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We evaluate the crosstalk between adjacent cores in an optical fiber that
results from electromagnetic coupling. Means of reducing it are discussed.
We find that a 0.5-um-thick layer of silver can, in principle, reduce the
crosstalk from —20 to —130 dB withow! significant increase of the loss.
These theoretical results are obtained for two identical single-mode dielectric
slabs. In reality, the slabs are not rigorously identical. Longitudinal fluc-
tuations of slab thickness reduce the crosstalk by at least 40 dB. The slab
spacing can accordingly be reduced from, typically, 11 to 6 um for a
constant crosstalk. If the slabs are made dissimilar with a relative differ-
ence 1n thickness of 10 percent, the spacing can be reduced further, to
approvimately 1.5 times the slab thickness. For example, a 15-um spacing
15 required between single-mode disstmilar slabs if the nominal slab thick-
ness 1s 10 um, provided scattering can be neglected.

I. INTRODUCTION

In multichannel communication systems, crosstalk between chan-
nels is a problem that must be considered. Typically, the crosstalk
should be less than —20 dB. This means that, if an optical power of
1 mW is fed into one optical guide of a cable, no more than 10 p'W
should be transferred into the other guides. Let us assume a typical
link length of 10 km. The crosstalk measured over a 1-km-long fiber
should be less than —40 dB if the power transfer is proportional to
the square of the fiber length, less than —30 dB if the power transfer
is proportional to the fiber length, and less than —20 dB if the power
transfer is independent of the fiber length. As we shall see, the first
power law is applicable to identical uniform fibers, the second to
nominally identical irregular fibers, and the third to uniform dissimilar
fibers.

In optical fibers, the field decays exponentially in the ecladding.
Therefore, a modest increase in spacing between adjacent fibers is
usually sufficient to reduce the optical coupling to tolerable values.
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Yet, in some cases, one needs to minimize the cross section of the cable
and the spacing between adjacent fibers. Let us briefly discuss a few
relevant applications. The need for minimizing the distance between
single-mode cores in a fiber does not arise in communication systems
presently envisioned for the following reasons: The fiber diameter is
required to be large (e.g., larger than about 50 um) so that the fiber
is able to sustain mechanical tensions. Thus, quite a few cores can be
accommodated within the fiber diameter with sufficient spacing.
Furthermore, the capacity of single-mode fibers is so large there is
little incentive to introduce more than one core in the same cladding.
The problem of coupling between single-mode fibers (or between fibers
carrying few modes) does arise, however, when one tries to increase the
image-transmission capacity of a fiber bundle up to the diffraction
limit, each core carrying one bit of image information. Crosstalk
(image blurring) is minimized if adjacent cores are made dissimilar.
However, geometrical irregularities may restore a large coupling be-
tween closely spaced cores. (This, incidentally, raises the possibility
that measurement of the coupling between dissimilar, closely spaced
cores gives useful information on the spectral density of the core
irregularities.) The problem of coupling between single-mode dielectrie
waveguides also arises in integrated optics and in biology in the study
of the optical behavior of the retina. The results that we present are
general. They are therefore applicable, in principle, to multimode, as
well as to single-mode, fibers. However, in practical multimode fibers,
slow longitudinal variations of the eore dimensions make the propaga-
tion constants of the modes of one core sweep randomly through the
propagation constants of the modes of the other core. Thus, an aver-
aging takes place that cannot be ignored. The problem of coupling
between highly multimoded cores will be only briefly discussed.

The shielding method discussed in this paper consists of the intro-
duction of a layer of metal, typically silver, between the adjacent
optical waveguides. A reservation is in order: In some communication
systems, metallic layers may be undesirable because they detract from
the all-dielectric-cable properties. Shielding between adjacent fibers
can be provided alternatively by low-refractive-index plastics such as
Teflon® rEP (n &2 1.32) that cause the optical field to decay faster
than in the cladding material. The reduction in coupling, however, is
much smaller than that provided by metals. Plastic materials can be
made very lossy by impregnating them with dyes. High losses, how-
ever, are much less effective than small refractive indices in reducing
evanescent wave coupling. Therefore, we shall consider mainly
metallic layers. The practicality of metallic shields remains an open
question.
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In the first part of this article series,' a general and simple expression
of the coupling between two lossy open waveguides was derived. Our
formulation requires that only the normalized fields of the individual
waveguides along a contour be known. In the present paper, we eval-
uate in detail the crosstalk between two parallel slabs caused by the
electromagnetic coupling and means of reducing it. The crosstalk
between two optical slabs has been evaluated by Marcuse,? although,
in Marcuse’s work, the slabs are assumed identical. In reality, un-
avoidable fluctuations in the slab dimensions reduce the crosstalk, as
we shall see, by more than 40 dB. Marcuse has also evaluated the reduc-
tion of crosstalk provided by a layer of absorbing material located
between the slabs. He found that the waveguide loss increases to in-
tolerably high values before any significant reduction in coupling can
be obtained. We find that, if the intermediate layer is metallic, the
coupling can be drastically reduced without any significant increase
of the waveguide loss. This disecrepancy results from the fact that, for
metallic layers, the permittivity is negative. For very dissimilar media,
the first-order perturbation used by Marcuse is not applicable. In the
present paper, we assume that the perturbation caused by the inter-
mediate layer on the propagation is small, but we do not assume that
the field in that intermediate layer is close to the field that would
exist in the absence of the layer.

