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We report on optimum direct detection of digital data signals that are
transmitled over optical fibers. Direct detection is provided by a photo-
detector whose output current is modeled as a noisy filtered Poisson stream
of pulses. In this model, the time-varying pulse arrival rate is proportional
to a linearly distorted version of the modulating signal. We show how the
photodetector oulput is processed to derive the minimum probability-of-
error receiver. Special attention is given to certain practical limiting cases.

When the average energy in the response of the photodetector to an indi-
vidual photon is small compared to the additive thermal noise, the optimum
detector is shown to be linear except for the use of precomputed bias terms.
At the other extreme are the photomulliplier and the avalanche photodiode
where the average energy in the response of the photodetector to a single
photon is large compared with the additive notse. In this situation, we show
that the optimum delector estimates the photon arrival times and then uses
these estimates in a weighted counter. In both limiting cases, the detectors
are specialized to one-shot M-ary and synchronous multilevel pulse-
amplitude modulated (PAM) signals with intersymbol interference. For
PAM signaling, we demonstrate that finite system memory allows applica-
tion of dynamic programming to provide a detector implementation whose
computational complexity does not increase with time.

I. INTRODUCTION

In recent years much attention has been focused on communication
over optical channels.’.? Most early work was concerned with the
physics of the electromagnetic transmission phenomena associated
with various optical media and with the devices needed to change
electrical signals to optical ones, and vice versa. In this paper, we are
concerned with the optimum (maximum likelihood) reception of digital
data transmitted over the fiber-optie channel. OQur work was motivated
by the many invaluable discussions we have had with 8. D. Personick
on this subject.
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We shall not dwell on the quantum mechanical limitations imposed
on the measurements of signals in the optical frequency range. Instead,
we adopt a practical approach and assume at the outset that direct
detection is used to convert optical energy to an electrical signal. This
is accomplished by using a photodetector prior to any signal processing.
Thus, we study a classical optical reception problem with the under-
standing that the photodetector output can be examined in every
detail so as to extract all relevant information.

In a fiber-optic communication system, information is conveyed by
modulating the intensity of a light source, such as a light-emitting
diode. This is manifested in a photon stream whose arrival times form
a Poisson process with a time-varying intensity function. The photo-
detector output current can then be modeled as a noisy filtered
Poisson process whose intensity function is the sum of a dispersed
version of the modulating wave and a background dark current. Thus,
the central problem in communication systems employing a fiber-
optic medium is the detection of the intensity function. Bar-David?
and Gagliardi and Karp* have considered the optimal reception prob-
lem in the absence of dispersion (intersymbol interference) and addi-
tive thermal noise, while Personick®7 and Messerschmitt®® have con-
sidered linear suboptimum receivers to combat these deleterious effects.

Section II reviews the communication theoretic model of the fiber-
optic channel. Section III presents two simple examples that are
intended to focus on certain system essentials and to illustrate some
fundamental ideas involved in subsequent work. Section IV develops
a general representation for the likelihood functional. Sections V and
VI consider reception when the energy in the response of the photo-
detector to an individual photon is much smaller than the thermal
noise, while Sections VII and VIII consider the complementary situa-
tion of large average energy per pulse-to-thermal noise.

Il. A REVIEW OF THE MATHEMATICAL MODEL

In the past few years, a pragmatic communication theoretic model
for data transmission over the fiber-optic channel has evolved. The
papers by Personick71 contain an up-to-date account of this model
as well as provide more complete references on the physical aspects of
fiber-optic communication. For the purpose of this investigation, it
will suffice to think of the optical modulation process as providing a
proportionate variation in the rate of photon arrivals at the photo-
detector. This device, of which there are several types, is a transducer
that converts optical to electrical signals. The photodetector output
current is illustrated in Fig. 1, and can be described as the sum of a
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Fig. 1—Photodetection.

filtered Poisson process
v(t)
1= "% gawlt — 1) 1)

and white gaussian noise, n(t), with spectral density No. The photon
arrival times ¢, fs, - -- are a family of independent, identically dis-
tributed, random variables, as are the positive gains g1, g, - - -. More-
over, these two families of random variables are independent of each
other. The pulse w(t) is square-integrable and is the convolution of
two pulse shapes. The first pulse is the response of the photodetector
circuitry to the generation of a single charge-carrier (i.e., an electron
or a hole), while the second pulse is included for mathematical ex-
pediency so as to whiten the noise at the photodetector output.! We
distinguish between two types of photodetectors, those that provide
avalanche gain and those that do not. In the latter category is the
photodiode that operates with g; = 1, ¢ = 1, ---, v and results in a
pulse energy-to-noise ratio /w?(t)dt/No, which is typically —20 dB.
In other words, the response of the photodetector to an individual
photon is masked by the additive background noise. This is in contrast
to the photomultiplier and the avalanche photodiode where the gains
possess a (discrete) probability distribution whose mean, §, can be
rather large and whose variance is a power (1) of the mean.!* For
these devices, the average pulse energy-to-noise ratio ¢* Sw?(t)dt/No
can be on the order of 20 dB.

The stochastic process »(t), which is the number of pulses generated
at the photodetector output in the interval (0, t), is a Poisson process
with intensity A(f), and therefore

Prv() = N7 = exp (-0} 20T @)

 Note that the inclusion of a reversible operation, such as a whitening filter, does
not affect the performance of an optimum detector.
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where

]
AGl) = f (). (3)
0
Moreover, each photon arrival time ¢, possesses the probability density
_ M)
p(t) = XA 4)

where the integral is over the observation time.!

In the digital fiber-optic communication system under discussion
here, the positive intensity function A(f) is the information-bearing
signal and is the average rate of electrons produced by the photodetec-
tor. The manner in which A (t) is manifest in the received optical signal
(the photodetector input) is through the relation

A(E) = k®(t) + o, (5)

where ®(¢) is the received optical power, k is a constant conversion
factor, and A, is the average dark, or ambient, current in ‘“‘counts”
per second.! Thus, information is transmitted by modulating the
optical power and must be recovered by processing the noisy photo-
detector output, I(t) + n(f). As a result of transmitting the optical
signal through the fiber-guide medium, the intensity function at the
photodetector output will be the sum of a linearly distorted version of
the transmitter intensity and the dark current. In the sequel, A(f) will
be understood to mean the intensity function at the receiver.
Statistical averages of I(f) are found by elementary calculations.

For example,

B[I(®)] = E(g) L APw(t — r)dr (6)

and
oo = B@) [ Mot = ndr, ™)

where E(g) and E(g?) are the average and average square of the
avalanche gain g. Higher moments can also be readily evaluated.

A linear channel model with additive “noise” is suggested by (6)
and (7). In such a model, the desired signal is taken to be the average
value of I(t), namely A (¢) passed through a filter with impulse response
E[gJw(t). One component of the added noise can be thought of as the
signal dependent process I(f) — E[I(t)], which has mean zero and

T Note that the arrival times are not assumed to be ordered.
¥ In free-space optical communication systems, A (t) must be regarded as having a
noisy component.

1392 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1975



variance given by (7). In addition to this noise, the gaussian noise
must also be included before processing. While this linear model is
a convenient approximation in some situations, for purposes of this
investigation we work with the process I(f) directly.

Now that all the physical parameters have been defined, the optimum
detection problem can be stated as follows:

Given that the intensity function can assume one of M equi-
probable positive functions A\.(f), 0 <t < 7, m =1, ---, M, the
task of the detector is to decide which one of the M intensities has
been transmitted after processing I(f) plus gaussian noise for T
seconds. Of particular interest is the synchronous pulse-amplitude
modulated (pam) signal

At) = Z;,: arf(t — kET) + X,

where each data bit, ai, assumes the value 0 or 1, 1/7 is the data
rate in bits/s, and f(f) is a positive time-dispersed pulse.

The subject of our investigation is summarized by the question:
How should the photodetector output, I(f) + n(f), be processed so
as to minimize the probability of error?

lll. A MOTIVATING SIMPLIFIED DISCRETE MODEL—TWO EXAMPLES

To preview, in an elementary way, some ideas that are more fully
developed in the sequel and also to serve as a motivation to the reader,
we present a simplified version of the model discussed in the last
section.

