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We consider the situation in which digital data is to be reliably trans-
mitted over a discrete, memoryless channel (DMC) that is subjected to a
wire-tap at the receiver. We assume that the wire-tapper views the channel
output via a second DMC. Encoding by the transmitter and decoding by the
recewver are permitted. However, the code books used in these operations are
assumed to be known by the wire-tapper. The designer attempts to build
the encoder-decoder in such a way as to maximize the transmission rate R,
and the equivocation d of the data as seen by the wire-tapper. In this paper,
we find the trade-off curve between R and d, assuming essentially perfect
(““error-free’’) transmission. In particular, if d is equal to H s, the entropy
of the data source, then we consider that the transmission is accomplished
in perfect secrecy. Our results tmply that there exists a C. > 0, such
that reliable transmission al rates up to C, is possible in approxrimately
perfect secrecy.

I. INTRODUCTION

In this paper we study a (perhaps noisy) communication system
that is being wire-tapped via a second noisy channel. Our object is to
encode the data in such a way that the wire-tapper’s level of confusion
will be as high as possible. To fix ideas, consider first the simple special
case depicted in Fig. 1 (in which the main communication system is
noiseless). The source emits a data sequence Sy, Ss, - - -, which consists
of independent copies of the binary random variable S, where
Pr{S=0} =Pr{S =1} =1 The encoder examines the first K
source bits S¥ = (S), - - -, Sk) and encodes S¥ into a binary N vector
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Fig. 1—Wire-tap channel (special case).

X¥ = (X, ---, Xy). X¥ in turn is transmitted perfectly to the decoder
via the noiseless channel and is transformed into a binary data stream
Sk = (8, -+, Sk) for delivery to the destination. The ‘“‘error proba-

bility"’ is defined as
K )
P,=Il{z Pr (S; = Si. 1)
k=1

The entire process is repeated on successive blocks of K source bits.
The transmission rate is K/N bits per transmitted channel symbol.

The wire-tapper observes the encoded vector XV through a (memory-
less) binary symmetric channel (Bsc) with crossover probability
p0(0 < po £ 3). The corresponding output at the wire-tap is Z¥
= (Zy, -+, Zy), 50 that forz,2=0,1 (1 =n = N),

Pr {Zn = Z‘Xn = 1:} = (1 - po)ax,z + pO(l - a:,z)-
We take the equivocation
a2 L psszv @)
K
as a measure of the degree to which the wire-tapper is confused. The
logarithms in H are, as are all logarithms in this paper, taken to the
base 2. The system designer would like to have P, close to zero, with

K/N and A as large as possible.
Consider the following schemes:

(¢) Set K =N =1, and let X, = S;. This results in P, =0,
K/N =1,and A = H(X:|Z1) = h(po), where

B(A) = —Alogh— (1 —Nlog (1 —X), 0=X=1, 3)
(take 0 log 0 = 0).
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(17) Bet K = 1, and let N be arbitrary. Let C, be the subset of
binary N space, {0, 1}*, consisting of those N vectors with even parity
(i.e., an even number of 1's). Let C; € {0, 1}¥ be the subset of vectors
with odd parity. The encoder works as follows. When Sy = 4, (i = 0, 1),
the encoder output XV is a randomly chosen vector in C,. Thus, the
encoder is a channel with transition probability

2_(-\r—l)) x E Cl‘,
0; X €E 01')

for ¢ = 0, 1. Clearly, the decoder can recover S; from X¥ perfectly, so
that P, = 0. We now turn to the wire-tapper who observes ZV, the
output of the Bsc corresponding to the input X¥. Let z € {0, 1]V be
a vector of, say, even parity. Then

Pri{XV =x|S8, =1} = {

Pr{S;,=0|Z¥ = z} = Pr the Bsc makes an
even number of errors

N

."\’r : .
=X ( i ) Pl — po)¥i = + (1 — 2po)™.
J=
7 even

The last equality can be verified by applying the binomial formula to

(1 = po) £ xpe]¥ = %ﬂ ( N )'pf‘i(l — po)¥i(xx).

=0\ Jj
Then
.
2 X (l\l ) Ph(1 — p)¥~ = (1 — po+ L-po)¥ + (1 — po — 1-po)¥
J even .
=14 (1 = 2pg)¥
(S. P. Lloyd). Similarly, for z € {0, 1}* of odd parity,

the Bsc makes an
odd number of errors

=3 — 31 — 2.

Pr{S;=0|Z¥ = z} = Pr {

Therefore, for all z & {0, 1}V,
H(8:|ZY = z) = h[} — (1 — 2pg)™],

so that
A= H($|2Y) = h[} — 3(1 — 2po)¥]

—1=H(S,), as N >,

Thus, as N — =, the equivocation at the wire-tap approaches the
unconditional source entropy, so that communication is accomplished
in perfect secrecy. The ‘“‘catch” is that, as N — «, the transmission
rate K/N = 1/N — 0.
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A central question to which this paper is addressed is whether or
not it is possible to transmit at a rate bounded away from zero, and
yet achieve approximately perfect secrecy, i.e., A R H(S:). Before
giving the answer to this question, we shall describe the more general
problem that is addressed in the sequel.

Refer to Fig. 2. The source is discrete and memoryless with entropy
Hs. The “main channel” and the “wire-tap channel” are discrete
memoryless channels with transition probabilities Qu(-|-) and
Qw (- |-), respectively. The source and the transition probabilities € s
and Qy are given and fixed. The encoder, as in the above example, is a
channel with the K vector SX as input and the N vector XV as output.
The vector X¥ is in turn the input to the main channel. The main
channel output and the wire-tap channel input is Y¥. The wire-tap
channel output is Z¥. The decoder associates a K vector 8% with Y¥,
and the error probability P, is given by (1). The equivocation A is
given by (2), and the transmission rate is KHs/N source bits per
channel input symbol. Roughly speaking, a pair (R, d) is achievable
if it is possible to find an encoder-decoder with arbitrarily small P,,
and KHg/N about R, and A about d (with perhaps N and K very
large). Our main problem is the characterization of the family of
achievable (R, d) pairs, and such a characterization is given in Theorem
2. It turns out (Theorem 3) that, in nearly every case, there exists a
“secrecy capacity,” C, > 0, such that (C,, Hs) is achievable [while,
for R > C,, (R, Hg) is not achievable]. Thus, it is possible to reliably
transmit information at the positive rate C, in essentially perfect
secrecy.

For the special case of our introductory example (Hs =1, Qum
corresponding to a noiseless channel and @Qw to a Bsc), the conclusion
of Theorem 2 specializes to the assertion that (R, d) is achievable if
and onlyif 0 £ R £ 1,0 £ d £ 1, and Rd = h(po). Note that scheme
(7) suggested above for this special case asserts that R = 1, d = h(po)

s¥ x¥ | maincHanneL | YN gk
SOURCE f—#= ENCODER ay DECODER it

WIRE—TAP CHANNEL
Qw

|

zN

Fig. 2—Wire-tap channel (general case).
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is achievable. From Theorem 2, this value of d = h(po) 1s the maxi-
mum achievable d, if R = 1. Scheme (#f) above asserts that R = 0,
d = 1 is achievable, but this is distinetly suboptimal since from
Theorem 2, R = h(py), d = 1 is achievable. Thus, reliable trans-
mission at a rate & (p) is possible with perfect secrecy, and €, = h(po).