In Section II, we evaluate the crosstalk between optical waveguides
when the axial wave numbers (or propagation constants) of the iso-
lated guides fluctuate along the system axis. In Section III, we eval-
uate the spacing between slabs corresponding to a given crosstalk. In
Section IV, the transmission is evaluated of a metallic layer under
evanescent wave excitation and the crosstalk reduction. In Section V,
we evaluate the loss that results from the introduction of a metallic
layer near a slab waveguide. In Section VI, a simple approximate
formula is given for the coupling between oversized round fibers. It
is compared to exact results. Finally, brief comments are made in
Section VI concerning the applicability of quasi-ray optics techniques
in evaluating the coupling between irregular oversized fibers and the
effect of bending. A few general results that do not seem available in
convenient form in the literature are derived in the appendices.

Il. FAST COUPLING

Solution of the coupled-mode equations when the axial wave num-
bers of the isolated guides are constant, or vary linearly with z, is
recalled in Appendix A. In the present section, only the results are
given.
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Let us first assume that the coupling ¢ between the two guides and
the axial wave numbers ki, ks, of the isolated guides is constant
(independent of z). Let a power unity be fed into guide 1 at z = 0 and
the other guide, guide 2, be unexcited. The power in guide 2 grows, at
first, according to the law (see Appendix A)

P,(2) = (c2)™ (1)
This result is valid only as long as Az < 1, where we have defined
A = {[(kr — k2)?/4] + }1. (2)

For example, a —20-dB crosstalk (P, = 0.01) over a 1-km length
of cable is obtained, according to (1), if ¢ = 10 m~'. Condition
Az & 1 is, for identical guides, z << 10 km. However, if (k1 — k2)/
(k1 + ko) = 104, law (1) is applicable only if 2 << 1 mm, a dras-
tically different condition. In Section III, the distance between the
guides that corresponds to this particular coupling is evaluated.

Now let k; — ko vary linearly with z. The coupling ¢ remains a
constant. We write

k1(2) = ko + ez, ka(2) = ko — az, (3)

where ko and « denote constants. At large |z|, the coupling is insig-
nificant because of the large value of k1 — k.. The coupling becomes
important only near the origin, z = 0, where near-synchronism is
achieved. Let a power unity be fed into guide 1, at large negative z.
The power transferred to guide 2 at large positive 2 is exactly (see
Appendix A)

P, =1 — exp (—rc/a). (4)

We are interested in the case where the k’s are crossing very rapidly.
Thus, let us assume that « is large and that, consequently, =¢*/a is
small. In that approximation,

P; = wmct/a KL 1. (5)

In most practical systems, ki — k2 oscillates as a function of z. A sig-
nificant amount of coupling between two guides takes place only near
the crossing points. To develop an understanding of the effects of
longitudinal variations of the difference of the axial wave numbers
k1(2) and k. (2), we model the difference in wave numbers as a simple
sinusoid, i.e.,

1(ky — ko) = 8sin (Q2), (6)

where & denotes the peak deviation of (k1 — k2)/2 and 27/Q the period
of oscillation. It seems reasonable to assume that the phases of the
signals picked up by fiber 2 at the successive crossing points are un-
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correlated and that, consequently, the powers add up. This inco-
herency is a consequence of the fluctuations of the phase of the optical
field between successive crossing points. According to (6), the slope
o introduced in (3) is

o = 68, (7)
The number of crossing points over a length z is Qz/7. Thus, the power
collected by guide 2 over length z is

Py = (Qz/7) (we)/(8Q) = ¢22/8. (8)