In a simplified theoretical model, the time index ¢ is assumed to take
on the discrete set of values ¢y, ¢5, - - -, t7, where ¢{; = jA. Thus, instead
of writing

v(t)
1) = 3 guolt - t)
for the photodetector response to a photon stream, we write
J
It) = £ gguolt; =) =1,2,-+,J. (®)

In the above expression, {g:}] can be regarded as an independent
Bernoulli sequence with probabilities'

Pr{gr = 1} = A and Pr{g: =0} =1 — ),

] t For convenience, we have taken A=1, and so we have written Az and 1—X.
instead of A:A and 1 —A:A.
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where we have in mind that 0 < A; << 1. Thus, gx = 1 (or 0) represents
the arrival (or nonarrival) of a photon at time ¢;. We make the further
simplifying assumption that w(t; — &) = Ad;i (A a positive constant),
where §;; is the Kronecker delta and is nonzero only when j = k.
This corresponds to assuming that the pulses w(t) and w(t — A) do
not overlap. Within this simplified framework, the received time-
discrete signal is of the form

I(ti) = Q’:‘Q’;‘A: i=12 J. (g)

We recall that {A9™ }7_, is the intensity function associated with the mth
hypothesis. The particular intensity which is active is, of course,
unknown at the receiver beyond the knowledge of the finite set from
which it was chosen. The last ingredient of our model is to include the
fact that the observation I(f;) is noisy and is given by

y(t;) = g:9;4 + nj, (10)

where the noise samples are assumed to be gaussian, independent, and
zero-mean and have variance N,. In relation to the more accurate
model of the previous section, ¢ can be thought of as the standard
deviation corresponding to f;", n(t)dt. As is well known, the optimum
detector computes the likelihood (the a posteriori probability density
of the received signal conditioned on each hypothesis—in this case,
the intensity) and selects the maximum. In statistical parlance, this
is a standard multihypothesis testing problem. We now develop the
form of the likelihood for two different assumptions on the nature of
generation of secondary electrons:

() No avalanche gain (g; = 1).
(i7) Discrete avalanche gain (g; takes on values 1, 2, - - -, G, with
probabilities py, ps, - -+, pe)-

In each case, we first obtain the likelihood for one observation. Owing
to the nonoverlapping assumption on the pulses and the independent
noise samples, the likelihood for J independent observations is given
as a product. Our goal is to obtain a simple representation for the
effectivet likelihood L (Ay, As, - -+, Ar;¥Y1, Y2, - -+, Y7), Where the
superseript m denotes which intensity is assumed active. Given the
received samples y1, -, ys, the maximum likelihood (optimum)
receiver selects the index m* that maximizes L™ and declares that
intensity A is present. We shall find that, if N, is small, then the

t “Effective’” refers to the fact that constants common to all hypotheses are
dropped.
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likelihood assumes an especially simple form. Specifically, in the high
signal-to-noise ratio case, the likelihood is of the form

J
L ~ IT )01 — A3, (11)
j=1
where §; = 1 if y; 2 yr (and zero otherwise). The quantity yr is a
threshold value that we shall derive for each example. Alternatively,
the log-likelihood is expressible as the weighted counter

J
2 gilog A" + [(1 — g;) log 1 — A) ], (12)t
i=1
where §; is an estimated photon arrival process. In the complementary
case of small signal-to-noise ratio (No— =), the detector is of the
matched-filter or correlator type. The effective likelihood in this
case is
J
Ltm ~¢ ¥ P\‘}"’y; — bm), (13)
J=1
where ¢ is a constant and b is a hypothesis-sensitive bias term. We
now turn to the specific examples.

(i) The Photodiode (No Avalanche Gain)
The single observation y; is defined as

y; = nj with probability 1 — X
and (14)
yi= A + n,, with probability A.

We temporarily drop the subscripts dealing with time (j) and hy-
pothesis (m) while investigating this single observation. The likelihood
is the mixture probability density

ply) = (2:rNo)‘*exp| 3N, ][(1 A) + Mexp li—i — 2‘?‘\;0}]- (15)

Noticing the hypothesis (A) insensitivity of the first term, the effective
likelihood becomes

L(y)=(1—)\)+)\expl%—§%:—ul- (16)

A simple calculation shows that the two terms in (16) are equal when

T The reader familiar with Ref. 3 might expect an additional —A term in (12).
Owing to the simplified Bernoulli model employed above, this is not the case. How-
ever, the more refined analysis in the sequel will include this term.
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y = yr, where

A Noy (12
yT_'2_+IlOg(T) (17)

For small No, yr & A/2 and the graph of L(y) converges to the solid
line shown in Fig. 2. So, for No/A?|log \| small, the effective likelihood
can be approximated as

1—=A Y=y

= 2
L@ {)\exp[%—;—ml, Yy > yr.

The sense of the approximation is expressed by the following easily
proven statement: For each § > 0, one can find an No > 0 so that

L(y) }

Pr — 1| >é&; = 0. 19

{ Ly (19)
To simplify the likelihood, note that exp {(Ay/No) — (A%/2N,)} and
yr are hypothesis-insensitive and can be deleted from the effective
likelihood, and since we are assuming that X is extremely small, 1 — A
can be treated as 1. The effective likelihood is then simply

Lom = AP ]%, (20)

(18)

where §; = 1 if y; > yr and zero otherwise. Because of the indepen-
dence of the noise samples and the nonoverlapping property of the

A
Liy)

]
..}_
I
|
|
I
I
I
|
/

N B

Fig. 2—Convergence of graph of L(y) to the asymptotic form (Vo — 0).
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Fig. 3—Threshold-based weighted counter.

pulses, the likelihood for J observations is the product

J
L = 1T D\P T3, (21)
j=l1
which yields the weighted counter
J
log L™ = 3 g;log A (22)
=1

shown in Fig. 3. The receiver selects the index that maximizes (22) and
declares that the corresponding intensity was transmitted.

In the complementary case of low signal-to-noise ratio (N, —e),
we expand the likelihood function in a Taylor series and retain the
dominating terms. This step must be done with care, since the nu-
merator of the exponent has variance N, while N, also appears in the
denominator. By normalizing the exponent, it is seen that the variance
of the exponent is proportional to 1/N,; thus, the exponent will be
small and a series expansion is useful. Keeping the first two terms in
such an expansion of (16) gives

Ly =1-n (5 - 4), (23)

and the likelihood for J observations becomes' the digital correlator

" We have used the fact that N/No[Ay;— (A2/2)] « 1, and with & <« 1 that
II(1 + &) ~1 4+ T
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(matched-filter)

J Ay Aﬂ J AZ
(m) = — 1 -
L J]';Il[l M ( Ny 2N0)] Z=: (Ay, 2 )’ 24
which is shown in Fig. 4.

(%) The Photomultiplier or Avalanche Photodiode (Discrete Avalanche)

Again, we start with the single observation case but now, because
of the avalanche mechanism, a single primary gives rise to 1 or 2 or

.., G secondaries with probabilities pi, p2, ‘-, ps, respectively
(39 p; = 1). So the measurement y is modified as

n, with probability 1 — A

A+ n, with probability Ap: (25)

@
Il

GA +n,  with probability Apg.
The likelihood is the mixture density

(1= s & _y—Ay.
p(y) - r—fﬁ'N ex P l 2N0} + gl h_z‘ll'No exp { 2}\(0 } (26)

Factoring out hypothesis-insensitive terms, the effective likelihood
becomes

Ay 12A? } @7)

@ = (-0 +x Z e {4 - 50

As Ny— 0, we notice that L(y) ~ (1 —A) for y < A/2. When
y > A/2, let A denote the number 4, 24, ---, or GA that is closest

»
._"-—

n|=

o

MAX

g
0
{

.
N|=

9
D)

(M) 1 (M)
Aj 7 AN

Fig. 4+—Elementary version of digital correlator.
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to y. Then the series appearing in (27) will be dominated by one term,
and the likelihood becomes
o Ay PA?
L(y) ~ pin exp{ ~, 2. | as Ny — 0.

Proceeding as in the previous example, we consider both N, and A
small and drop hypothesis-insensitive terms from the approximate
likelihood to obtain

Ly) = [\]5, (28)

where § = 1 when y = A/2 and zero otherwise.' Moreover, note that
the threshold is the same as in the nonavalanche case. This is because
the detector is only interested in ascertaining whether or not a photon
has arrived and need not estimate the magnitude of the avalanche gain.
Again, for J measurements, the corresponding log-likelihood expression
is simply the weighted counter

J
log L = 3 g;log \;. (29)
=1

As No— =, we again expand the likelihood (27) in a Taylor series to
obtain

. & Ay _ A
L(y)—l—h{l lglpzljl-i-lv.o—m]}, (30)

whieh, for J measurements, becomes

J [e] lAy‘ l2A2
(m) — (m) — 2 __ 2 .
log L ng A [1 Elm [1 + Ne 2No” (31)

The above is again interpreted as a correlator where \{® is correlated
with Ay;/No-Xfilpr = (Ay;/No)E[g].

IV. THE MAXIMUM LIKELIHOOD DETECTOR

Here, we begin to answer the question posed at the end of Section
IT by presenting a derivation of the likelihood function associated
with the received signal. The likelihood function is the probability
measure of the photodetector output, given that a particular intensity
is active. It is well known™ that, when one of M equally likely signals
An(t) is transmitted, the optimum (minimum probability error)
detector computes the M values of the likelihood function evaluated
at the received waveform and declares that the jth signal was sent,
where the jth likelihood function is the largest.