An outline of the remainder of this paper now follows. In Section
I, we give a formal statement of the problem and state the main
results (Theorems 2 and 3). In Section 111 we give a proof of Theorem
2 for the special case discussed above (main channel noiseless, wire-tap
channel a Bsc). In Section IV, we prove the converse half of Theorem 2,
and in Section V the direct half of that theorem.

Il. FORMAL STATEMENT OF THE PROBLEM AND SUMMARY OF RESULTS

In this section we give a precise statement of the problem that we
stated informally in Section I. We then summarize our results.

First, a word about notation. Let U be an arbitrary finite set. Denote
its cardinality by |u|. Consider u", the set of N vectors with com-
ponents in U. The members of UY will be written as

uV = (ulr Uz, =+, ’MN),

where subscripted letters denote the components and boldface super-
scripted letters denote vectors. A similar convention applies to random
vectors and random variables, which are denoted by upper-case letters.
When the dimension N of a vector is clear from the context, we omit
the superscript.

For random variables X, ¥, Z, etc., the notation H(X), HX|Y),
I(X;Y), I(X; Y|Z), etc., denotes the standard information quantities
as defined in Gallager.! The logarithms in these quantities are, as are
all logarithms in this paper, taken to the base 2. Finally, for n = 3, 4,
9, -+, we say that the sequence of random variables {X,}7, is a
“Markov chain” if (X, X, ---, X,_,) and (X4, -- -, X,.) are condi-
tionally independent, given X,(1 < j < n). We make repeated use of
the fact that, if X, X., X;is a Markov chain, then

H(X;3| Xy, X2) = H(X;| X,). (4)

At this point we call attention to Appendix A, in which the data-
processing theorem and Fano's inequality are given in several forms.

We now turn to the description of the communication system. We
assume that the system designer is given a source and two channels
that are defined as follows.

(#) The source is defined by the sequence {8k}, where the S; are
independent, identically distributed random variables that take
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values in the finite set 8. We assume that the probability law that
defines the {S:} is known. Let the entropy H(Si) = Hs. In Appendix
C we show how to extend the results of this paper to arbitrary station-
ary finite alphabet ergodic sources.

(1) The main channel is a discrete memoryless channel with finite
input alphabet 9, finite output alphabet ¢, and transition probability
Qu(y|z), z € X, y € Y. Since the channel is memoryless, the transi-
tion probability for N vectors is

Q1% = I Quyalz). ©)

Denote the channel capacity of the main channel by Car.

(#3i) The wire-tap channel is also a discrete memoryless channel
with input alphabet ¢, finite output alphabet 3, and transition
probability Qw(z|y), ¥ € Y, z € 3. The cascade of the main channel
and the wire-tap channel is another memoryless channel with transition
probability

Quw(z|z) = yfengw(zly)Qu(ylx)- (6)

Occasionally, when there is no ambiguity, we use the transition proba-
bility of a channel to denote the channel itself. Let Cnw be the capacity
of channel Qaw.

With the source statistics and channels Qu and Qw given, the
designer must specify an encoder and a decoder, defined as follows.

(i) The encoder with parameters (K, N) is another channel with
input alphabet 8%, output alphabet 9%, and transition proba-
bility g¢e(x|s), s €85, x € x¥. When the K source variables
SK = (8,, -+ -, Sk) are the input to the encoder, the output is the
random vector X¥. Let YV and Z¥ be the output of channels Qf” and
Q4% respectively, when the input is X¥. The equivocation of the
source at the output of the wire-tap channel (corresponding to a
particular encoder) is

NG % H(SK|Z"). )

We take A as our criterion of the wire-tapper’s confusion. From the
system designer’s point of view, it is, of course, desirable to make A
large.

(v) The decoder is a mapping

fp: Y¥ — 8K, (8a)

Let § = (Sy, -+ -, 8x) = fo(Y). Corresponding to a given encoder and
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decoder, the error-rate is
‘ | ¥
P,= % % Pr{S = S (8b)
k=1

We refer to the above as an encoder-decoder (K, N, A, P.).* The

applicability of the above to the system in Fig. 2 should be obvious.
Next, we say that the pair (R, d) (where R, d > 0) is achievable if,

for all € > 0, there exists an encoder-decoder (N, K, A, P,) for which

LIPS P (9a)
_ A=d— ¢ (9b)
i P, £ e (9¢)

Our problem is to characterize the set ® of achievable (R, d) pairs.
Let us remark| here that it follows immediately from the definition
that ® is a closed subset of the first quadrant of the (R, d) plane.
Before stating our characterization of ®, we digress to discuss a certain
information-theoretic quantity that plays a crucial role in our solution.

Consider the channels Qu, Qw, and Quw defined above. Let px(z),
x € X, be a probability mass function and let X be the random
variable defined by

. Pr{X =x} =px(), z€E x.

Let ¥V, Z be thi outputs of channels @i and Qarw, respectively, when
X is the input. For B = 0, let ®(R) be the set of px such that
I(X;Y) = R. Of course, ®(R) is empty for B > Cy, the capacity of
channel Q. Finally, for 0 < R = Cy, define

a

I'(R) sup I(X;Y|Z). (10)

PxEF(R)

We remark here that, for any distribution px on &, the corresponding
X, Y, Z forms 4 Markov chain, so that the definition of mutual infor-
mation and (4)|yield

I(X;Y|Z)=H(X|Z) — HX|Y, Z)
= H(X|Z) — H(X|Y) = I(X; V) — I(X: Z). (11)

[
Thus, we can w|rite (10) as
T(R)= sup I(X;Y|Z)= sup [I(X;Y)—1I(X;2Z)] (12)
px EF(R) pxEC(R)
* This should be read as “. .. an encoder-decoder with parameters (K, N, a, P,).”
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As an example, suppose that = Y = & = {0, 1}. Let Qu be a
noiseless (binary) channel, and let Qw be a binary symmetric channel
(Bsc) with crossover probability pe. Then for arbitrary px,

I(X;Y) - I(X;Z) = HX) — [H(Z) - H(Z|X)]
= h(pd) + H(X) — H(Z) = h(pa),

where h(-) is defined in (3). The inequality follows from the well-
known fact (see, for example, Ref. 2) that the entropy of the output
of a Bsc, i.e., H(Z), is not less than the entropy of the input, H(X).
Further, H(X) = H(Z) if and only if px(0) = px(1) = }. Since this
distribution belongs to ®(R), forall B,0 < R < Cx = 1, we conclude
that, in this case,

I'(R) = h(po), 0 =R = Ci. (13)

In Appendix B, we establish the following lemma concerning I'(R).
Lemma 1: The quantity T'(R), 0 £ R = Cu, satisfies the following:

(3) The “supremum’’ in the definition of T[(10) or (12)] is, in fact,
a mazimum—i.e., for each R, there exists a px € ®(R) such
that I(X; Y|Z) = T'(R).
(#2) T'(R) is a concave funciion of R.
(#7) T(R) is nonincreasing in R.
() T(R) s continuous in E.
(v) Car = T(R) = Car — Cuw, where Cy and Cuw are the capaci-
ties of channels Qy and Qarw, respectively.

We can now state our main result, the proof of which is given in the
remaining sections.

Theorem 2: The set ®, as defined above, is equal to ®, where
R2((Rd: 0SR=<Cy, 0=d=Hs Rd=<HS(R)}. (14)
Remarks:

(1) A sketch of a typical region ® is given in Fig. 3. In the above ex-
ample (Qy noiseless and Qw a Bsc), T'(R) = h(po), a constant, so that
the curve Rd = HsI'(R) is a hyperbola. Observe that in this case
the region @ is not convex. This is in contrast to the up-to-now essen-
tially universal situation in multiple-user Shannon theory problems,
where the solution is nearly always a convex region. Whether or not
I'(R)/R is always convex, as it appears in Fig. 3, is an open question.