Note that P, is independent of Q. P, is proportional to ¢?, as was the
case in the absence of fluctuations, but it varies linearly with z rather
than being proportional to 22. Let us compare P, in (8) and P, in (1).
The ratio of these two collected powers is

P, (uniform fibers)
P, (nonuniform fibers)

(9)

It seems reasonable to assume that, over a length of 1 km (z = 10°
pum), the relative variations of the axial wave number are larger than
104: 8/k > 104 TFor the single-mode slab considered in the next
section, this number corresponds to a fluctuation of the slab thickness
of 0.01 pm. Because k& 1s of the order of 27 pm™!, the reduction in cou-
pling owing to the lack of identity between the two slabs is, in that case,
of the order of 50 dB. The results obtained are therefore much too con-
servative if we assume that the optical guides are identical in evaluat-
ing the crosstalk.

lll. EVALUATION OF COUPLING BETWEEN TWO SLABS

Let us consider two identical dielectric slabs having thickness 2d
and material free wave number £. The free wave number in the medium
between the slabs (cladding) is denoted &,, and the spacing between the
slabs is denoted 2D. (See Fig. 1. The intermediate layer is to be ignored
for the moment.) The expression for the coupling ¢ between the fun-
damental H waves is well known (see, for example, Ref. 1):

¢ = xR exp (—2«D), (10)
where
k= (k2 — k3)* (11a)
R = (kd)7'[1 + (1/xd)]7'[1 — (2d?/F?)] (11b)
F2 = (k* — k%)de (11c¢)

k. denotes the axial wave number of the isolated slabs (previously
denoted k; and k, for the two waveguides). If we require that only one
H mode propagate (for simplicity, we shall ignore the £ waves), the
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Fig. 1—Coupled dielectric slabs with thickness 2d and free wave number k. The

cladding medium has free wave number k.. Crosstalk can be reduced by introducing
a metallic layer with free wave number k, (almost purely imaginary) and thickness

m-

maximum value of F is /2. The theory of dielectric slabs shows that,
for that value of F, xd = 1.28. Thus, the coupling is

¢ = (0.24/kd?) exp (—2.56D/d), (12)

where we have made the approximation k. /2 k in the first term. Thus,
for a constant relative spacing D/d, the coupling between two single-
mode slabs varies as the inverse of the square of their thickness.

Let us evaluate ¢ for the numerical values
2d = 1.32 pm, k=27 X 1.45 um™, ke = 27 X 1.4 um™1. (13)
Thus,

F=x/2, k.d =~ kd = 8.88. (14)
If we substitute these results in (11b) and (12), we obtain
R = 0021, c(inm) =4 X 10% exp (—3.88D), (15)

where D is in um. If the slabs are identical, —20-dB crosstalk in 1 km
is obtained, as we have seen in Section II, when ¢ = 10~* m~. This
corresponds, aceording to (15), to a spacing

2D = 11 ym. (16)

If the slabs have some irregularities, with §/k = 10—* (corresponding
to a variation of slab thickness of 0.01 um), —20-dB crosstalk is ob-
tained when ¢ = 0.25 m™'. This coupling corresponds to a smaller
spacing: 2D = 6.2 pm. If the slab thickness is chosen equal to 10.5
pm, keeping F = x/2 (An/n = 5 X 107%), the spacing required for
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identical slabs and —20-dB crosstalk over a 1-km length is 2D = 66
pm, a rather large spacing.

If the two slabs are uniform but are made deliberately dissimilar,
a lower crosstalk is obtained. The relative difference §/k in axial wave
numbers is approximately 0.5 (Ad/d)/(kd)? where Ad/d is the relative
difference in thickness of the two slabs (F = x/2). For example, if
one slab has a thickness 2d equal to 1.32 um and the other has a thick-
ness equal to 1.2 um, the relative difference in k. is: §/k = 0.65 X 10—
The maximum relative power that can be transferred from one slab
to the other is, according to eq. (39), equal to (c¢/A)? where A == 8.
Thus, a —20-dB crosstalk corresponds, for the above value of §, to a
coupling ¢ = 8/10 = 580 m~'. The slab spacing 2D corresponding to
that coupling is given by (15). We obtain 2D = 2.2 um. More generally,
we find that D /2 1.5d for any d, if F is kept equal to «/2 and Ad/d
= 0.1. Thus, a considerable reduction in spacing is tolerable, in prin-
ciple, if the slabs are made dissimilar. However, fast fluctuations
along the z-axis of the slab dimensions with a period of the order of
w/86 2 100 um would reestablish synchronism between the two slabs.
Fluetuations that are too small in amplitude to deteriorate the prop-
agation under normal conditions (e.g., no significant coupling to the
radiation modes) may nevertheless introduce a large crosstalk when
the slabs are very close to each other. Thus, the result obtained above,
that the spacing between slabs can be reduced to 1.5 X (2d) if the
fibers are made dissimilar, may not held true in practical conditions.