T As expected when Ny — 0, the avalanche gain provides no essential benefit. A
more interesting asymptotic evaluation and one that is more akin to reality is obtained
by parameterizing the gain distribution such that E[g])/Ng—=.
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We denote the received signal by
y() = In() + n(0), 0=t=7, (32)

where I, (t) is the information-carrying, filtered, Poisson process
()
In(t) = kilgkw(t — k), (33)

and where the index m [corresponding to An(f)] is hidden in the
statistics of {f) and »(¢). These statistics are described by (2) to (4)
with A(t) replaced by A (2).

The task of the optimum receiver is thus to process the photodetector
output y(t) for 7 seconds and then decide which intensity funetion
Am(t), m = 1,2, .-+, M is in effect. As we have mentioned earlier,
the random variables {g.} represent the avalanche gains, and the pulse
shape w(f) is so far arbitrary with the only requirement being finite
energy. Although in actual practice the noise at the output of the
photodetector is not white, it can be whitened by a filter before addi-
tional processing and the effect of this filter will be manifest in the
shape of w(t).

The conditional likelihood function [when I,.(f) is fixed] has the
standard form™

T T
Lu[y|In] = exp {Nio ﬂ 1.y @)dt — 2—}\-,-0 ﬁ I?,,(t)dtl- (34)

The desired likelihood is the expectation of (34) with respect to Ix(t)
for fixed m, i.e.,

Once the intensity An(t) is specified, the above expectation is taken
with respect to the number of arrivals, the arrival times, and the
avalanche gain values. The detailed evaluation of this expectation and
the interpretation of the resulting structures, in terms of implementable
physical operations on y(t), is our objective. The exact structure is
sufficiently complex that many judicious approximations will have to
be made to glean the essential nature of the operations.

We remark that a representation of (35) in terms of an estimator-
correlator structure has recently been treated in the literature.!214-18
The optimum detector has been shown to be a correlation detector
and the deterministic signal in the classical correlator is replaced by its
least-squares estimate. This is a reformulation of the detection problem
in terms of an estimation problem. Proponents of this method have
taken the viewpoint that various suboptimum detectors are suggested
by this formulation. A typical approach might be to replace the least-
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squares estimate by the linear least-squares estimate or some other
approximation, and to approximate the resulting stochastic integral
by econventional integrals. While this might be reasonable, it does not
indicate the direction of the approximation. We prefer an approach
that, to be sure, has many approximations and makes use of estimates
in place of the true quantities, but that can be explicitly related to the
optimum detector under the asymptotic conditions of large and small
signal-to-noise ratio.

Toward this end, we proceed by writing (35) in more detail. Neglect-
ing edge effects on the integrals and assuming that the observation
time 7 is much larger than the effective duration of a single pulse w (t),
we can express the inner produet and the square term indicated in
(34) as

/ T L@yt = T 0P (W), (36)
where

T
Pt) = f w(t — L)y (b)dt.

The square term is written as

[RRECIE NP ) €0

where R(t) = LT w(r)w(t — 7)dr is defined as the pulse correlation
funetion.
Substituting (36) and (37) into (35), we obtain

1 & 1 v
Lati) = Erexp | 3 & 0P @) = 53 5 iR — 1))+ (39

J=

Employing the vector notation g, = (g1, g2, --+,¢,) and t, =
(ty, s, - - -, t,) gives the expression

Lan(y) = Ey,.p.0 [exp 1 Nioé:lgkl’(tk) - 5;7”?”1 geg ;i Bty — t,-)}] ,
(39)

and after performing the indicated expectations we obtain a detailed
representation of the likelihood function

o 1 T n n
L) = exp [=An(N] T — % [ dta TT aa(t) T p (00
n=on! g Jo k=1 k=1
1 n 1 n n
X exp mk§1 gxP(tk) — N, kZJg?]. grgiB (e — 857, (40)
where p(g;) is the (discrete) probability density function of the ava-
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lanche gains and where it is understood that, when n = 0, the summand
is taken to be unity.

To more easily interpret and/or mechanize the likelihood calcula-
tions, it will be convenient in some applications to assume that the
photon arrivals can only occur at discrete instants of time { jA}, where
A is some fixed (small) interval and j = 0,1, 2, ---, J. The integer J
will be defined as the closest integer to 7/A. This assumption is easily
accommodated in (40) by replacing fdt. with a multidimensional
sum Y., over the lattice {{x = jA:k = 1,2, ---,n;7 =0, 1, e JY
and by replacing A({x = jA) with the probability that’ jA — A/2
< & < jA + A/2. The likelihood function under this set of assump-
tions then becomes

Ln(y) = exp [—A\a(7)] ‘é ni é fI A(ti) ',IjIl p(g:)

k=1

k.m=1

X exp t [z ng(tk) Q’kng(t;; — ﬁm)]} f (41)
which will be referred to as the (time) discrete likelihood function.

The two infinite functional series, (40) and (41), are not of much
use as they stand. However, under a variety of physically realistic
situations and by making suitable physical approximations as well
as asymptotic expansions, we shall be able to deduce from these repre-
sentations real-time implementable signal-processing algorithms.

By suitably normalizing the likelihood functions, (40) and (41),
1/N, can be replaced by the (pulse) signal-to-noise ratio. This param-
eter o2 will play a central role in our subsequent treatment, and its
relative size will dictate our particular approach. The normalization
entails replacing R(#) by R(t)/R(0), P(tx) by P(t)/R(0)7, and the
random variables gx by g+/j, where § = Eg.; consequently,

., _ F*R(0)

T Ny
and may be viewed as an average pulse signal-to-noise ratio. As we
have discussed in the preceding section, in some applications this
parameter is small, while in others it is large. Thus, our investigations
in the sequel will focus on these two ranges. Additionally, different
treatments of the likelihood ratio are also required, depending upon

the presence or absence of avalanche gain.

It is instructive to give a still different representation for the like-
lihood, which will be found useful in the sequel. Towards this end, we
introduce a zero-mean, stationary gaussian process z(f) with correlation

* This probability is given by
JA+AI2
f M)t = A(jA)-A.

ja-Af2
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function,
E[z()x(t + 7)] = R(7),

and can then write (39) in the form

Ln(y) = E\, 4. [eXP |-:xr2 Lél 9P {ti} I E; exp {—ia kZ;gxx(tk)]] )
(42)

where we have used the elementary identity for gaussian processes
e {~a/2 £ 000 0] = e fia & iz @)|
= =

Since, over the observation interval, (42) is absolutely integrable,
the expectation with respect to z and the other random variables may
be interchanged. By noting that

Bty gn.v €Xp [ P ykx(tk)} = exp (—An)

T
e 2 [T om0 o axo3a] - a9
we can write (42) in the form
T
Ln(y) = exp (—An)E, [eXP (g ./; p (&) Am (1)
X exp [a%g,P (1) + z'ag,-x(tndt)}- (44)

In particular, in the absence of avalanche gain, i.e., p(g) = (g — 1)
(44) assumes the compact form

T
Ln(y) = exp (—An)E, {exp (j; Am(t) exp [2P () + ia::(t)]dt)}-
(45)

It may appear that the introduction of the process z(¢) did not
simplify matters, since the explicit evaluation of the expectations
again leads to an infinite functional series without adding insight into
the nature of the processor. We shall nevertheless find this representa-
tion useful. As will be seen, when suitable approximations are made and
asymptotic behaviors explored, a great deal of insight can be gained
from the alternative representations for the likelihood® (40), (44), and
(45), as well as the discrete likelihood (41).

" By normalizing the exponent, i.e., introducing «?, we should actually use new
symbols to denote gm/g and R/R(0). To avoid introducing extra notation, we retain
the symbols g,, and E(0), but we realize that, whenever o? is present, these variables
have been normalized.
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V. SMALL SIGNAL-TO-NOISE RATIO (o — 0)

Here we consider the physical situation corresponding to small s/n
(a> — 0). This occurs when a photodiode is used for direct detection.
In this application, the response to an individual photon is masked by
the background noise, and we do not expect the receiver to make
explicit use of the information supplied by an individual pulse. Rather,
the aggregate effect will be important. This is in contrast to the
“counting” receivers (for large o?), where individual counts contribute
explicitly to the final decision. Since the avalanche gains are unity in
this application, the likelihood function takes the form of (45). Two
signaling situations of interest are examined next.