(2) The pointsin & for which R = Cy correspond to data rates of
about the capacity of Qa. This is clearly the maximum rate at which
reliable transmission over Qu is possible. An equivocation at the
wire-tap of about HsI'(Car)/Ca is achievable at this rate. An increase
in equivocation requires a reduction of transmission rate.

1362 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1975



L

D

Fig. 3—Region 4.

(3) The points in & for which d = Hg are of considerable interest.
These correspond to an equivocation for the wire-tapper of about
Hgs—i.e., perfect secrecy. A transmission rate of

Ci= max R
(R, Hg)E@

is therefore achievable in perfect secrecy. We call C, the “secrecy
capacity” of the channel pair (Qu, Qw). The following theorem
clarifies this remark,

Theorem 3: If Car > Carw, there exists a unique solution C, of
C, = TI(C,). (15)
Further, C, satisfies
0<Cy —Cyw ST (Car) = Cs £ Ch, (16)
and C, is the mazimum R such that (R, Hg) € ®.
Proof: Define G(R) = I'(R) — R, 0 £ R < Cy. From Lemma 1 (v),

G(Cy) =T(Cx) — Cy 20,
and
G0) =T(0) = Cyy — Carw > 0.

Since by Lemma 1, (iz7) and (@), (/(R) is continuous and strictly
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decreasing in R, a unique C, € (0, Cx] exists such that G(C.)
= I'(C,) — C, = 0. This is the unique solution to (15). Inequality
(16) follows from C, € (0, Ca] and Lemma 1, (47) and (v). Finally,
from (15) and (16) we have (C,, Hs) € ® = ®. Also, if (R, Hs) € ®,
then HgR, < Hs['(R,) so that G(R;) = 0. Since G(R) is strictly
decreasing in R, we conclude that B, < C.. Thus, C, is the maximum
of those R for which (R;, Hs) € ®, completing the proof.

(4) Tt is clear that the source statistics enter into the solution only
via the source entropy Hs. We also remind the reader that the fairly
simple extension of Theorems 2 and 3 to a stationary, ergodic source
is given in Appendix C.

(5) If we define P.., the “wire-tapper’s” error probability, as the
error rate at a decoder built by the wire-tapper [defined analogously
to (8)], then it follows from Fano’s inequality (see Appendix A) that

A < h(Pw) + P log |8].

Thus, a large value of the equivocation A implies a large value of
P,, (which the system designer will find desirable).

1ll. PROOF OF THEOREM 2 FOR A SPECIAL CASE

In this section we prove Theorem 2 for the very special case dis-
cussed in Section I. All alphabets $, %, %, 3 are equal to {0, 1}. The
source {Six} satisfies Pr {Sy = 0} = Pr {8, = 1} = 3. Channel Qu is
noiseless, i.e., Qu(y|z) = 8;.4; and channel Qw is a Bsc with crossover
probability pe (0 = po = 3), ie.,

Qw(z|y) = (1 — po)dy. + po(l — 8y.0)- (17)
We show here that (R, d) is achievable if and only if
R = CM = ]., d= Hs = 1, Rd = h(pu) (18)

Since, for this case, I'(R) = h(p.), this result is a special case of the
as-yet-unproven Theorem 2. We begin with the converse (‘“‘only if")
part of the result. Let 8%, X¥ Z¥ correspond to an encoder-decoder
(N, K, A, P;) (note that YV = XV¥). Then, making repeated use of
the identity H(U, V) = H(U) + H(V|U), we can write (dropping
the superseript on vectors)
KA = H(SX|Z¥) = H(S,Z) — H(Z)

=H(Z|X,S) + HX,S) — HX|[S,Z) — H(Z)

(a)

=H(Z|X)+ HES|X) + HX) — H(X|S,Z) — H(Z)

)

= Nh(po) + H(S|X) + [H(X) — H(Z)] — H(X[S,Z). (19)

These steps are justified as follows.
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(a) From the fact that (S, X, Z) is a Markov chain and (4), so that
H(Z|X,S) = H(Z|X).

(b) Since X, Z are the input and output, respectively, of a Bsc,
H(Z|X) = Nh(po), regardless of the distribution for X.

Now from Fano’s inequality [use ineq. (78) with ¥V = X7, we have
H(S|X) = Kh(P,). Further, the entropy of the output of a Bsc = the
entropy of the input [this follows from Mrs. Gerber’s lemma (Ref. 2,
Theorem 1)], so that H(X) — H(Z) = 0. Finally, H(X|S, Z) = 0.
Thus, (19) yields for any encoder-decoder (K, N, A, P.),

KA = Nh(pu) + Kh(PB)J
or

I~ h(P)T S hpo). (20)

Now suppose that (R, d) is achievable. It follows from the ordinary
converse to the coding theorem (Ref. 1, Th. 4.3.4, p. 81) that
R £ Cy = 1. Further, since A £ Hs = 1, we conclude that d =< 1.
Finally, if we apply (20) to an encoder-decoder (N, K, A, P,) that
satisfies (9) with e > 0 arbitrary, we have

(R — gl(d — ¢ — k()] = h(po).

Letting e — 0 yields Rd = h(py). Thus, we have established the
converse of Theorem 2, i.e., that an achievable (R, d) must satisfy (18).
We begin the proof of the direct half of Theorem 2 with a digression

about group codes for the Bsc. Let G C {0, 1}V be a group code (i.e.,
a parity check code) as defined for example in Ref. 1, Chapter 6, or
Ref. 3, Chapter 4. The group code  has M = 2¥/|(| cosets. Denote
the cosets by Co = 7, Cy, Cs, -+, Cay_1. Of course, the cosets are
disjoint and

M—-1

_Un C: = {0,1}¥~
Let A be the word error probability when group code G (or for any of
the cosets) is used on a Bsc with crossover probability p,, with maxi-
mum-likelihood (minimum distance) decoding. Thus, for each coset
Cy, 0 =7 = M — 1, there exists a decoder mapping D,: {0, 1}¥ — (;,
such that if XV is the input to a Bsc with crossover probability po, and
Z~ is the corresponding output, then forallx € C;,, 0 = ¢ <= M — 1,

Pr {D;(ZV) = XV |XV =x} = A
Thus, regardless of the probability distribution for XV,
Pr{D:(Z%) = X¥|XN & C;} = A
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Letting ¢ (x) = 7, forx € C;,; 0 £ 7 = M — 1, we have, from Fano’s
inequality [use ineq. (76) with U = XV, V = Z¥, U = D:(2Z%)],

HXY|Z¥, ¢ = 1) = h(\) + Nlog [Ci].
Therefore, for any X distribution (which induces a distribution of ),
HXY|ZV,¢) < h(\) + Nlog |G]. (21)

We conclude this digression by stating as a lemma the well-known
result of Elias that there exists a group code for transmitting reliably
over a BSC at any rate up to capacity. A proof of this result can be
found in Ref. 1, Section 6.2.

