfg%- (17)

We show in Appendix A that S(f), 0 = f = 1/T, is finite and con-
tinuous. We assume that S(f) > 0,0 = f = 1/T. Let

m = min S(f) >0, (18)
0sf 21T

where the existence of the minimum follows from the continuity of
S(f) on the compact interval [0, 1/77].

Remarks:

(1) Condition (7) is just slightly stronger than simply requiring A
tobein£,(— =, »). Condition (14) forces & (t) to go to zero as |¢| — =
in a “well-behaved” manner. Condition (¢z) imposes a similar condition
on |H(f)|*

(2) For the very important special case where H(f) is a rational
function, i.e., H(f) = P(i2xf)/Q(:2xf), and P, Q are polynomials
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with the degree of P < degree of @, then conditions (¢) and (iz) are
satisted. Since H (f) has only a finite number of zeros, condition (ziz)
ig nso satisfied.

(3) Suppose that H(f) has no more than a countable number of
zeros, but that S(f) = 0 for some f & [0, 1/T]. It is easy to see that
some arbitrarily small change in T will cause S(f) to be strictly
positive for all f & [0, 1/7]. Thus, condition (#ii) is not especially
restrictive.

We now state our main result, the proof of which is in Section III.

Theorem 1: Let h satisfy conditions (1), (i7), and (iit) above. Then, for
all € > 0, there exisls a 7o = role) sufficiently large so that, for all
T > To,

Pen(Dy,) = ynlh., (1 + 2],

h(t)l !tl é Ty
ho(l) = (19)

where

0, [t] > 7,

18 the truncated version of h(t). The quantily 7o does not depend on N.
Since A, has finite support, we conclude from Theorem 1 and (13)
that, for all € > 0 and r sufficiently large,
Ply(h, 0*) < Pun(Ds)
exp { — _&ha)
P17 321 + o

[where 0.(1) is independent of N ] so that

IIA

[1 + o(1)]}, (20a)

N e o oo () N
Ex(h) ]1:121_.10nf a2 log Pi(h, ¢®) = i1+ o (20b)
We show in Appendix B that
d(h.) — d(h), as 7 — o, (21)
so that letting e — 0 and r — = in (20b) yields
2
NOEE: i’”- (22)

We state this as

Corollary 2: Let h satisfy conditions (1) to (ii7) above. Then, as ¢* — 0,

* 2(h
Pith, o) < exp {— T8 014 0,01

where 03(1) 1s independent of N.
We conclude this section with a remark concerning the relationship
of the bound of Forney et al. (11) with the result of Corollary 2. We
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can rewrite (11) as \
Piv(h, %) = Ki(to, o)e 17,
and the bound of Corollary 2 as
Piy(h, 0?) = Ka(|[hl]s, m, o) e, (24)

Here, we made explicit the dependence of K, on the support interval
to of h(t) [see (9)], and the dependence of K, on [|4|y, the £, norm
of h, and on m = min S(f). Both K, and K. increase in 1/¢* slower
than e®®ie®. But K, (to, 0?) — o as to—©, and Ks(|lhl1, m, ¢*) — =,
as ||k]s = or as m — 0. Thus, although it might seem reasonable
to assume that all /(f) satisfy (9) for some fo, the bound of (23) depends
on that f, and becomes meaningless as o — . Similarly, although
it might be reasonable to assume for any h(f) that |[k|ls < = and
m = min S(f) > 0, the bound of (24) depends on these quantities
and also becomes meaningless as ||h||; — % or m — 0. Therefore, both
bounds have their limitations; the new one, however, is considerably
less limited.

11l. PROOF OF THEOREM 1

_ Let h satisfy (i) to (ii7). Let h,({) be as defined in (19), and let

b (1) = h(t) — h (1), 1e.,

7 0, [t

h.(t) = !
©={nw, 1

Then, if the data sequence is u € @, the received sequence is ¥

= h#u + z = ho+u + 2, where

o (25)
T.