5.1 M-ary signaling

Since o? < 1 (typically, « = —20 dB), our approach will be to
expand (45) in a power series in o? and retain the first two terms.t
Consider the following Taylor series approximation to the argument of
the exponent in (45). Again dropping the index m, let

T
£(a, ) = exp 'f A(t) exp [2?P(t) + ia:t:(t)]dt]
0
2
~et {0, 2)a+¢'(0,2) G . (46)
Evaluating the derivatives, the asymptotic likelihood function becomes

Lu(y) ~ E. [1 + aﬁ ()7 ()dE + °2iz (ﬁf () P () dt

[T [ ez nds) = 5 [Tz 0] @D

Recalling that the exponent has been normalized such that Ez = 0,
Ex? = 1, and Ez(t)z(ts) = R(l1 — t), we get, after performing the
averages,

Ln(y) ~1 | o [ fh.,.(t)P(t)dt

T
_ % LET LT Am (E)Am (B2) R (8 — ta)dirdts — % -/; ?\m(t)dt] (48)
or
T
Ln(y) = log Ln(y) ~ ﬁ Am(8) P (t)dt

1 T rT
-3, j; Am(E)Am (t2) R (61 — to)dbrdls — 3Am.  (49)

The detector involves linear operations on the filtered received signal
P(t), addition of constants, and a maximization. As shown in Fig 5,

t Of course, the same answer would be obtained by working with (40).
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Fig. 5—Correlator filter for M-ary signaling.

a realization of the receiver is obtained by first passing the incoming
signal, ¥(¢), through a filter with impulse response w(—t)/R (0) to pro-
duce P(t). This signal is then passed through a bank of M filters with
impulse responses An(7 — 1), m =1,2,---, M and sampled at
t = 7. This is the first term in (49). The other two terms are precom-
putable biases. The detector then chooses the index m*, which achieves
the max L.(y), and the corresponding \,«(#) is declared to be the

transmitted intensity.

There is a pleasing interpretation of this receiver which is reminiscent
of the “linear”” model discussed in Section II. If one were to consider
the detection problem when the signal I(t), given by (1), is replaced
by its average E[I(t)] = I(t), given by (6), then the optimum detec-
tor in gaussian noise would base its decision on the likelihood function

T _ -
e = .[[. y(OIWdt — % fu " L) (50)
Substituting (6) into (50) gives
£ =j;Tdty(t)/;,Tw(r — ON(r)dr
_ % fOT Ijj j:r w(t — NG w(t — to)A(ta)dtrdts b dt

T T
=j; Mr)P(r)dr — é '/;Tfo NN (t)R(ty — t)dtrdis. (51)
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Note that (51) differs from (49) only by the bias term Am, the prob-
ability that no photons have arrived at the photodetector. We con-
clude, therefore, that the optimum detector structure in the case of
small o2 is thus “matched” to the average signal.

5.2 Optimum detection of PAM signals via the Viterbi algorithm

We will now develop the optimum receiver structure (still for small
o?) when the intensity is a pulse-amplitude modulated (pam) signal®

\() = éﬂ auf(t —nT), O0<t<T, (52)

where each a, can assume the binary values 0 or 1, f(t) is a positive-
valued pulse that incorporates the distortion of the optical medium,
1/T is the symbol rate, and 7 > kT. Note that in writing (52) we
have dropped the subseript m which we have used to identify the trans-
mitted signal (intensity), since for paM signaling it is generally more
convenient to think of the receiver as finding that sequence {a.} which
maximizes the likelihood. Substituting (52) in (49) and emphasizing
that the likelihood function is now to be regarded as a function of a
particular data sequence (which uniquely corresponds to a specific
intensity) gives

k
AnCm K n—m, (53)
1

Bl =

k
L(ala Qzy * "y ak) = El AnZn —
ne

nm=
where

T
2= [ PO — 431t — nD)a (54)

is the response at time n7T' of a filter matched to f(f) when the input
is P(t) — %, and the correlation-type function X is defined by

Ko = ffdf (f:r dtf(t — nTYw(t — f))
X (f:daff(y — mTyw( — f))
=ﬁ Ulr — nT)U(r — mT)dt

=Lﬂmw9—m—mm%(m

t Note that we have neglected the dark current Ap. This obviously does not alter
the final results. Also, the results can, in a straightforward manner, be extended to
the multilevel case.
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with
T
U(r — nT) = f f(ts — nT)w(r — t)dh,
0

and the observation time 7 is taken to be extremely large (7> T).

The receiver structure indicated by (53) to (55) is similar to the
maximum likelihood (ML) receiver for detecting a pam signal distorted
by a noisy linear channel.!” The received signal is first passed through
the matched filter w(—1?), and then (minus the bias term 1) matched
to f(—1). The result is sampled at the synchronous instants n7. This
produces the set of sufficient statistics {z.}, from which the hypothesis-
insensitive bias term 3 3% .1 3~ .8 X .—n is subtracted to produce the
likelihood function.

The method by which the likelihood (53) is sequentially maximized
in real time has become known as the Viterbi algorithm (va), as a
result of its application to the analogous problem of ML detection of
linearly distorted pam data signals.

The va is a dynamic programming algorithm that uses the “finite
memory”’ of X,, i.e., the fact that there will always be a £ such that,
for all practical purposes,

K. =0, [n| > k. (56)
Because of (56), it is easy to see that the likelihood, (53), can be written

in the recursive form

k
L(all Qgy ** -, aff) = L{ﬂ[, Qay -+ -+, ak—l) + A2y — %ak i Ki—m. (57)

m=k—

By introducing the sequence of state vectors {e.}, where

o0 = (@Gu_(-1y, ", Qn), n=12 -k, (58)
the likelihood can be written in the form

L(ey, ---, 01) = L(ay, -+, o41) + h(zi; on). (59)
As is well known, the maximization of the function L(ay, - - -, o;) with

respect to its arguments is amenable to solution via dynamic program-
ming since (59) is satisfied. Since this is the case, the optimum receiver
now assumes the structure shown in Fig. 6.

In summary, it has been shown that the ML receiver for the limiting
case of small s/n has a structure that is asymptotically approximated
by the receiver designed to detect a known signal in gaussian noise
(with the inclusion of certain precomputed bias terms). We remark at
this point that the application of the Viterbi algorithm is, of course,
only productive when intersymbol interference is the dominant im-
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Fig. 6—Optimum detector (large noise) for pam signaling.

pairment. In the context of the above discussion, this will be manifested
in the values of X, for n # 0. These values depend on the data rate
relative to the channel dispersion. As in data transmission over voice-
band channels, other methods of processing such as linear and decision
feedback equalization should provide good results so long as the inter-
symbol interference is not inordinately large. It is clear from (53)
that when the distortion is small enough so that the quadratic term
can be neglected, the optimization of the likelihood with respect to
the data symbols can be carried out on a term-by-term or bit-by-bit
basis. In other words, passing z, through a slicer provides optimum
detection. As the distortion becomes more severe, the quadratic term
appearing in (53) must be retained. The linear receivers reported by
Personick®™7 and Messerschmitt®® can be obtained from (53) by
differentiating this expression with respect to the data symbols and
then quantizing the result to the legitimate transmitted data levels.
As the distortion increases still further, it becomes necessary to maxi-
mize (53), as it stands, via the Viterbi algorithm. Selecting one of these
detectors in any given situation requires an evaluation of the error
probability to quantify the effect of distortion on the system per-
formance.

VI. PERFORMANCE ANALYSIS OF THE OPTIMUM DETECTOR FOR BINARY
ONE-SHOT SIGNALING

6.1 An upper bound on the error rate (a simple example)

Having a description of the optimum detector structure for a* — 0,
it is interesting to inquire how well it performs in certain signaling
situations. Unfortunately, the M-ary mode of operation is extremely
difficult to analyze, and even the general binary case poses insur-
mountable mathematical difficulties. We have, however, been able to
analyze several special cases of interest that provide insight as to the
effect of various system parameters on performance.

In the binary signaling case, information is conveyed by sending
either intensity A\i(t) or A:(f) with equal probability. From (51), the
ML detector has the realization shown in Fig. 7. The detector, in this
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Fig. 7—Optimum detector for binary signaling (a? — 0).

situation, computes the statistic
= f DM — M@ TPt — & f Da(t) — ha(t) It
_1 f R — D[MOM(7) — ha(Oha(r) Jdtdr,  (60)

and g is then compared to zero. When u > 0, it is decided that A (¢)
was sent, and when g = 0, A\;(f) is chosen. In (60), the indicated
quantities are normalized such that

1 o0
PW) = gy | v(w(t — ndr
and R = R/R(0).
The probability of error is

P,=3%3Prpz0lylt) = L) +n),0 =t = 7]
+ 2 Prp<0[y() = I.0) +n),0 =t = 7], (61)
where

14

Ii(t) = 2 w(t — ta) with  E[v] = _/:Al(f)dfr

1
and where

I,(t) = éw(t — ta) with Elv] = ./‘ut A2 (E)dE.