Lemma 4: Let €1 > 0, r < 1 — h(po) be arbitrary. Then, provided N is
sufficiently large, there exists a group code G of block length N with
|G| = 2N, such that, on the Bsc with crossover probability po, the error
probability A £ e

We now prove the direct half of Theorem 2 for our special case by
showing that any (R, d), where R is rational, which satisfies

R-d = h(po), (22a)
0=d<1, (22b)
0<R=1 (22¢)

is achievable. Thus, for (R, d) satisfying (22), and arbitrary ¢ > 0,
we must show the existence of an encoder-decoder (N, K, A, P,) that
satisfies (9). We now proceed to this task.
Let K, N satisfy

K
N
Let G be a binary group code with block length ¥ and with |G|
= 2W-KE) Thus, G has M = 2% cosets {C;}{L,. We can assume that
the set $& = {0, 1}¥ is the set of integers {0,1, ..., M — 1}. We
construct the encoder such that when the source vector SX = 7,* the
encoder output XV is a randomly chosen member of coset Ci—i.e.,

11 ~-WN-K)  forx € (;

Pr {X¥ =x|S =1} =< |C4] |G ! v

0; T GE Cl't

0 =i < M — 1. Since S¥ is uniformly distributed on {0, 1, - - -, M — 1},
X¥ is uniformly distributed on ¥ = {0, 1}¥. Thus, in particular,

H(XN) = H(Z") = N, (24)

= R. (23)

* This is an abuse of notation. A more precise statement is that S¥ is a binary
representation of 7.
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where, as always, ZV is the output of the wire-tap channel when XV
is the input. Also let us observe here that the quantity ¢ (XV), defined
in the above digression, is identical to S, Thus, (21) yields

H(XY|Z", 8¥) = h(\) + (N — K), (25)

where X is the error probability for the group code .
We now turn to the decoder. Letting D(y) = 7, when y € C;, we
conclude (since the channel @y is noiseless) that

P, = 0. (26)

Since (23) and (26) imply (9a) and (9¢), it remains to show that a @
exists such that the resulting encoder-decoder will satisfy (9b).

We now invoke (19), which is valid for any encoder-decoder.
Substituting (24) and (25) into (19), and invoking (26), which implies
H(S|X) = 0, we obtain

Ag( )h( ) — h(—?\)—?\(i 1)- (27)
Now, from (22a) and (23), we have
ﬁ,( ) = h(pu) —d
and from (23),
7\(%—1) - a(é— 1)-
Thus, (27) yields
Azd- [@+A(R}—1)]- 28)

Finally, since from (23) and (22a) we have

|G| = 2¥—K < 2NU—h(po)ld]
we can invoke Lemma 4 with » = 1 — h(po)/d < 1 — h(po) [from
(22b)] to assert the existence of a group code G with A sufficiently
group

small to make the term in brackets in (28) <e. Then A = d — ¢,
which is (9b). This completes the proof of the direct half.

IV. CONVERSE THEOREM

In this section, we establish the converse theorem that the family
of achievable rates ® is contained in ® as defined in (14). Suppose that
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(R, d) € &. That R < Cy follows from the ordinary converse to the
coding theorem (Ref. 1, Theorem 4.3.4, p. 81). That d = Hs follows
from

_ i K| 7Ny < _1_ Y —
A= KH(S | Z~) =KH(S ) = Hs.
Thus, it remains to show that Rd = HsI'(R). We do this via a lemma,
the proof of which is given at the conclusion of this section.

Lemma &: Let SK, XN YN, ZVN correspond to an encoder-decoder
(N, K, A, P,). Then

O Kra—sPols § £ 1K VZ Y, @)
1 N e =N = ny n ny ) 8
(i KH 3(P,) <1NIX-Y|Y"‘1 (29b
“) N[S_(’:I:Ng("’ n ); a)

where
5(P.) = h(P.) + P.log |8, (29¢)

and where the n = 1 ferm in the summations of (29a, b) is given the
obvious interpretation—i.e., that I(Xy; Y1|Z,, Y) = I(X,; Y1|Z,), elc.
Nowforn =23, ---, N,anyy & Y=}, set

an(y) = I(X,; Yo |[Y! = ). (30a)

Also let
ar = I(Xy1; Yy). (30b)

It follows from the definition of ®(R) in Section II that the distribution
p1, defined by

p1(x) £ pr {(Xi==z}, z€ 9,
belongs to ®(a,). Similarly, for 2 £ n = N, withy & Y~ fixed, define
puy(@) & PriX, =z =y}, z€ X

Then pn.y € ®[e.(y)]. Thus, from (10) and the fact that channels
Q" and Q)" are memoryless,

T(w) = I(Xy; V1| Z), (31a)
and for2 £n £ N,y € Yy~
T[an(y) ]2 [(X,; Yol Z, Y = y). (31b)

It follows that the right member of (29a) is (giving the n» = 1 term
the obvious interpretation)
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L S I(X.; Va2, YY)
N = ny n ny
= l E Pr {Yﬂ—l — y}I(Xn’ YﬂlZ",Ynkl — y)
N n-lyE‘yn-l
@) 1
S yZ X Priy = yirfen(y)] (32)

IAZ

[ §ZEPr Y = gl |

ny

—
D

_) 1 4 n—1
= I‘(N;I(X,.I oY ))

r (% Hs — B(Pe))-
Step (a) follows from (31), step (b) from the conecavity of I' [Lemma

1(z7) ], step (c) from the definition of a., and step (d) from (29b) and
the monotonicity of I' [Lemma 1(#7%) ]. Applying (29a) to (32) yields

Corollary 6: For any encoder-decoder (N, K, A, P,),

INE

NIa-s@aIsT| FHs - 5| 33)

We now show that, if (R, d) € ®, then Rd £ HsI'(R). Let
(R,d) € @&, and let € > 0 be arbitrary. Apply Corollary 6 to the
encoder-decoder (N, K, A, P,) that satisfies (9). Inequalities (33) and
(9) yield

(R — e[(d— € —8(e)] < HsT[(R — ¢) — ()] (34)
Letting ¢ — 0 and invoking the continuity of I' [Lemma 1 (1) ] yield
Rd = HsI'(R), completing the proof of the converse. It remains to
prove Lemma 5.
Proof of Lemma 5:
() Let SX, X¥ YV, Z" correspond to an encoder-decoder (N, K, A, P,).
First observe that

& H(SK|Z¥, Y%) < L H(SK|Y¥)
< h(P) + Pulog (|s| —1) = 8(P).  (35)
Inequality (a) follows from Fano’s inequality [use (78) with V = Y¥].
Next, using the definition of A (7) and (35), write
KA = H(SX|Z¥) = H(SE|Z¥) — H(S¥|ZN,YN) + Ks(P.)
= I(S%;YN|ZY) + Ks(P.)
= I(X%;YV[ZY) + Kb(P,). (36)
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The last inequality in (36) follows from the data-processing theorem,
since given ZV = z, (Y¥, X¥, SX) is a Markov chain (Appendix A).
Transposing the Ké(P,) term in (36) and continuing:
K[A — 8(P,)] = I(XN, YV|ZN)

= H(XV|ZN) — H(XN|ZN, YV)

()

= H(XN|Z¥) — H(XV|Y¥)

= J(XVN;Y¥) — I(XVN;ZV)

= H(YN) — H(Z¥) + H(ZN|XN) — H(YV|XV)

(b)y N

= Y [HY.|Y*Y) — H(Z.|Z*)

n=1

N
=< Z [H(Y,.[Y"_l) _ H(Z"IZn—l’ Yn—l)

n=1

+ H(Z.|X2) — H(Ya[X4)]
N
S [H(Y.|Y™Y) — H(Z,| YY) 4+ H(Z.|X.,, Y1)
n=1
+ H(Yu| X0, Y1) ]

= 3 [I(Xs Yol YY) — I(Xo; 20| Y]

n=1

_ é [H (X | Zny Y1) — H(Xs| ¥ay Yo ]

S S [H(Xu|Zny, Y1) — H(X,| Yoy oy Y]

n=l1

N
= Z_‘,l I(X.; YalZa YY), (37)

The steps in (37) that require explanation are:

(a) that follows from the fact that X¥, YV, Z¥ is a Markov chain
and (4);
(b) that follows from the standard identity

N
H(UY) = X H(U.|U™Y,
n=1
and the fact that channels Q” and Q) are memoryless;
(c) that follows from the fact that conditioning decreases entropy;
(d) that follows on applying (4) to the Markov chains (Z*!, Y1,
Zy), (Y=, X, Yo, Zn);

1370 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1975



(e) that follows from the fact that, given Y, (X., Y., Z,) is a
Markov chain.