IV. TRANSMISSION THROUGH A METALLIC LAYER UNDER
EVANESCENT WAVE EXCITATION

The results in Section IT show that the crosstalk power P, is pro-
portional to the square of the coupling ¢. We have shown in Ref. 1
that, for identical slabs and a symmetrical configuration, the coupling
¢ is proportional to the square of the normalized field halfway between
the two slabs. Thus, the crosstalk is proportional to the fourth power
of the normalized field halfway between the two slabs. If we introduce
a metallic layer of thickness 2d,,, symmetrically centered between the
two slabs as shown in Fig. 1, the crosstalk is reduced in proportion to
the fourth power of the field in the middle of the metallic layer. This
field reduction, denoted ¢ (for transmission), is evaluated in the present
section.

Let us consider an evanescent wave with axial wave number k. > k,,
where k, denotes the free wave number in the medium. This wave
decays in the z direction according to

E(x) = Eyexp (—«z), (17)
k= (K — kDL (18)
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Let us now introduce a metallic layer with complex wave number
km = kmr + tkmi and thickness 2d,. The ratio ¢ of the field in the
middle of the layer to the field at the same point in the absence of the
layer is derived in Appendix B. Provided the layer is sufficiently thick
or, more precisely, that

Real (kndm) > 1, (19)
where
km = (k3 — kh)3, (20)
we have
t = [dkn/(k + km)?] exp [(k — km)dm]. (21)

At a free-space wavelength Ay = 1 um, &y = 27 um™!, the wave number
of silver is almost purely imaginary,?

k% = (kmr + tkmi)? = (0.2ko + 5ko)? = —985 + 79¢ (in pm~2), (22)
and, for a typical glass, assumed lossless (n, = 1.4),
| k2 = n%3 = (14ko)? = 77.4 pm2, (23)

With the value of ¥ = kI — k2 = 3.76 pum~2 in (14), and k2, k% in (22)
and (23), we obtain x, = 32 — 1.37, and, from (21), a power trans-
mission

T = tt* = 0.062 exp (—60d..), (24)

where d,, is in uym, provided
dm 3> 0.03 pm. (25)

Because the crosstalk power P; is proportional to the square of the
power transmission T, the introduction of a layer of silver of thickness
2d.,, between the two slabs reduces the crosstalk in dB by

20 logso (T) = 520dm, (26)

where d,, is in pm. For example, if the layer thickness is 2d,, = 0.5 um,
the crosstalk is reduced by 130 dB. This reduction is independent of
the initial value of the crosstalk, within the approximations made.
Thus, a 0.5-um-thick layer of silver is sufficient to ensure a complete
_isolation of adjacent fibers, at a wavelength N\ = 1 um.

Surface polaritons can be guided near the dielectric (k% > 0) and
metallic (k2, < 0) interface. However, the losses of such modes are
extremely high over a distance of 1 km. The cladding modes are also
strongly attenuated, and it seems that they can be safely ignored. For
comparison, let us consider, in place of the metallic layer, a low-index
plastic material of the Teflon type, with a refractive index n = 1.32.
We now have k2, = 69 um 2 and xn = 3.47 um!. We obtain a cross-
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talk reduction equal to 26d,, in dB, where d,, is in gm. Thus, a 50-dB
reduction in crosstalk requires a 4-um-thick layer of low-index plastic
material.

V. LOSS INTRODUCED BY A METALLIC LAYER

We are now concerned with the fact that, because the refractive
index of a metal is not purely imaginary, the presence of the metallic
layer may increase significantly the loss of the modes guided by the
fibers. This loss depends critically on the distance between the metallic
layer and the fibers and, therefore, on the distance between the two
fibers. The loss suffered by the fiber is influenced by the complex re-
flection of the metallic layer for evanescent waves. This reflection,
strictly speaking, depends on the thickness of the metallic layer. Exact
expressions are given in Appendix B. However, in all our numerical
examples, the thickness of the metallic layer is so large that it can be
assumed infinite. In that case, the reflection r reduces to

r= (” - I"m)/("‘ + Km}y (27)

where « and «,, are defined in (18) and (20), respectively. Because the
imaginary part s, of , is much smaller than the real part xm,, the
imaginary part 7; of » is approximately

i R 2kmif Ko (28)

If we use for k., k., and k,, the numerical values in (14), (23), and (22),
respectively, we find r; = 0.005.