It turns out that the evaluation of (61) is not mathematically tractable
when A; and A are arbitrary positive time functions. Even reasonable
bounds on (61) are difficult to calculate in general. However, for con-
stant intensities, exponentially tight upper bounds can be obtained.
While the restriction to constant intensities might appear severe, it
is shown in the appendix that in the absence of both dark current
and gaussian noise the optimum choice of signals will have one intensity
equal to zero while the other is arbitrary and need only satisfy a power
constraint. Here we wish to illustrate a bounding approach for one
special case where the upper bound can be obtained in closed form. We
analyze the error rate for a system slightly modified from that depicted
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in Fig. 8 for \; = 0 and A\; = \. The modification will involve adjusting
the threshold! so that our upper estimate of the probability of error
when \; is sent is equal to the estimate of probability of an error in
the complementary situation.

In the binary system under consideration, the information symbol
1 is encoded into the intensity function \1(f) = A\, 0 = ¢ = 7 and the
information symbol O into the intensity A.(¢) = 0,0 = ¢ £ 7. Notice
that the dark current is assumed to be zero. The detector structure we
wish to analyze is depicted in Fig. 9. Here, the information-bearing
Poisson process is passed through a matched filter w(—¢)/R(0), then
integrated, and the result compared with a threshold set at F. If u
(refer to the block diagram) exceeds F, the symbol 1 is chosen and if
p < F, the symbol 0 is chosen. Our chief interest in this example is to
exhibit the interplay between the various parameters in this extremely
simple but informative situation.

As seen in the diagram,

u = VLTR(z)dz +ﬁ‘r .[‘}Tn(‘l')w(t — Ddidr (62)

or, equivalently, the test statistic may be written as
Ho = V + No, (63)

which is compared to a threshold. Note that o is just a scaled version
of u, and n, is a zero-mean gaussian random variable with

T T
L_LRanﬂmmg

[ﬁrRmmT

Observe that, in this situation, the receiver is just a counter since the
test statistic represents the total number of photon counts observed
in the entire observation interval plus an added gaussian random
variable.

E{n3} = No ot (64)

teT By the threshold, we mean the bias terms appearing in (60), i.e., the last two
rms.
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The integer random variable » is Poisson-distributed with

Elv] =T when 1 is sent (H;)
and (65)
E»]=0 when 0 is sent (H,),

where Ho and H, are symbols distinguishing the two situations. The
probability of error is then explicitly given by

P,=3iPr[u>F|H]+ 3 Prx < F|Hy], (66)

where we have made the assumption that Os and 1s are transmitted
with equal probability.

Since (66) cannot be expressed in closed form, we seek an expo-
nentially tight upper bound. Applying the Chernoff bounding tech-
nique, we notice that the error rate under the null hypothesis, Hq, can
be upper bounded immediately since under this hypothesis » = 0.
Applying the bound yields

2
P0=Pr[,u>FJHn:|§expl—~%]- (67)
The second term in (66) can likewise be upper bounded since the
moment generating function of » under H; is known. This procedure
gives

2
Pi=Pru < F|H,] < exp [sF + 6%” } M, (—0), 820, (68)

where
M, 4,(8) = E{er!|Hi} = exp AT (e® — 1)]

for # = 0. The bound (68) then becomes
a26?
P, = exp |BF—!—T+J\‘T(3—"—1)}, 8 >0, (69)

and it is optimized by finding a 6* such that

E(6% F) = 1;1;51 {BF + ? + AT(e? — 1)] : (70)
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To make the upper bounds on P, and P: equal, we select an F = F,
such that

FZ
E(6% Fo) = 55-

This, then, yields the final upper bound on the error rate
P. < exp (—F%/20%). (71)

By differentiating (70), we see that for a positive solution to exist it is
required that 0 < F < A7. Unfortunately, such a solution cannot be
obtained in closed form. However, lower bounding 1 — e~?by 8 — 6*/2,
which in turn upper bounds (69), we find that

AT — F
* —
* = 57 > 0 (72)
and consequently

*2
Pisexp|{—0*0T — F) + - 0T+ o), (73)

where 6* has been chosen to provide the tightest bound.

Having 6*, the threshold F, is obtained from

F§ _ (AT — Fo)*

@ AN+
Solving this quadratic equation and selecting the only reasonable root
for F, give
Fo= —d? 4+ Vo* + o?\T. (74)
Substituting (74) into (72), the bound on the error rate finally becomes
P,<exp[—§{\‘1+0—@}z], (75)

Average Noise Power
— — 2 = -
where K = AT and C = ¢*/K Average Shot Noise Power
It is instructive to express the bound (75) in the following alterna-
tive form

P, £ e#/@), (76)

where

K2
K+ o

Average (signal)?
Average Total Noise Power

®
|
[T

and where f(c) = [1 + ¢ — V& + ¢

As can be checked, f(c) is a monotonically decreasing function of ¢,
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and has the properties
lim f(e) = 1
c-0

lim f(c) =

-+

i

Thus, P, £ e /) —w ¢=#, asc— 0.
This is the situation that prevails when the shot noise dominates.
On the other hand,

P, = e 9l as c— o,
which is the situation when the gaussian noise dominates.

6.2 Implications of the error bound

The first observation concerning (75) is that, as ¢ —0, P,
< exp {—K/2}. This can be achieved by making ¢2 — 0. This implies
that either the gaussian noise is zero or that the number of counts is
very large. However, in the absence of gaussian noise (as well as dark
current), it is clear that the only way to make an error is when there
are not any counts (v = 0) under H,. The chance that » = 0 under
H, is just exp { —K]. In the absence of gaussian noise, this is clearly
the very best performance one can hope for. Notice that the upper
bound predicts an outcome which is 3-dB poorer than this ideal. The
factor of 2 in the exponent of (75) is attributed to our bounding tech-
nique. What, in fact, happens as ¢2 — 0 is that * increases, and that
the lower bound 8 — #2/2 becomes loose, the upshot being the factor
of 2 in the exponent. To see that this factor of 2 is indeed a quirk of the
parabolic approximation to the exponential, consider the exponent in
(69) as ¢ — 0. It is clear that the optimum threshold and # are, re-
spectively, zero and infinity, which when substituted in (69) does
indeed give e (K = AT).

Another aspect of the bound, however, is that ideal performance
can be achieved with this detector structure (which is optimum for
o> — =, the large gaussian noise situation) when the noise vanishes
(¢* — 0). This suggests that for the case of constant intensities the
linear threshold detector is robust, i.e., it performs well over the entire
range of ¢ (or o?).

We now use the error bound to determine the number of counts
required, for reasonable operating physical parameters, to achieve a
desired error rate. Note that, from (64), after a simplifying calcula-
tion on the double integral, we obtain

T
i ; f (R (f)dt
o = i‘;z (TA —[ tR(t)di) = 22“’ T——1,
° [ R(D)dt
0

(77)
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where
T
A= i
L R(t)d

Introducing the pulse stretch factor,

T T
S = f (R({)dt / f R@dt < T, (78)
0 0
into (78) and recalling that o = R(0)/N, yields explicitly
21—r R(0)S
2 — = - —_—
T T e 4 7 (79)

where 0 < r = S/T < 1. What, then, can be said about the choice
of the parameter r? Can it be selected at will? Within a good approxi-
mation, SR(0)/A ~ 1. Clearly, the best choice of r appears to be
unity, since r = 1 reduces the noise variance to zero. Recall, however,
that, when the mathematical model was initially introduced, it was
tacitly assumed that the observation interval was much larger than
the width of the pulses emanating from the photodetector so that edge
effects could be neglected. This alone would restriet the range of r to
be no more than, say, 0.1, which would indicate that r does not appear
to be an independent parameter. With r = 0.1, we may conclude from
(79) that the effective gaussian variance of the scaled system is roughly

o = 20/a?. (80)

Returning now to (75), we see that ideal performance is achieved
when

2
C = <1,

a
K
and when (80) is substituted in the above, we arrive at the condition
that

20

Tt <1 Kot >> 20, (81)
As an example, let a? = 1/400, which, according to 8. Personick," is
a reasonable number for this parameter. This implies that K >> 8000
is required to achieve ideal performance (i.e., the error rate in this
range approaches zero like e=X). On the other hand, suppose it is
desired that P, < 10~°. This would imply that

K
5 (V(20/Ke?) + 1 — v20/Ka?}? ~ 20.
t Private communication.
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For instance, o* ~ 1/400 implies that K is on the order of 1200. The
above discussion quantifies the facts that to achieve good performance
the total number of counts must be large or, if the background gaussian
noise is small then fewer counts are needed to provide satisfactory
performance.

6.3 Some conclusions concerning optimum detection for constant intensities

Note that the linear receiver, which is optimum when a? — 0, seems
to be robust—at least for binary systems signaling with constant
intensities. The optimum detector in the small s/n case (a? — 0) yields
a decision variable based on the total number of observed counts as
evidenced from (63). Of course, for the error probability bound to be
tight, the average number of counts, K, must be large enough that
o*/K <« 1. On the other hand, we saw that the optimum detector
structure in the case of large s/n (a® — «) combined with narrow pulses'
(r < 1) is also a counter. The only difference is that the counts in the
o’ — 0 detector are linearly corrupted by gaussian noise, while the
counts in the a® — = detector are determined by quantizing the in-
coming signal to the nearest integer in the presence of the added
gaussian noise. The latter operation is, of course, nonlinear. Never-
theless, when the added noise is small (a2 — ), the two operations
are approximately equivalent, thus explaining the robustness of the
linear receiver and the results of our theory.