Since (37) is (29a), we have established part () of Lemma 5.
(77) With 8%, XV, YV, ZV, as in part (?) write
H(SK) = I(S¥; YY) + H(SK|Y")
= I(XY; YY) + Ks&(P,), (38)
where the inequality follows from the data-processing theorem (since

SK XN YV, is a Markov chain) and from Fano’s inequality as in (35).
Since H(SKX) = KHg, (38) yields

K[Hs — 8(P)] = I(XV; YY)

@ z‘f [H(Y.|Y*") — H(Y.|X.)]

n=1

= Zvl [H(Y.|Y~Y) — H(Y,|X,, Y]

n=1

N
= > I(X,; V,.|¥). (39)
n=1

Step (a) follows on application of H(YY) = >, H(Y.|Y""), and the
memorylessness of channel @Q§”, and step (b) from the fact that
Y, X,, Y, is a Markov chain. Inequality (39) is (29b), so that the
proof of Lemma 5 is complete.

V. DIRECT HALF OF THEOREM 2

In this section we establish the direct (existence) part of Theorem 2,
that is, ® € ®. The first step is to establish two lemmas that are
valid for any encoder-decoder as defined in Section II.

Lemma 7: Let S¥, XV, Y¥, ZV correspond to an arbitrary encoder-decoder
(N, K, A, P,). Then

KA 2 H(SK|ZV) = H(SK) + I(XY;Z¥|SK) — I(X¥; ZV). (40)
Proof: By repeatedly using the identity H(U, V) = H(U) + H(V|U),
we obtain (we have omitted superscripts)

KA = H(S|Z) = H(S,Z) — H(Z)

= H(S,Z,X) — HX|S,Z) — H(Z)

=H(Z|X,S) + H(X,S) - HX|S,Z) — H(Z)

= H(Z|X,S) + H(S) + [H(X|S) — H(X|S,Z)] — H(Z)

= H(S) + I(X;Z|S) — [H(Z) — H(Z|X, S)]. (41)
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Now, since S, X, Z is a Markov chain, H(Z|X, S) = H(Z|X) [by
(4)7]. Thus, the term in brackets in the right member of (41) is I(X; Z),
completing the proof.

We now give some preliminaries for the second of the two lemmas.
For the remainder of this section we take the finite set X to be
{1,2, -+, A}. Let X* be a random variable that takes values in &
with probability distribution

Pr{X* =1} = px(1), 1=7i=A.

Let Y* and Z* be the output of channels @y, and @ w, respectively,
when X* is the input. As always, Qi w is the cascade of Qx and Qw,
so that X* Y* Z* is a Markov chain. Next, for 1 £7 < A, and
x € %XV define

#(i,x) 2 card {n: z, = i}

= number of occurrences of the symbol 7 in the
N-vector x. (42)

For N =1, 2, -+, define the set of “typical” X sequences as the set

T* = T*(N) = [x € v

ﬂ;;—x)—pﬁz(i) gaN,lgigA},
(43a)
where
by 2 N-L, (43b)
Let us remark in passing that the random N-vector X* consisting of
N independent copies of X* satisfies E# (7, X*N) = Np% (i), and

Var [# (1, X*¥)] = Np%x()[1 — p%()], for 1 =i < A. Thus, by
Chebyshev’s inequality

A
Pr {X*¥ ¢ T*(N)} = z Pr {|# (2, X*) — Npx(i)| > Néw}
4 1
=XV , X*) /N3 = 0 — 44
< 3 Var [# G, X%/ (F)-0 @
as N — .
We can now state the second of our lemmas. We give the proof at

the conclusion of this section.

Lemma 8: Let X¥, Z¥ correspond lo an arbitrary encoder and let X*, Z*,
T* correspond to an arbitrary py as above. Then

& I(R¥;2%) < I(X*, 7%) + (log 4) Pr (XY & T*(V)} + f1(N),
where f1(N) — 0, as N — =,
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Lemma 8 implies that, if the encoder is such that with high proba-
bility X¥ & T*, then (1/N)}I(XV;ZY) cannot be much more than
I(X*, Z*).

Lemmas 7 and 8 hold for any encoder-decoder. Our next step is to
describe a certain ad-hoc encoder-decoder and deduce several of its
properties. We then show that when the parameters of the ad-hoc
scheme are properly chosen, the direct half of Theorem 2 will follow
easily.

We begin the discussion of the ad-hoc scheme by reviewing some
facts about source coding. With the source given as in Section II,

for K =1, 2, --., there exists a (‘“source encoder’”’) mapping Fg:
8K — {1,2, ---, M}, where

M = 2KHsO+5) (45)
and g = K% Let Fp: {1,2, -+, M} — 8% be a (“source decoder”)

mapping, and let
PO = Pr {FpoFg(SX) # S%}

be the resulting error probability. It is very well known that there
exists (for each K) a pair (Fg, Fp) such that, as K — e,
P& = Pr {Fp(W) % SK} —0, (46a)
where
W = Fg(SX). (46Db)
We will design our system to transmit W using an (Fgz, Fp) that
satisfies (46).
We now turn to our ad-hoc system. (Refer to Fig. 4.) The source

output is the vector SX, and the output of the source decoder is
W = Fg(SX). Let

gi £ Pr (W = Fg(8K) =4}, 1

1A

i< M. (47)

a0 A
source | 3% = FolW)
DECODER[———

= N
st | sounce [WoFER) fcuanner | XN | CHANNEL] ¥ ] cuannEL
ENCODER ENCODER oy’ DECODER

W
SOURCE e

CHANNEL
N}
UW

|

zZN

Fig. 4—Ad-hoe encoder-decoder.
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Next, let My = MM be a multiple of M to be specified later. Let
{xa}1"

be a subset of V. Clearly, {x.} can be viewed as a channel code for
channel Q{" or channel Q%}. The channel encoder and decoder in
Fig. 4 work as follows. The channel encoder and decoder each contains

a partition of {x,}3* into M subcodes Ci, Cs, ---, Ca, each with
cardinality M,. Assume that
Ci = {Xavapn - Xan), 1212 M (48)

When the random variable W = ¢, then the channel encoder output
X¥ is a (uniformly) randomly chosen member of the subcode C.. Thus,
forl=i=M, 1= 7= M,

Pr{X¥ = x_nyu| W =1} = 52, (49a)

and
Pr {(X¥ = x(:‘—l)]l[z+.i} = JETIE (49b)
Now the set {x,}¥* ecan be thought of as a channel code for channel
(M with prior probability distribution on the code words given by
(49b). A decoder for the code is a mapping 7 YY¥ — {x,.}1"* and the
(word) error probability is

A = Pr {G(YY) = X¥}, (50)

where YV is the output of @, when the input XV has distribution
given by (49b). We assume that the channel decoder in Fig. 4 has
stored the mapping (. When the channel output is y & Y, the channel
decoder computes (/(y). When (/{y) € C,, the channel decoder output
is 4, 1 £7 < M. Letting W be the output of the channel decoder,
we have

Pr{W = W} <\

The final step in the system of Fig. 4 is the emission by the source
decoder of S = Fp(W), where Fp: (1,2, ---, M} — 8X is chosen so
that (46) holds. We have

Pr (S = 8§} = Pr {S = Fp(W)}
Pr{S=Fp(W); W = W}.