To obtain the loss suffered by the slab, we use the perturbation
formula derived in Appendix C. The variation of k. is assumed to be
small. The variation of the field near the perturbing object, however,
is not assumed small. In the present case, k. is real before perturbation.
The introduction of the metallic layer causes k. to acquire a small
imaginary part, k... The imaginary part k.; of k. is the fiber loss, in
neper/unit length. There is also a small variation of the real part of
k:. This variation, however, is of no interest to us. We have (see
Appendix C) '

ki = rikRexp (—2«kDn), (29)

where R is the slab parameter defined in (12a) and D, the distance
between the slab and the metallic layer. The imaginary part r; of the
metallic layer reflectivity is given in (28).

For the numerical values used earlier in (14) and (15), we obtain
from (29)

Lagpm = 8.7 X 10%.; = 2.6 X 10° X exp (—3.88D,), (30)

TRANSVERSE COUPLING IN FIBER OPTICS IV 1439



700

600
E
R
3
S 500 —2 E
« 2
2 z

400
& &
o — <
o w
© G
z 300 z
z [7]
) 1 8
G 200 S
2
(=]
w
@

100

0 4 ] | 0
0 1 2 3 a

SILVER LAYER THICKNESS IN um

Fig. 2—Reduction in crosstalk and increase in fiber loss resulting from the intro-
duction of a silver layer of thickness 2d,, (free-space wavelength = 1 um). The dielec-
tric slabs have a normalized frequency F= (k? — k2)¥d = x/2. Their spacing is kept
equal to 11 gm. The loss varies with d,, only because of the change in the slab-layer
spacing. In the absence of metallic layer, crosstalk is —20 dB/km.

where D, is in gm. For D,, = D — dn» = 5.25 ym, the loss introduced
by the metallic layer, given in (30), is only

£ = 0.017 dB/km. (31)

This loss is quite negligible compared with the other losses (absorption
because of impurity or scattering losses) suffered by the wave. How-
ever, because £ depends critically on D, this loss may not be negligible
in all practical cases. The reduction of the crosstalk and the increase
of loss caused by a silver layer of thickness 2d,, are shown in Fig. 2 for
the dielectric slabs considered earlier, as functions of 2d.. Note that,
if we assume for simplicity that the thickness of the metallic layer is
negligible compared with the slab spacing (2d. < 2D), the (dimen-
sionless) ratio of k.: (loss) and ¢ is, approximately,

koife = 2(kme/ k). (32)

Thus, the best metal, from the point of view of propagation, is the
one whose k,.,/k%; is the smallest.

VI. ROUND FIBERS

The general coupling formula in Ref. 1 is applicable, in prineiple,
to round fibers. Round fibers are more often encountered in practice
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than are slabs. The geometry is shown in Fig. 3. The fibers are assumed
identical, with radius a and spacing 2D. The results are given only for
the scalar fundamental field ¢ &~ HE;; of oversized fibers [F =
(k* — k¥H*a >>17]. In that approximation, the normalized field is
easily found to be (see Part IT of Ref. 1)

¥(y) = uo(rkiaF)~" exp (—Fy?/2a?), (33)

where uo R2 2.4 - - - is the first zero of the Bessel function of order zero.
The y axis is tangent to the rod considered, as shown in Fig. 3. The
Fourier transform of y(y) is

- +ﬂ:l
D) = @0 [ p) exp (—ik)dy
= 7wk~ F—texp (—kia2/2F). (34)

Because the spectral component ¢(k,) varies approximately as
exp (—sz) as a function of x, where s = (k% — k)i F/a, the

— EXACT
=== APPROXIMATE

10 '

10-2

1074

0 1 2
D/a

Fig. 3—Variation of the cuuﬁling between two dielectric rods of radii a as a func-
tion of their spacing (2D). The dimensions and free wave numbers are shown. The
parameter K is defined as ca(l — k2/k?)7, and c is the coupling. The plain lines are
from Snyder exact theory,” and the dashed lines from the theory in Ref. 1, applied
to large normalized frequencies F.
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coupling is

e = [ swTERI R,

= (&/a)k'Fia? exp (—2FD/a). (35a)
In place of ¢, we can use a normalized coupling K defined by
K = ca[1 — (k3/k®)]~% (35b)

In the general expression for ¢ in (34), J» and ¢, represent the spectral
components of the field of the two fibers along the y-axis at z = 0.
The normalized coupling K is plotted in Fig. 3 (dashed lines) as a
function of the ratio D/a of the fiber spacing (2D) to fiber diameter
(2a). In that figure, the parameter is the normalized frequency F. For
comparison, an exact result obtained by Snyder* is shown as a plain
line. The agreement is very good for F 2 4.