Vil. LARGE SIGNAL-TO-NOISE RATIO (o®—> ) AND NARROW PULSES

When a photomultiplier or avalanche photodiode is used to provide
direct detection, the parameter o® is much larger than unity. In this
application, the response of the photodetector to a single electron or
hole is much larger than the background gaussian noise. In this situa-
tion, intuition dictates that the detector make use of the “‘estimated”
arrival times of the individual photons. Here we discuss a special case
that will bring out the essential structure of the optimum detector.
The situation examined is when there is no avalanche gain and the
individual pulses w(t) are time-limited to an interval much smaller
than the observation interval. The more general situation is treated
in Section VIII.

The approach taken in this section is to use the gaussian process
formulation (45) and attempt to approximate the indicated expecta-
tion with respect to the () process. For this approach to be productive,
we must assume that R(f) has effective duration A. We may then

T This was demonstrated in the examples of Section III and is reestablished in
Section VII.
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approximate the integral appearing in (45) by a discrete sum, ie.,
T J

f dt exp [P (t) + iaz () im(®) — A 3 exp (@*P; + iaz,)An(jA), (82)
0 i=1

where P; = P(jA) and z; = z(jA).

The implication of (82) can be viewed in several ways. Of course,
as A— 0 and J — =, irrespective of the correlation function R(?),
the discrete sum is an excellent approximation to the integral. But
sampling the integrand at the rate 1/A does not necessarily guarantee
that the sum is a good approximation to the integral. Yet to derive
any utility from representation (45), we must sample at a rate 1/A
so that the sequence of random variables {z;} can be regarded as
identically and independently distributed. Unfortunately, this is the
only case for which we can compute the indicated averages in a useful
form. What then do we mean by (82)? To make sense of this repre-
sentation, we must reinterpret the distribution of the arrival times,
{t}. Evidently, the reason we have an integral representation instead
of a sum is because we have assumed that the arrival times obey a
continuous distribution. However, if we assume at the outset that
the arrival times {£,} can occur only at a set of discrete points {t. = nA},
then (45) will contain a sum instead of an integral. This procedure is
equivalent to that used to obtain (41) as the discrete version of (40).
Hence, a rigorous interpretation of (45) is that the Poisson arrival
times can only occur at the discrete instants of time {jA}, 7 = 0, 1, 2,
... If we now assume that the quantization of the arrival times to
units of A is such that R(A) ~ 0, then the set of random variables
{z;}Y=1 are mutually independent. Exploring this line of reasoning,
(45) can be written as

eAL(y) = [T EuLexp () exp @P; + iew)) ], (83)

where \; = A(jA), and we have suppressed the index m denoting the
particular hypothesis being tested.
Expanding (83) in a power series and carrying out the indicated
expectation give
J o n An 2
1w = 1 (528 ool (npi - §)])- 60
j=1\n=0 n! 2
We are now in a position to exploit the assumed large value of a®
In other words, we are interested in determining the behavior of (84)
as a? — ». Towards this goal, consider the sum

$;= 2 é'%texp {e[nP; — n*/2]}. (85)

n=0
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This series is in the form

i‘. Ba exp (a’y.), (86)

where 8, and v, have the obvious identifications.
Let ¥; be the largest of the v, and 8; be the eorresponding value of
B8.. Then (86) becomes
Brexp @) (X % exp [0, — 707), (87)
7
where each v. — ¥; is negative. Since (86) converges absolutely, the
infinite sum can be rearranged in such a way that the exponents are
decreasing; thus, the rearranged sum is recognized to be a Dirichlet
series!® in the parameter «?. From the elementary properties of such
series, we deduce that, except for the n = j term, the summation por-
tion of (87) converges to zero as o®* —w. So, as a®? —, (87) behaves
like
§;~ B;exp (7). (88)
Now returning to the series in (85), we let n; denote the strictly
nonnegative integer attaining

. (89)

n2
max a’nP; — —a?
nE(0,1,2,-) 2

i.e., n; = [P], where [P] denotes the nonnegative integer nearest to P.
The corresponding coefficient becomes

. Ani()\j) ni.

Bi= 1 (90)

Thus, as a® — o,
L(y) = log L(y) = —A + log
X ‘ Z (% exp I:Q{?(n P —_ ?11/2)])] (91)

i=1
Discarding the hypothesis-insensitive terms, (91) can be rewritten
in the form

L.(y) ~ —Am + Z n;log A\{™, (92)

where we recall that n; = 0 whenever P; < 3. Note that (92) is
similar to the detector described by (56); however, the different
statistical model (Bernoulli as opposed to Poisson occurrences)
accounts for the bias term —A,, appearing in (92).

The detector structure exhibited in (92) has a simple interpretation
and is similar to that depicted in Fig. 3. As shown in Fig. 10, the in-
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coming signal y(t), having been filtered by w(—1t)/R(0), is sampled
every A seconds. This is followed by quantizing the samples, P;, to the
nearest positive integer (including zero whenever P; < 3). The
quantized samples are multiplied by the locally stored numbers log A
and the results summed. The sum is added to A. to form the decision
statistic. Since the added gaussian noise is assumed to be small and the
pulse w(t) is assumed to be narrow, most of the time the nearest integer
at any time ¢, = jA will be either 1 or 0, depending on whether
P;> % or P; %, ie., whether the receiver determines a pulse is
present or absent. Consequently, the optimum detector structure may
be viewed as a weighted counter, where the decision as to which in-
tensity was transmitted is based on selecting the largest of the weighted
pulse counts.

We recognize that from an implementation point of view even this
seemingly simple structure may pose practical difficulties. The indi-
cated sampling may be difficult to carry out at this high frequency.
While this is indicated mathematically, in practice the peaks of the
signal at the photodetector output could be used to approximate the
photon arrival times and, hence, the interrogation times.

VIIl. MAXIMUM LIKELIHOOD RECEIVER FOR LARGE SIGNAL-TO-NOISE
RATIO (o*—> )

This section extends the results of the last section by indicating a
general approach to the extremely complex problem of performing
optimum detection when the pulses w(t) are not restricted in width or
shape and when avalanche gain is provided. In the presence of ava-
lanche gain, the average signal-to-noise ratio, o?, is large. This implies
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that the photon arrival times can be accurately estimated, and these
estimates can then be used to aid the detector in making accurate
decisions. One objective of this section is to indicate how the optimum
detector estimates the arrival times. Heuristically, the receiver at-
tempts to “whiten’’ or peak up the pulse w(f). The presence of gaussian
noise, however small, prevents pulse whitening via linear filtering.
The nonlinear manner in which the receiver estimates the arrival
times is of independent interest and will be presented in the sequel.

We begin with the most general form of the likelihood function (40).
While the infinite functional series appearing in (40) is quite intimidat-
ing, it has already been shown to reduce to physically interpretable
receivers in the following special cases: (7) small signal-to-noise ratio
(e = 0) and (i7) large signal-to-noise ratio (o> —o) combined with
an extremely small decorrelation time' for R (%).

Since large o? is a practical operating condition (photomultiplier
and the avalanche photodiode), we are motivated to examine the
salient features of the optimal processor under these circumstances.
We also specialize our development to the pam-Poisson intensity, or
data signal,

N
M) = Ao+ T a™f(t —aT), 0<ts T,
n=0

where f(f) is a known pulse shape determined by the distortion (inter-
symbol interference) in the optical fiber and A, is again the ambient or
“dark” current. Here, the optimum receiver maximizes the likelihood
function with respect to the data sequence {af™}Y.,. As it stands, the
likelihood (40) is similar* in form to the Volterra kernel description of
a general time-varying nonlinear functional. However, such generality
seems to preclude any practical value, and furthermore reveals little
of the receiver’s essence. To obtain a good approximation to the strue-
ture of the receiver when a® — =, it will again be necessary to dis-
cretize the photon arrival times.

8.1 The asymptotic (« — ) likelihood function

In this section, the basic idea is to asymptotically evaluate the
multidimensional sums or integrals. Note that, when a®—o0, the
2n-fold integrals appearing in the likelihood become increasingly sensi-
tive to the value of the exponent, and in the limit the integral is com-

 Note that, as R(t) — 5(t), the gaussian noise becomes transparent to the receiver
(since the integrated received signal would be discontinuous whenever an impulse
arrived). The receiver then assumes the form of a counter.