[\

Thus,

P, <Pr{S =8} =Pri{S = Fp(W)}
+ Pr{W = W} < P& 4+ (51)
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Next, let us observe that each of the subcodes C; can be considered
a code for channel Q{9 with M, code words and uniform prior distri-
bution on the code words. Let \; be the resulting (word) error proba-
bility for code C; (1 = ¢ = M) with an optimal decoder, and let

A= Z Qi (52)

We now establish
Lemma 9: For the ad-hoc encoder-decoder defined above
I(XYN; ZV|S%) = log M, — [h(X) + X log M.].

Proof: Let SX be such that W = Fg(SX) = 4. Then the channel
input XV given W = ¢ has distribution given by (49a), i.e., XV is a
randomly chosen member of C;. Since A; is the error probability for
code C; used on channel {7}, Fano’s inequality [use (76) with U/ = XV,
V = Z¥, U = the decoded version of Z¥ when code C; is used] yields

HXN|ZY, W =1) = h(M\) + hilog M.,
and, since H(X¥|W = 1) = log M., we have
TXN,ZN|W =14) = log M2 — k(X)) — Ailog M.

Averaging over ¢ using the weighting {¢:}, and using the concavity
of h(-), we have

ITXN;ZN|W) =z log M» — [A(X) + X log M.]. (53)
Finally, since S, W, X, Z is a Markov chain, (4) yields
IXYN,ZN|W) = H(Z|W) — H(Z|XW)
= H(Z|W,S) — H(Z|X)

H(Z|W,S) — H(Z|X, S)
= H(Z|S) — H(Z|X,S) = I(X¥;ZV|S). (54)

Inequalities (53) and (54) imply Lemma 9.
We are now ready to combine the above lemmas as:

Corollary 10: Let px be an arbitrary probability distribution on X, and
let Tx(N), X* Y* Z* be as defined above (corresponding to py). Assume
that S¥, XN, YN, ZV correspond to the above ad-hoc encoder-decoder with
parameters N, K, M, My, M., A\, X. Lel P, and A correspond to this
ad-hoc scheme. Then

P, = PE + (55a)
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and

h()\) Xlog M,
N
— (log 4) Pr {X¥ GE T%(N)} — f1(N), (55b)

where fi(N) - 0 as N —=.
Proof: Inequality (55a) is the same as (51). Inequality (55b) is ob-
tained by substituting the results of Lemmas 8 and 9 into (40) and
using H(S¥) = KHs.

Finally, we are ready to prove the direct half of Theorem 2. We do
this by showing that any pair (R, d), which satisfies

K K
ﬁA gﬁﬂs-{— —logME—I(X* zZ*) —

R-d = HsT(R), (56a)
0<R < Cu, (56b)
0<d< Hs, (56¢)

is achievable. Thus, for (R, d) satisfying (56) and for arbitrary ¢ > 0,
we show that our ad-hoc scheme with appropriately chosen parameters
satisfies (9). To begin with, choose K, N to satisfy

K_ER.
N  Hg
(Assume that R/Hg is rational.) Note that (57) implies (9a). Also, let

px be a distribution on X that belongs to ®(R) and achieves I'(R)—
that is,

(57)

I(X*; Y*) =2 R
I(X*; Y*) — I(X*; Z*) = I(X*; Y*|Z*) = T(R), (58)
where X*, Y* Z* correspond to p%. We now assume that an encoder-

decoder is constructed according to the above ad-hoc scheme with
the parameter*

R
M, = exp: { [I(X* Y — 2}1 ]] (59)
where X*, Y* correspond to the above choice of p%. With this choice
of M, and with M given by (45), we have

K
M, = % = exp: ‘N [I(X*; Y* — %Hs — NHsﬁx - 'Q'EH"&S]} (60)

Note that, from (57),

* Assume that the right member of (59) is an integer. If not, a trivial modification
of the sequel is necessary.
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1 = vy _ K K eR
NIOEMz—I(X ; ¥ NHS NHS(sK_ﬁS

(a) eR
— k. VE _ P o_ -
I(X*; Y% R — Rég s
(Rd/Hg) ekt
_ *. YAy _ MW/HE) .
I(X*; ¥ (d/1T5) Rég 5Hs
(b) el
= I(X*; ¥V*) — T(R) — Réx ~ 577-
8
— k. VEY k. Vok| 7Ry _ _ R
I(X*; Y% I(X ,YIZ) Réx _ZHS
{e) eR
= *. FE) —_ .
I(X*, Z%) Rig o, (61)

Step (a) follows from (57), step (b) from (56a) and (56¢), and step (c)
from the fact that X*, ¥* Z*is a Markov chain—see (11).

Let us now apply Corollary 10 to the ad-hoe scheme with the above
choice of M,;, M., and with the above choice of p%. Inequality (55a)
remains

P, £ PE + ), (62)
and substituting (60) into (55b) yields

(RA)/Hs = I(X*; Y*) — I(X*; Z*) — fa(N)
= I'(R) — f:(N), (63a)
where
_€R h(X) | Xlog M,
f2(N) = °Hs + Réx + N + N

+ (log 4) Pr (X¥ & T*(N)} + f1(N). (63b)

Now observe f2(N) and X depend on the choice of the set |x,}.
The following lemma asserts the existence of a {z.} such that these
quantities are small. Its proof is given at the end of this section.

Lemma 11: With px and M1, M: as given above, there exists for arbitrary
N a set
(Xnimi
such that
Pr {X¥ & T*(N)

o

L
b

} = fa(N), (64)

>

where f3(N) — 0, as N > 0.
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Now let the set {X,}}* in the ad-hoc scheme be chosen to satisfy
(64). Then, from (62) and (64) [using the fact that P{Y — 0, as
K — o (46)7], we can choose N (and K = NR/Hs) sufficiently large
so that

P, = ¢
this is (9¢c). It remains to establish (9b). But from (64) with N suffi-
ciently large, we can make

h(l) Aloj%er + (log A) Pr {XV & T*(N)} + f1(N) = 2?13

Then (63) and (56a) yield

Réx + - +

HT(R)
R

Az —e=d — ¢

which is (9b). Thus, (R, d) is achievable and the proof of the direct half
of Theorem 2, i.e., ® C ®, is complete. It remains to prove Lemmas
11 and 8.