The advantage of the method used in this section is that it is ap-
plicable when the two fibers are separated by a metallic layer. In that
case, one need only introduce inside the integral sign in the first ex-
pression in (34) a term T (k,), where T denotes the power transmission
of the metallic layer, defined in (24). T now depends slightly on k,
because, in the expressions given earlier for T, the axial wave number
k. should be replaced by (k2 + k2)*. The effect of the dependence of 7'
on k, is small, however, and the value obtained earlier for T for slabs
is approximately applicable to round fibers as well.

VIl. MULTIMODED IRREGULAR FIBERS

We shall make only qualitative comments. In the preceding calcula-
tions, we have considered the coupling between one mode of one core
and one mode of another adjacent core. If the cores can carry many
modes and have dimensions that fluctuate as a function of z, with such
an amplitude that the variations in axial wave numbers exceed the
spacing (in axial wave numbers) between adjacent modes, some averag-
ing takes place. The situation becomes comparable, at least over some
distance, to that of a slab radiating power into a semi-infinite dielectric,
a situation discussed in detail in Part II of this series of papers.!

Let us picture the field in slab 1 (excited at z = 0) as made up of
two plane waves. The plane wave moving toward slab 2 tunnels into
slab 2. Because of the fluctuations in axial wave numbers, the power
transferred from slab 1 to slab 2 is essentially the power carried by
that tunnelling wave; we can ignore the fact that this wave, after
tunnelling, is reflected back and forth inside slab 2 and may tunnel
back to slab 1. The power transferred from slab 1 to slab 2, then, is
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proportional to 2, for small z, rather than to the square of 2, as is the
case in the absence of irregularities. This picture is consistent with
that used by Cherin,* who adds the powers transmitted by tunnelling
rays. Let us emphasize that the validity of this quasi-ray opties ap-
proach rests on the presence of large slow fluctuations of the core
dimensions. A simple calculation shows that the relative fluctuations
of the slab thickness must exceed the reciprocal of the mode number.
This condition is never met for the low-order modes, but it may be
met by the higher-order modes. Thus, the situation is rather compli-
cated and requires a deeper analysis. This quasi-ray technique should
not be confused with that of Kapany and Burke,® where the slabs
are assumed identical and the fields of the tunnelling rays, rather
than their powers, are added. In the preceding discussion, we have
assumed that the fiber cable is essentially straight. The coupling
increases signifieantly if the cable is bent.” This effect makes it even
more important to provide shields between adjacent fibers.

Viil. CONCLUSION

We have shown that a drastic reduction of crosstalk between parallel
dielectric slabs can be obtained by introducing a layer of silver (thick-
ness R 0.5 pm) between adjacent slabs. The reduction, in decibels, is
proportional to the imaginary part of the refractive index of the metallic
layer and to the layer thickness. In many cases of practical importance,
the loss introduced by this metallic layer is negligible. We have also
shown that, because of unavoidable irregularities in the fiber dimen-
sions, the crosstalk is at least 40 dB below that expected for identical
fibers.
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APPENDIX A
Fast and Adiabatic Coupling
Let ¢ denote the field of a guide, such that yy* is the power. When

two guides are weakly coupled, their respective fields y1, ¥ approxi-
mately satisfy the well-known equations?

—idy1/dz = k(2 + o
—tdys/dz ka(2)¢s + c1.
For simplicity, we assume that the axial wave numbers ky, ks of the

isolated guides are real and that the coupling ¢ is a real constant. The
solution when k,, k. are constant is well known. For the convenience

(36)
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of the reader, this solution is derived below. The general solution of
(36) is a superposition of normal modes

Y1(2) = i exp (ik+z2) + ¢ exp (tk72)

02(2) = v exp (ik*2) + i exp (ik-2), 37

where
kx = (k, — ka2)/2 = A (38a)
A = ([0 — k¥4 + . (38b)

If the initial conditions are ¢1(0) = 1, ¢2(0) = 0, that is, if only
guide 1 is excited at the origin (z = 0), the field in the unexcited guide,
2, is

¥2(2) = (ic/A) exp [i(ky + k2)z/2] sin (Az). (39)
Thus, for small z, the power in guide 2 increases as
P.(2) = (c2)?, Az L 1. (40)

This result is independent of &y — k.. See Fig. 4.