¥ The difference is that, in our application, the input P(t) is exponentiated rather
than appearing directly.
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pletely determined by the coordinates that maximize the exponent.
This statement is made precise by the multidimensional version of
Laplace’s theorem! which, apart from certain hypothesis-insensitive
terms, gives for each n

lim [7 dt, p fIl p(g9) J_I:_Il (D)

a—w= JO & 1=
1

X exp {aﬁ[mi-l gmP (tn) — 3 %

m

IR (tm — tk)]] ~ ,-Ijl p(gIN(L)

1
n * 1 n -
X exp for| £ (@) - § IR iR - 0)]f, o3
m= mk=
where {t}, 8, - - -, &1} and {g}, g3, - - -, gn} maximize the exponent,

3 guPltn) = 5 TE GagaR (tn — 1),
under the constraint that 0 < t; < 7,7 = 1, 2, - - -, n. The determina-
tion of the extremizing sets appears very difficult. For example, without
avalanche gain (i.e., g» = 1) and n = 1, it is clear that {1 is taken at
the point where the observable P(f) is a maximum. For example,
when n = 2 the exponent becomes

P(t) + P(t2) — Bt — ta),

and the choice of #; and £, is not apparent. The values of ¢} and f; tend
to be near the peaks of P(t), but this is not always the case.’ The best
choice of #, and ¢, will, of course, depend on the interaction of the
random process P(f) and the correlation function R(¢). The problem
of finding the set of points {#;} is in some sense equivalent to whitening
or peaking up the pulse w(t) in a nonlinear manner to minimize the
noise enhancement concomitant with such an operation. Putting

aside for the moment the difficulty of determining {fj, - - -, ta} and
{g}, - -+, gn}, we can use these values to rewrite the right-hand side of
(93) as
n * * 2 5 * * 1 " * x * *
H P(gi)}\(tj) exp |« Z ng(tm) — 3 Z Z gmgtR (tm - tt)
i=1 m=1 mhk=1
AY,(7) exp [a®8.(T)], (94)
t It has been assumed that there is only one set of variables t = (i, - -+, ta) and
g = (g1, -+, gn), Which maximize the exponent. If there are several such t* and g°,

then the right-hand side of (93) would consist of a sum of these terms. We do not
pursue this approach, since the resulting structure is hopelessly complicated and
appears to be impractical.

1 This would be the case whenever P(t) has equivalued maxima spaced at least a
decorrelation time apart.
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where we have indicated the dependence of both the coefficient and
the exponent on the observation interval 7. Using (94) in (46) gives
the Dirichlet series®

erl ~ ji:o Y(7) -exp [a28.(T)]. (95)

Asa — =, it is well known that the Dirichlet series is dominated by the
term with the largest exponent, i.e.,

lim e*L ~ y.+(T) exp {a*8.+(7)}, (96)

a -+

where 8.+ is the largest exponent.t It is evident that n* is an estimate
of the number of (Poisson) events occurring in the interval 7 and
that &], - - -, t, are estimates of these occurrence times, while ¢}, - - -, g5
are estimates of the avalanche gains. This is not surprising since, as
a? —w, the vanishingly small noise implies that these estimates will
be quite accurate. Hence, the receiver is intimately related to the
situation considered by Bar-David,® where the Poisson events can be
observed directly. The distinction is that estimated arrival times and
avalanche gains are used rather than their true values. It is important
to realize that specific estimators have been obtained for the random
parameters. As we show in the sequel, the simultaneous estimation and
detection described above can be recursively implemented via dy-
namic programming.

Since neither the exponent in (94) nor the J[%%,p(g?) term is hy-
pothesis-sensitive, the relevant portion of the likelihood function is

L ~ e Ay,(N) = =4 I=_1l LD, (97)

where n* is the number of time points that maximize the exponent of
(92) (which, of course, depends on 7) and {{;}7—, are the values of
these time points. Note that, once the exponent is jointly optimized
with respect to t. and g., the estimate of the avalanche gain is not
utilized further. This is so because the avalanche gain is a property
of the photodetector and conveys no information concerning the
intensity function. The asymptotic (@ —) likelihood given by (97)
is exaetly Bar-David’s® likelihood formula, with the true arrival

TIf the signal-to-noise ratio is not large enough so that this is not an accurate
approximation, then one could designate n, as the second largest exponent, thereby
developing the more accurate series

Vn, €XP(Bn,) )

L~ exp(—A)vyn* exp(Bn+) (1 + m
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times replaced by estimated arrival times. Note that the log-likelihood
I = —Au(T) + 5 log A\m(£) (98)
i=]1

is again a weighted counter, and is similar to (98) derived in Section
VII [where the pulses w(f) were assumed to be narrow ].

Two shortcomings are associated with the above approach, one is
computational and the other involves a question of mathematical
rigor. The first point is that implicit in the expression for the likeli-
hood (97) is the ability to solve the formidable mathematical problem,

max |3 guP(t) — 3 T & 0ngsR(tn — 1) |, (99)
m=1 mk=1

O 1

in real time. We are not aware of optimization techniques capable of
this accomplishment. The second point involves the invocation of the
large o? assumption in a sequence of operations. Recall that this assump-
tion was used to derive (93) and then used again to obtain (96).
While the validity of the preceding operations can perhaps be demon-
strated (under suitable conditions), the intractable nature of (99)
forces us to slightly reformulate our problem.

8.2 The optimum detector when the photon arrival times are discrele

To proceed further and obtain a physically realizable, as well as
meaningful, detector, we discretize the photon arrival times. Adopting
this approach, the photon arrival times are now constrained to occur
at the discrete instants jA, (j=0,1,2, ---,J, where J = 7/A).
This gives rise to the discrete likelihood function (41), and eq. (98)
then involves only sums rather than integrals. This modified expres-
sion contains a 2n + 1 dimensional sum, which is recognized as a
bona fide Dirichlet series. Thus, we have avoided the mathematical
question concerning the validity of an asymptotic expansion by intro-
ducing a mild relaxation of the physical set-up.

Applying the asymptotic condition to the 2n + 1 variable summa-
tion again produces the expressions (94) to (99) where it is recog-
nized that the variables {t;} are now constrained to lie on the
lattice, i.e., & = j:A, where j; = 1,2, - -+, J. We now show that, using
this discrete framework, the exponent appearing in (94) can be re-
written in a form readily amenable to maximization. Note that the
variables £, 3, - - -, {4 may be thought of either as specifying a single
point in n-dimensional space or as specifying n points on the interval
(0, 7). This latter viewpoint turns out to be more useful.
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We choose the time quantization A so that the probability of more
than one photon arrival occurring in a time interval of size A is vanish-
ingly small' under each hypothesis A, (f). In this framework, the set
of time points {f;} specifies n points in the interval (0, 7), and the
exponent can be rewritten as

n 1 n
> gnP(lh) — 5 & 2 gnguR(ln — t)
m=l m, k=1

J
Zk>_:1 gmgrgmgerR(mA — kA), (100)

b =

J
= Zl gmGmP (mA) —

where 0 < #;, < JA and where ¢, is 0 or 1. A value of g,, = 1 implies
that the time point mA is “active” in the sums appearing in (100),
while g, = 0 implies that it is not. If one chooses A to provide a
coarser quantization of the time axis, as might be required by practical
restrictions on the sampling rate, then it is necessary to allow ¢. to
assume more (integer) values than 0 and 1. To see why this must be
the case, recall the physical meaning® of the time points {f}}. It is then
realistic to expect that more than one photon will have arrived in a A
interval and consequently some t; = ¢ (for7  j). The increased range
of gn is necessary to accommodate this situation. Realizing that no
restriction is implied, for reasons of simplicity we assume in the sequel
that A is chosen small enough so that g, = 0 or 1. At this point, it is
clear that the product g.gm is inseparable in the optimization of (100).
Note that, once the optimum values of g, and g,, are determined, only
the value of ¢ plays a further role in the detection procedure. With this
in mind, we let 8m = gmgm, where 3, will range over the allowable
values of g as well as zero. For convenience, we call this discrete set
B. In the context of this new notation, the optimization problem posed
in (99) becomes

J
max 2. BnP(mA) —

B1, - ,Bs m=1
BeB

ZJZ BumBrR(mA — kA), (101)
m, k=1

B[ =

where it is important to realize that the maximization with respect to
n, appearing in (99), has been removed in (101) by eliminating the
restriction that only a predetermined number of g¢.’s be nonzero. It is
also apparent that the exponent is of the required recursive form so
that the exponent can be maximized via the Viterbi algorithm. With

 This probability is 1 — e™ — Ae™* = A%
 The {t}} are estimates of the pulse arrival times.
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this in mind, the likelihood function can now be written as
L~ e IT NG T (102)
and the log-likelihood again assumes the weighted-counter form
L=-— fo "NOdt + ,»é g;log [N(ja)], (103)

which is similar to the detector deseribed by (92) but without the
restriction on the correlation function R(t), i.e., R(f) need not be con-
fined to an interval A. The result embodied in (92) for nonoverlapping
pulses can be easily derived from (101) by setting E(mA — kA)
= 3;_m. The exponent then becomes 3 {,[8:P (kA) — 36i], which is
optimized, over the integer values of 8, by choosing B to be the
quantized version of P(kA).