V A

g=z + E-,-*u. (26)
Following the same steps as in (12), we obtain
Pex(Dw) = L Ty 2-w-n
NF uear
Pl‘ éJa_{ (él hr*(v —_ u)) ; %”h,*(v — u)”}‘ (27)

where 2 is given in (26).
We will show that, for arbitrary e > 0, there exists a 7o = 7o(€, h)
(7o independent of N), such that for r = 7, the event

{2 hex(v — 1)) Z [hex(v — ) [*}

ey bty — ) 2 LD — w1,

(28)

for all u € @, v € @;. Substituting (28) into (27) yields, on com-
parison with (12),
PeN(Dh,) é 1I’N|:hﬂ 0'2(1 + 6)2],

which is Theorem 1. It remains to establish (28).
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Relation (28) will follow immediately when we show the existence
of a 7o(e, k) such that, for r = 7 and all u, v,

[ (rowa, hor (v — )| S Sllher(v — w2 (29)

If (29) holds, the event in the left member of (28)
VE hex(v — 1)) = 3l[hex(v — u)[?]

={(z her(v — 1)) Z }[hox(v — w)[]? = (hevu, hox(v — 1))}

Sl = wlef, (30)

E{ (2 hex(v — 1)) 2

which is the right member of (28). Thus, it remains to establish (29).
Let w = (wq, -+, wy_1) = v —u. The entries of w are 0, +2.
Also set ¢ = %#u, and r = h.sw. Then

IA

| Gipeu, hot(v — w))| = | (g, )| < ]°° lq()| |r(t)|dt

=[ sup Iq(t)iilfao \r(t)|dt. (31)
—w < ™ —e0
Consider

[ o= 7

w0 N—-1
<% lwel [ =) jde sl T e, (32)

N—1
LZ he(t — kT)wy|dt
F=0

where ||h||s = S |h(l)|dt < =, by condition (7).

We obtain an upper bound on Y |w.| as follows. Since w, = 0, £2,
we have X |wi| = 1 X w}. Now, let H.(f) = S7s h-(t)e?™/'dl be
the Fourier transform of &.(f), and let

H,(f + %)

be the corresponding folded spectrum. Then, from Parseval’s theorem,

2
’

0s/s4 (33)

SN = %

n=

H?-“z = ”h’*wHE = f_: in(f) |2[%: wkez'ZIkT_,fL‘zdf
_ flJ‘T Sr(f)l; wkeiﬂfka|2df
20 it S.01[ I ek g
0/ <1/T 0
=[inf S,(NI T wi = [inf S.(NIT [wa] 2. (39)
Therefore,
> lwel = 3rlPL inf S.(HT (35)
k 0=7=1T
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Combining (31), (32), and (35), we have
g, )| <[ sup |g®|IC inf S (NI 3lAlllrl  (36)
— << ® 0=f=1/T

Now, we show in Appendix A that
liminf[ inf S.(f)J=m >0, (37)
0=/ =T

T ® =f=

where m = min S(f) > 0 [see condition (iz2)]. Further, using condi-
tion (1) [particularly the monotonicity of go(f)], we have

N-1 _
S|kt — kT

)] = | Tl = kDl S T,
< S |h(t—kT) = X |h(t—kT)]
k= — w k:|[t—kT| 27
< ¥ qt—kD) £ 3 [golr +iT) + go(—7 — iT)]
k:|t—kT| 27 7=0
1 [= 1 f=

Combining (36), (37), and (38), we obtain

(g, r)| _ [ (hexu, hex(v —u))|
(12 [hox (v — ulf? ’

as r —w. This is equivalent to (29), so that the proof of Theorem 1
is complete.
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APPENDIX A
The Folded Spectrum S(f)

We first show that S(f) as given in (17) is always finite, i.e., the
series in (17) converges for all f € [0, 1/T]. From condition (1),
using the monotonicity of Gy,

Ene, f) 2 % H(f+ %)r s MIZEM Gl(f + %)

|n| 2n0

> a(r+p)+ L 6(r+7)

nE—no n2n

)3 Gl(" = 1) + ¥z Gl(%) < Tf:“n_w 61 (x)dz

n<—=m =no

1l

IIA

+ T ) Gi(z)dz—0, asno—, (39)

ng—1/T
so that the series in (17) converges.