Proof of Lemma 11: We begin with some notation. For x € ¥, let

_ |1, x & T*(N),
u(x) = 0, otherwise. (65)
Also for a given set {x,}3, let A™ (%, - - -, Xx,) be the error proba-

bility that results when {x.} is used as a channel code for channel
Q4" with prior probabilities (49b) when code word X 1s transmitted
and when maximum liklihood decoding is used. Thus,

% iM, q (m)

A= gi yom(xy, -, Xar)-

i=1 m=(i§)M2+1 M, ® )
Further, with A; defined as above as the error probability for code
C: on QPYy, write Ni = Ayw (X(imnyagry, *° -» Xinry) = Aarw(C), so that
the dependence of \; on C; is explicit. We have

M
A= ghi = 2 gihaw(CY).

i=1

Finally, define

D (xy, - - XM)— r{ XNGET}(N)}“{“’\'}'X
M
=2

i=1 m=0G—1)M:+1

iy

M DJ.(X ) + A(m)(xly tT 'rxﬂ-fz):l
+ g:l girarw (C:).  (66)

Now suppose that the set {z.}}" is chosen at random, with each xn
chosen independently from ¥, with probability distribution p$&?(x)
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= [I¥-1 px(z.). We establish the lemma by showing that £& < F3(N).
Now observe that, from (59), (1/N) log M is bounded below I (X* Y*).
Also from (61), (1/N) log M, is bound below I(X*;Z*). It follows
from the standard random channel-coding theorem (see, for example,
Ref. 1, Theorem 5.6.2) that Ex®, Exyw = fo(N) — 0, as N — o,
Further, Eu = Pr {X* ¢ T%(N)} = f:(N) — 0, by (44). Thus, E®
< 2f4(N) + f5(N) £ fs(N) — 0. Hence the lemma.

Proof of Lemma 8: Here too we begin with some notation. Let p be a
probability distribution on %, and let d(p) be the mutual information
between the input and output of channel Qyw when the input has
distribution p. It is known (Ref. 1, Theorem 4.4.2) that d(p) is a
concave function of p. Let u(x) be as in (65), and write (for any
encoder-decoder)

A T(RY; Z%) = L I0XY, w(X¥); 2Y]

T[XY; 29 | w(XY) ] +—I[n(x“’) zv]

1
- yIix
- ¥, >: Pr (w(X) = J}T(RY; 2% u(XY) = J)

+ oy Iu(XM); 2. (67)

Now
- Pr {u(X¥) = 1HI[XY; 2 [w(XY) = 1]
< (log 4) Pr {X¥ ¢ T*(N)}, (68)
and
1 NY . N l N i.
L ITa(XY); 29] £ 5 BN ] < 3 (69)

One term remains in (67). Using the memoryless property of channel
Q%% (Ref. 1, Theorem 4.2.1), we have

N
NI 20 = 0) £ 5 2 I(X; Zulu = 0)

1 N
—x s ss(yEe), 0w

where p, is the probability distribution for X, given u = 0, ie,
forl1 =7 =< A4,

pa(?) = GZT b2, Pr {XV = x|XN & T*|. (70b)

The last inequality in (70a) follows from the concavity of 4. From
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(70b),
S A l ul N N — * #(7": x),
p(r) = NEI pa(i) = xET*PI' {(XV = x|X € T* — (71)

The definition of 7% (43) and eq. (71) yields
|5() — px@)| S 6y —0, asN —w,
Since 9 (p) is a continuous function of p, we have
|9(5) — 9(pX)| < g(N)—0, asN —w. (72)
Substituting (72) into (70a), we obtain

—Pr {p =0} (X¥;Z¥|p = 0) < 9(pX) + g(N)
= I(X*; Z*) + g(N). (73)

Finally, setting fi(N) = (1/N) 4+ ¢(N), and substituting (68), (69),
and (73) into (67) we have Lemma 8.
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APPENDIX A
The Data-Processing Theorem and Fano’s Inequality

Let U, V, U be discrete random variables that form a Markov
chain. Then the data-processing theorem can be stated as

H(U|V) = HU|D), (74a)

or equivalently
I(U; V) z I(U; D). (74b)

Inequality (74a) follows on writing
H(UJV) H(UIV 0) = H(UlU)

where step (a) follows from (4), and (b) from the fact that conditioning
decreases entropy [ Ref. 1, eq. (2.3.13)].
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Next, let U, V, U be a Markov chain as above, but now assume
that U, U take values in u(|U| £ =). Let

A= Pr{U = UJ. (75)
Fano’s inequality is
HU|V) = h(N) + Nog ([u| — 1) = h(\) + Nlog [u|. (76)
To verify (76), define the random variable

0, U=10,

e, D=1 pep

and then write

HU|V) 2 HU|0) < H(U, 8| 0)
= H@®|U)+ HU|U, )
< H@®) + H({U|U, ®)
= H(®) + Pr{@=0HWU|U,&=0)
+Pr{e=1JHU|U &=1)

v RO\ + (1 — N0+ NHU|U, & = 1)
2 R\ 4+ Alog (|u] — 1) = A(A) + Alog |ul|,

which is (76). Step (a) is (74a), and step (b) follows from the fact
that, given ® = 0, then U = U, so that H(U|U,® = 0) = 0, and
step (c¢) from the fact that, given ® = 1, U takes one of the [U| — 1
values in U excluding U. )

A variation of Fano’s inequality is the following. Let S§%, V, 8%
be a Markov chain where the coordinates of S¥ and §¥ take the
values in the set 8. Let

Py = Pr{S. #= S (77a)
and
R 77b
e K kg‘l Pek- ( )
We will show that Fano’s inequality implies
%H(SK\ V) < h(P.) + P.log (|8|—1) 2 5(P.). (78)
To verify (78), write
Lsciy 2 L § Hs v
K ( | ) = Kkgl ( k; )
m 1 N ()
é T{ z B(Pﬂk) é B(PE)r
F=1
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which is (78). Step (a) is a standard inequality, step (b) follows on
applying (76) to the Markov chain S;, V, Si, and step (c) from the
concavity of &(-).

APPENDIX B
Proof of Lemma 1

(i) With no loss of generality, let €= {1,2, ---,4}. Any
probability distribution px can be thought of as an A-vector
Pp= (p1, ps, "+, pa). Since I(X;Y) is a continuous function of px,
the set ®(R) is a compact subset of Euclidean A-space. Since (X ; YV | Z)
is also a continuous function of px, we conclude that I(X; ¥ |Z) has
a maximum on ®(R). This is part ().

(77) Let 0 = Ry, B2 = Cy,and 0 = ¢ = 1. We must show that

T[6R; + (1 — 8)R,] = 6T (Ry) + (1 — )T (R,). (79)

For © = 1, 2, let p; € ®(R:) achieve T'(R;). In other words, letting
X, Y, Z; correspond to p;, ¢ = 1, 2, then

I(Xi, Y-i) = Ri, I(X:‘; Y,-fZi) = P(Ri)- (80)

Now let the random variable X be defined as in Fig. 5. For¢ = 1, 2, the

box labeled “p,”’ generates the random variable X; that has probability

distribution “p;’” The switch takes upper position (‘“position 1)

with probability 8 and the lower position (“position 2’") with proba-

bility 1 — 6. Let V denote the switeh position. In the figure, V = 1.

Assume that V, X, X, are independent. As indicated in the figure,
X=X, when V=1 17=1, 2. Now

I(X;Y)=H(Y)— HY|X) {;)H(Y) — H(Y|X, V)

= HY|V)-H({Y|X,V)=I(X;Y|V)
I(X; Y| V=1)4+1-0IX;Y|V=2)
01(X:; Y) + (1 —0)I(X2;Y)

6R1 + (1 — 6)R.. (81)

] —
V d
X3

P2

Il

IVE I

Qy Qw

Fig. 5—Defining the random variable X.
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Step (a) follows from the fact that V, X, ¥ is a Markov chain and
(4). Step (b) follows from (80). Inequality (81) implies that the
distribution defining X belongs to ®[6k, + (1 — #)R,]. Thus, from
the definition of I,

I'[6R, 4+ (1 — )R] = I(X; Y |Z). (82)
Continuing (82) and paralleling (81), we have

T[6R, + (1 — 0)R.] = H(Y|Z) — H(Y |XZ)

= H(Y|Z) — H(Y|XZV)
H(Y|ZV) — H(Y|XZV)
IX;YV|ZV)y=0I(X;Y|Z,V =1)
+ (1 —-—0I(X;Y|Z,V =2)
01(X,; YIJZI) + (1 — 0)I(Xs; Y2|Z2)
= 6T (R1) + (1 — 6)I'(R.),

which is (79). This is part (72).