COUPLED IN POWER

cz

Fig. 4—Variation of the optical power picked up by fiber 2, where only fiber 1 is
excited at z = 0, as a function of the normalized axial distance. The axial wave
numbers of the isolated fibers are assumed to be constant but different [parameter
(ky — k1)/2¢]. Note that the behavior for small ¢z is independent of ky — ka.
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(b)

Fig. 5—(a) Linear variation of the axial wave number of the isolated waveguides
as a function of the axial coordinate z. The hyperbolas represent the normal mode
wave numbers. (b) Adiabatic coupling in fiber optics. All the power from one fiber
is transferred to the other fiber if the k's vary sufficiently slowly. This principle is
applicable to multimode fibers.

Let now the axial-wave numbers ki, k; of the isolated guides vary
linearly with z
k](Z) = ku + az, kg(Z) = ku — az, (41)

where ko and « denote constants. Synchronism takes place only near
the origin, z = 0. Let us set

V1,2(2) = A1,2(2) exp (ike2) (42)

in (36). After differentiation and substitution, we obtain an equation
for Al,
(d?A+/d2?) + (o2 + & — da)A; = 0. (43a)

A similar equation holds for 4, that we need not write down. Equation
(43a) is the equation for parabolic cylinder functions. The asymptotic
form of the solution, valid for —/2 < arg(z) < = is, for a power
unity at 2 = — = (see Ref. 9),

A1(2) = exp [i(2/2)2* + i(c*/2a) log (—2)], 2K c/a (43b)
41(2) = exp [i(a/2)2® + i(c*/2a) log (2) — wc*/2a],  2>>c/a, (43c)

as we easily verify by substituting (43b) in (43¢) and neglecting terms
of order z72. To go from (43b) to (43c), note that log (—2)
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= 4= + log (2). Note also that a change in the unit with which z is
measured affects only the amplitude of A,, which is arbitrary.

The power in guide 2 after the interaction has taken place, that is,
for large positive z, is, according to (43c),

P.=1— A;A7 =1 — exp (—wc*/a). (44)

Let us first assume that wc?/a is very small compared with unity,
that is, the k’s are crossing very rapidly. In that case, guide 1 transfers
only a small amount of power to guide 2, equal to wct/a. This is the
result used in the text.

When =c?/a is very large compared with unity, that is, when the
variation of ki — ks is very slow, almost all the power from guide 1
is coupled to guide 2. This is the principle of the Cook adiabatic
coupler.”® This mechanism is applicable also to multimode dielectric
waveguides. It may be used to couple two optical fibers because the
dimensions are not critical. Only slowness is required.!* (See Fig. 5.)

APPENDIX B

Transmission and Reflection at a Metallic Layer Under
Evanescent Wave Excitation

Let the metallic layer have a complex free wave number kn = kmr
4 4kn; and a thickness dn. The surrounding medium is assumed to
have a real free wave number k,. The field has the general form (see
Fig. 6)

Eo[exp (—xx) + rexp (xkx)], z=0
E(z) = {E— exp (—kmz) + Etexp (km) 0<z=d. (45)
Et exp (—«kz) T = dm,
where
k= (kI — k3)} (46)
is real, and
km = (k3 — kR)Y. (47)

>

!
“
|

5N

k,

S

Fig. 6—Transmission of a metallic layer with thickness d,, and free wave number
k. under evanescent wave excitation (axial wave number k. > k.). At large negative
z, the field is assumed unperturbed by the layer.
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The axial wave number k. is assumed to be real and larger than k,.
By specifying that £ and dE/dx are continuous at the boundaries,
x =0,z = d,, we obtain the reflection » and the transmission ¢:

Cle/km) — (km/x)J[2 coth (kmdm) + (km/x) + (k/km) T (48)
t = exp (kdn){cosh (kmdn) + 3[(km/x) + (k/km)]sinh (kndo)}~t. (49)

We shall now assume that the metallic layer is thick in the sense
that Real (xmdm) > 1. These conditions are well satisfied for the
metallic layers that we consider in the main text. In that case, (48)
and (49) reduce to

r

(k — km)/(k + &m) (50)
t = [4xxn/(x + &km)?*]exp [(k — km)dm], (51)
respectively. Equations (50) and (51) are the results used in the text.

r

APPENDIX C
Loss Introduced by a Metallic Layer

Let us consider a uniform reciprocal waveguide and let a uniform
rod be introduced that perturbs the propagation of the waveguide
(Fig. 7a). We assume that the perturbing rod does not support trapped
modes or, if it does, that the axial wave numbers of these trapped
modes are sufficiently far away from that, k.., of the waveguide. No
resonant coupling is assumed to take place.