1348 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1975



Ta establish the continuity of S(f), write

S(f) = 2

|n] Sno

(f+ )‘ + E(no, f), 0ZFZ1/T.  (40)
For arbitrary 6,0 = f = 1/T]

s -sy+al |z [|lalr+3) - |a(+s+7)[]
+ 1&g, /) + |E(no, f + 8)[.  (41)
Now since A(l) € £:(— =, =), H(f) is continuous. To make the

right member of ineq. (41) =g, first let ng be sufficiently large so that
the last two terms of the right member of ineq. (41) =<e/2; then
choose | 4] sufficiently small so that the first term of the right member
of inequality (41) =< e/2. This establishes the continuity of S(f).
H.(f) exists for all f € (— =, =). Thus, S,(f) as defined in (33) is
meaningful, though perhaps infinite on a set of measure zero. With
S:(f) =8N = X
n | n\[2

= x |[|m{r+7)[ |+ 7)[] - gomn. @

Now let € > 0 be arbitrary. From (39) we can choose n, sufficiently
z n\|? €
san-swz L [jmlr+g) - |a+7)[] -5 @
Now let ﬁr(f) be the Fourier transform of %,. Then

Therefore

|H ()]

We next verify (37), which concerns S, (f). Since A, 1sin £;(— «, =),
£(ngf) as in (39), write
n\|? = n\|?
E o+ g) - £ Ja(+7)
large such that £(ne, f) = €/2, for f € [0, 1/7T"]. With n, so chosen,
|H(f)| = |HAf) +H.(NH| = |H(N| + [H ().

= [H.(Hi*+ QlHr(f)J |1q(f)|~+ [H.(f)]?
= \Hr(f)l” + 2Hhrl|lHkr”1 + Hh,!ﬁ,

where || |1 denotes £; norm. Since [|k.|1—0, as 7 — =, if 7 is
sufficiently large, then

‘ € 1
|H-(f)| — |[H(f)| =z — é‘m, fe(—w, ). (44)

Inequalities (43) and (44) imply that, for all e > 0, there exists a
ro(€) such that for all + = 7(e),

SNZSN -« 0SfS g (45)
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Thus, for 7 = 7o(e),

inf S.(f)z inf S()—e=m— e (46)

0=f=1/T 0=/ =1/T

Letting r — « and ¢ — 0 in (46) yields (37).

APPENDIX B

Convergence of the Minimum Distance
In this appendix, we shall verify (21), Le,,
d(h.) — d{h), as 17— =, (47)

From the definition of d(h,) (10), for arbitrary ¢ > 0, we are assured
of the existence of a w = u — v such that u, v & @, and

[Artw]|| = d(h:) + e (48)
Repeating the steps in (34), we obtain

yT N-1
[howw 2 = [ §:(N) | % wiemrs/|2df 2 2[inf $:(N] T lwel . (49)
0 k =0

From (37) we can choose 7 sufficiently large so that

iIflf S.(f) =z m. (50)
Hence, for such a choice of r,
N—1 ] 2
T |wkl = w (51)
k=0 am
Now
Ay S Iwwl = Jow — Giww || < [lhesw]| + [Foew]
< dh:) + e+ |how].  (52)
Since

(hexw) (1) = }:_ he(t — ET) - w,

we have, with r large enough to satisfy (51),

% el [l = Il $ el = W a4 2. 53)

2m

17w =

Combining (52) and (53) yields for 7 sufficiently large (and ¢ > 0

arbitrary)
Wl ,

d(h) = d(h.) + €+ ” [d(h:) + €] (h4)
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Letting r — = and e — 0 yields
d(h) < lim inf d(h.). (55)

The identical argument with - and k. reversed yields for all » > 0,
e> 0,

a0y s de) + e+ 0l pagy + o3,

so that (letting r — =, e — 0)
lim sup d(h,) = d(h). (56)

T30

Inequalities (55) and (56) yield (47) or (21), completing the proof.
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