(#7) This part follows immediately from the definition of T'(R)
(10), since ®(R) is a nonincreasing set.

(fv) Since I'(R) is concave on [0, Car], and nonincreasing, it must
be continuous for 0 £ R < Cy. Thus, we need only verify the con-
tinuity of I'(R) at B = Cy. Let p be a probability distribution on %
viewed as a vector in Fuclidean A-space, as in the proof of part (z).
Let 9(p) and d(p) be the values of [(X;Y) and I(X; Y|Z), respec-
tively, which correspond to p. 4(p) and ﬁ{p) are continuous functions
of p.

Now let {R;}]i° be a monotone increasing sequence such that
R; — Cy, and R; = (). We must show that, as j — e,

Y

T'(R;) — T(Cu). (83)
Now from the monotonicity of T'(R), lim;.,, T'(R;) exists and

lim I'(R;) 2 T(Cw). (84)

It remains to verify the reverse of ineq. (84). Let {p;}1 satisfy
9(p)) = R;, §(p;) = T(R)), (85)

for 1 £j < «. Since the set of probability A-vectors is compact,
there exists a probability distribution p* on & such that for some
subsequence {p;.}i=:

lim p;, = p*.
k—»a
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It follows from the continuity of g(-), and (85) that q(p*) = Cu, 80
that p* € ®(Cy). Therefore, from the continuity of 4(-), and (85),
we have
- ~ (a)

lim I'(R;) = lim I'(R;,) = lim g(p;) = 9(p*) = I'(Cu), (86)

e ko0 k->00
where step (a) follows from p*&®(Car). Inequalities (84) and (86)
yield (83) and part (zv).

(v) From (12),
I'(R) = sup [I(X;Y)—I(X;Z)]
px EC(R)
= sup I(X;7) = Cu,
px EC(R)
which is the first inequality in part (v). Also, using (12),
I'(Cw) = sup [I(X;V) - I(X;Z)]
px EF (Car)
= sup [HX;¥Y)— Cuw]=Cyx— Cuw. (87)
px EFP (Cxr)

Since T'(R) is nonincreasing, (87) yields I'(R) = T'(Cy) = Cxr — Cuw,
completing the proof of part ().

APPENDIX C
Source with Memory

In this appendix, we show how to modify our definitions and re-
sults for a source with memory. We will take the source output
sequence {S:] to be a stationary, ergodic sequence (where S, takes
values in §) with entropy (as defined in Ref. 1, Section 3.5) of Hs. As
in Section II, we continue to assume that |8] < «, and that the
source statistics are known.

The channels @ and Qw remain as in Section II, as does the defini-
tion of an encoder-decoder with parameters N and K. The definition
of P, also remains unchanged, but a new definition for A is necessary.
To see this, let us suppose that the source was binary, i.e., § = {0, 1},
with entropy Hs, and with H(S,) > Hs. Suppose also that the channel
Qs is a noiseless binary channel, and that @w has zero capacity. A
possible encoder-decoder has K = N = 1 and takes X, = 8;. Such
a scheme has P, =0, but with A as defined in (7) given by
A = H(S,) > Hg. Using (9), this would lead us to accept the pair
[Hs, H(S:)] as achievable, which would not be reasonable. Accord-
ingly, we give a new definition of A.

Let S¥, Z¥ correspond to an encoder with parameters K, N as
defined in Section IT. Let S5(3), Z¥(§), 7 = 1, 2, - - -, », correspond to

1384 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1975



the » successive repetitions of the encoding process. Then define the
equivocation at the wire-tap as

A = lim o HISK(1), -, S5()[Z5(1), -+, 2¥()]
Y (88)
= }i_l.-rl __K_V (SKV|ZA’V).

With A as defined by (88), we define the sets ® and ® as in Section II.
We claim that Theorem 2 remains valid.

The proof of the converse-half of Theorem 2 given in Section IV
goes over to the case where the source has memory with only trivial
changes. Further, the results in Section V are all valid exactly for the
source with memory. They yield that, if (R, d) satisfies (56), then we
can for e > 0 arbitrary find an encoder-decoder with parameters N,
K, and P, which satisfies

K;,I >R — ¢ (89a)
P, = ¢ (89Db)
-Il\:,H(SHZN) >d— e (89¢)

Further, we can do this for arbitrarily large K. We show below that
there exists a function f(K), K = 1, 2, ---, such that for any code
with parameters K, N

— h i K» N¥y > l K Ny
A = lim g H(S¥*|ZY%) z £ H(S¥|ZY) — f(K), (90)
where limg.,, f(K) = 0,and f(K) depends only on the source statistics.
Combining (90) with (89¢), we have

Azd—e— f(K).

Since f(K) — 0, we conclude that (R, d) is achievable. This is the
direct half of Theorem 2. It remains to verify (90).

First, imagine that the encoder-decoder begins operation infinitely
far in the past. Let [S(y), Z(j)] be the (8%, ZX) corresponding to the
jth encoding operation, —« < j < «. Thus, S5 = (§,, -, Sx,)
= [S(l)J ] S(V):] and ZXv = [Z(l), B Z(y)]: v=1,2, -, Let
Z* = [+, Z(=1), Z(0), Z(+1), ---]. Of course,

H(SK¥|ZNY) = H(SK*|Z*). (91)
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Further,
H(S%|Z*%) = H[S(1), -+, 8(»)[2*]

2 % HIS(G) |24 SG+D), -+, 8()]
®) )
= H[S(M)[2%,8(), -+, S(7)]

= JH[S(1)[2% S(2), -+, S()] = »H[S(1)|2% §'], (92)

where 8’ = [S(2), S(3), - --]. Step (a) is a standard identity, step (b)
follows from the stationarity of the sequence {Si} and the memoryless-
ness of the channel Quw, and step (c¢) follows from the fact that
conditioning decreases entropy. Now, let

S = 8% = 8(1), § =[S(2),8@1), -],
Z=1ZV = Z(l); Z = [" "y Z(—l),Z(O),Z(—I—!Z), “':I'

Thus, (91) and (92) become

1

. 1
Ky Nv — ’ '
i, H(S®(2v) = L H(S|Z,Z), 8"

~[H(SZ|Z'S) — H(Z|Z'S)]

%[H(SlZ’S’) + H(Z|SZ'S) — H(Z|Z'S)]

= l[H(SIS’) + H(Z|S) — H(Z|2'S")]
= Lrasis) + HzlS) - H@)] (93)

Step (a) follows from the fact that Z’, §’, S and (§',Z'), S, Z are
Markov chains, and (4). Now

FHSIS) = & X HEIS, Sus, -+, Sr)
1 K
K k§1 Hs = Hs. (94)
Also,
jl—{‘H(S)—Hs < f(K)—0, as K —ow, (95)
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Substituting (95) and (94) into (93), we have

& H(S®|Z¥) 2 . [HS) + H(Z|S) — H@)] — f(K)

I

1
% H(812) — 10,
which is (90).
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