We shall first recall a very general result. Let E+, H* and E,, H,
denote two time-harmonic fields at the same frequency in the same
medium. If we assume that the medium is reciproeal (that is, that the
tensor permittivity is symmetrical), it readily follows from the Maxwell
equations that the divergence of the vector

J=E+*+XH,+H+XE, (52)

is equal to zero. Thus, the flux of J through any closed surface is equal
to zero. In what follows, an exp (—iwf) term is omitted.

Now let E+, H* be the field propagating in the —z direction along
an open waveguide. The dependence of E+ and H+* on z is denoted:
exp (—ik.e2). Let E,, H, be the field propagating in the -z direction
in the presence of the perturbing rod with an exp (ik.z) dependence
on z. The closed surface S is taken as the surface shown in Fig. 7a
bounded by the planes z = 0 and z = dz, the volume of the perturbing
rod being excluded. For that choice, the medium enclosed by S is the
same for both fields. We can therefore use the result stated earlier that
the flux of J through S is zero. Let us consider the various contributions
to that flux. The flux of* J through the plane z = dz differs from the
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Fig. 7— (a) Schematic for the derivation of the general perturbation formula. The
dielectric waveguide is perturbed by a small lossy rod. The closed surface S extends
to infinity where the fields considered are assumed to vanish. (b) All)plica.tion to the
perturbation of H waves guided by a dielectric slab (k) by a lossy s ab (km).

flux of J through the plane z = 0 only by a factor —exp [i(k. — kz0)dz].
The difference between these fluxes is, therefore, i(k. — k.o)dz for
small dz. Because we are considering only trapped modes, the flux at
infinity is zero. The flux through the surface surrounding the perturb-
ing rod is dz times the line integral of J-dC, with dC a vector perpen-
dicular to the contour surrounding the rod, pointing inward, whose
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length is the elementary arc length. Thus, we have exactly

idk, = fc J-dC/fSD J-ds, (53)

Ak, = k. — k.. (54)

Sy denotes the transverse plane, z = 0 minus the area enclosed by C,
and dS denotes a vector directed along the z axis whose length is the
elementary area. The derivation given above is almost identical to
that in Ref. 1 for coupled waveguides. We now assume that the per-
turbation is small. Thus, we can replace E,, H, by the unperturbed
field E, H propagating in the 4z direction in the integral over S, in
(63). This is not permissible, however, for the integral over C, in
general.

Let (52) be specialized to the H waves guided by a dielectric slab
shown in Fig. 7b. In that case, E has only one component: E, = E(z),
H. = (1/iwpo)dE/dx, and H, = — (k./wuo)E. Taking into account
Ef = E, and H} = H. (see Ref. 1), we obtain

Ak, = [(EOE,/oz) — (E,0E/oz)] / (ka f_ J:” E”da:), (55)

where

where we have assumed that E, differs significantly from E only near
the perturbing slab. The unperturbed field is, for —D,, < z < 0,

I = exp (—«kx), (56)
and the perturbed field is that given in (45)
£, = exp (—«x) + r exp (kx), (57)

where
k= (k2 — k)L

The amplitudes in (56) and (57) are so chosen that E, &2 E for large
negative z, e.g., x = —D,.
We first evaluate

(EQE,/dx) — (E,0E/d8z) = 2rk, (58)

where we have used (56) and (57). Note that the result (58) is inde-
pendent of z (for —D. < x < 0). Substituting (58) in (55), the
imaginary part of k. is found

k. = ricR exp (—2kDy), (59)

where 7, denotes the imaginary part of r, evaluated in Appendix B.
We have introduced in (59) the field strength parameter

R = (k, f_ " E”dx)—l. (60)

o

TRANSVERSE COUPLING IN FIBER OPTICS IV 1449



In the above definition of R, the field is assumed to be unity at the
guide-cladding boundary. For a dielectric slab, the value of R is given
in (12). Equation (59) is the result used in the main text.
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