The structure of the optimum detector (103) is shown in Fig. 11,
and is of the estimator-detector type. The arrival time indicators
{q }i=1 (as well as the avalanche gains) are determined by applying
the Viterbi algorithm to the exponent. Once these values are available,
the likelihood is computed for each hypothesis A™ (¢) and the maximum
is selected.

8.3 Optimum detection of PAM intensities

The above methodology is now applied to the optimum detection of
a digital (pam) data signal. The 2¥+! intensity functions in this situa-
tion are given by

A(E) = Ao+ g‘,a,,f(t-rnT), 0=t=17,
n=0

where the effect of optical channel distortion (intersymbol inter-
ference) is included in f(t).

To optimally detect these signals, it is convenient to rewrite the
original likelihood expression so that time is directly expressed in
units of A. Bringing out this dependence, the likelihood function then
becomes

Ly ~ exp { — LM )t(t)dt‘ Jljl [A(7A) ], (104)

where the index J designates time in units of A. Note that the expo-
nent (101) is already expressed in this form.

It is important to emphasize that a simultaneous or {wo-tier real-
time sequential optimization procedure is required to extract the ML
estimate of the data sequence, {a.}Y—o. The exponent is first maximized
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Fig. 11—Estimator detector type of weighted counter.

(

with respect to the {8:}7-o, and the corresponding ¢, values are then
used to maximize (104) with respect to the data symbols. The optimiza-
tion of the exponent is identical to that occurring in ML data sequence
estimation in the presence of intersymbol interference.’® The maximiza-
tion of the exponent will, at random intervals,! produce optimum
values of {g;}, say, §o, §1, * * +, ¢x. At this instant, the optimization of
the likelihood L; can then proceed using this new information. At
some later instant, i1, Gy, - -, Grrn Wwill become available and
attention again shifts to maximizing the likelihood L. ,. As we shall
show, the dynamic programming algorithm which maximizes the
coefficient (103) is quite different from the conventional Viterbi
algorithm. In fact, the application of dynamic programming to the
iterative! maximization of this function illustrates the more general
principle that dynamic programming is applicable to the iterative
real-time ML sequence estimation of digital data that has undergone
a wide variety of nonlinear distortion. The only requirements are
that (7) the likelihood possesses the mathematical property of addi-
tivity and (¢7) the nonlinearity is of finite memory so that the notion
of a “‘state” is meaningful. In this application, both these requirements
are satisfied.

To apply dynamic programming to the optimization problem ex-
hibited in (103), we need only show that the likelihood satisfy a par-

" Owing to the merge aspect of the Viterbi algorithm.

The two main virtues of dynamic programming are that () it is essentially a
real-time processing scheme (although there is random signal-processing delay) and
(i) the number of computations is linearly proportional to time (n), as opposed to
a straightforward evaluation that requires an exponentially growing number of
computations.
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ticular recursive form. To put the likelihood in this recursive form, we
define the state vector

SJ'= (ai—l—w."', a.f) j= f!f-l—l} "'JJ; (105)
where [ is the memory (in units of A) of the dispersed pulse f(f), i.e.,
fna) =0, n>f, (106)

and where 5 is the closest integer to fA/T.

As the optimum {§;} time instants emerge from the Viterbi al-
gorithm in a random manner (owing to the merge mechanism), they
are classified according to which time segment (0, NT) they belong.
Once optimum time instants begin appearing that are active in the
(N + 1)T time segment, those optimum ¢,’s which are in the NT time
segment are available to maximize the coefficient or, equivalently, the
likelihood.

By substituting the pam signal into (104), the log-likelihood has
the form

N J N
L;=— Zoa,.F,. + 'Zo g; log ()\o + Zoa,,.f(jA — mT)), (107)
n= i= m=

where J is now interpreted as the index of the latest' merge in the
Viterbi algorithm associated with the time interval (0, NT) and

Fﬂ=ﬁmf0—nﬂm. (108)

It is important to keep in mind the fact that, once the decisions
(41, Gz, - - -, 4s) are available, the iterative procedure for maximizing
the likelihood proceeds in units of 7. The log-likelihood can be put in
the required form by letting D = T/A and writing the likelihood as

N=1 ND—-D — .
LN = - z: anFn -'I' Z q;’]og (Ao + Z _ amj(JA - mDA))
n=0 j=0 m=N—j—f/D
ND N )
+ axFy + b g;log (?\0 + > anf(jA — 'mDA))-
i=ND-D+1 m=N—j—f/D
(109)

It is crucial to realize that the last term in (109) only involves @;-1-u,
@j—1-n+1,..-a;; therefore, with the state vector defined by (105),
(109) can be written as

Ly = Ly—1+ h(qwn; Sw), (110)
where

qv = (gvp-D+1,---9ND)- (111)

1 In other words, the next segment of optimum g.'s will penetrate beyond the time
instant NT.
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Fig. 12—Two-tier dynamic programming algorithm.

It is well known that, through the use of the recursion (110), dynamic
programming may be applied to the maximization of Ly.

The resulting receiver is depicted in Fig. 12, and is a two-tier dy-
namic programming algorithm that simultaneously iterates the ex-
ponent and the coefficient to obtain a sequential (or real-time) maxi-
mum likelihood sequence estimate of the transmitted sequence {an}.
While the above detector requires sampling at a rate that could pre-
clude practical implementation, we remark that, in the large a® en-
vironment, a peak detector could be used to estimate the photon
arrival times. These estimated arrival times would then be used in
a dynamic programming algorithm to mitigate the effect of inter-
symbol interference.

IX. DISCUSSION

The communication-theoretic model for the fiber-optic communica-
tion system has proven to be quite useful. Using this model, the opti-
mum (maximum-likelihood) receiver was exhibited under a wide va-
riety of physical circumstances for M-ary and digital pam signaling.
Whether or not the energy in the response of the photodetector to an
individual photon is large or small compared to the background
gaussian noise, the detector structure turned out to be a weighted
counter. The details of how the weighting is carried out have been
shown to be complex in some cases. Further investigation into system
performance is needed before assessing whether or not such complexity
is warranted in any particular application. For values of pulse energy-
to-noise ratio (a?) much less than unity, the structure of the optimum
detector can be simply instrumented in terms of analog operations on
the photodetector output. On the other hand, when o? 3> 1, and with
or without avalanche gain, we have been unable to realize the optimum
detector without first sampling the photo-detector output many times
per symbol interval. This procedure may impose practical limitations
on the implementation. Since the digital operations are required solely
to estimate the photon arrival times, it has been pointed out that
certain suboptimum operations (such as peak detection) may be used
to estimate these instants. The power of maximum likelihood process-
ing can still be used to mitigate the effect of intersymbol interference.

From a communications and information theoretic point of view,
there remain many important and, as yet untouched, problems asso-
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ciated with the fiber-optic channel. Sharp bounds on the performance
of the various detectors are extremely difficult to obtain, and very
little can be said at this time. Also, questions concerned with capacity,
reliability, and complexity need be addressed.
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APPENDIX
Optimum Binary Intensities in the Absence of Gaussian Noise

In this appendix, we determine the optimum binary intensities
A(f) and Aq(f) in the absence of gaussian noise. We proceed initially
by neglecting the dark current. Of course, the optimum intensities
must satisfy an energy constraint’

L " D)) + Aa(9)]dt = P. (112)

Consider the performance of a system that uses the equiprobable
intensities

M) = 1?;
0=st=T"7. (113)

The only way an error can be made under (113) is when A1 (f) is trans-
mitted and no photons arrive; the probability of this event is

Pr = 3¢ % (114)

Consider now the performance of a system that uses the arbitrary
and equiprobable intensities \i(f) and A:(f). The probability of error

for this system is
Py = 3P + 3Py, (115)

where P, and P, denote the conditional error probabilities given that
M (2) and Xo(f) are active. Let

T
A.-=f N,  i=1,2 (116)
0

t Since the intensity is proportional to the transmitted optical energy, the con-
straint is on the average energy.
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and let A, be greater than A,. It is clear that, when A, is transmitted,
the optimum detector must make an error when there are no photon
arrivals. These observations provide the following sequence of lower
bounds

Prp 2 3Py = de 4, (117)

and since A; + A; = P we have
Prr 2z 3e4 =z 367 = P (118)

It is thus established that the intensities deseribed by (113) minimize
the probability of error and therefore are optimum. It is also clear that
any system that has one of the intensities equal to zero, and the other
arbitrary (and satisfying the power constraint), will perform equally
as well as (113).

The effect of dark current on the probability of error can be made
arbitrarily small by choosing X\:(¢) = 0 and picking A, (¢) so that the set
of points where A;(¢) is nonzero is sufficiently small.
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