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The degradation suffered when pulses satisfying the Nyquist criterion
are used to transmit binary dala in noise at supraconventional rates is
studied. Optimum processing of the received waveforms is assumed, and
attention is focused on the minimum distance between signal points as a
performance criterion. An upper bound on this distance is given as a
SJunction of signaling speed. In particular, the pulse energy seems to be
the minimum distance up to rates of transmission 25 percent faster than
the Nyquist rate, but not beyond.

Some mathematical aspecis related to the above problem are also con-
sidered. In particular, the minimum distance is rigorously shown to be
nonzero for all transmission rales. This 1s tantamount to showing that,
in the singular case of linear prediction, perfect prediction cannot be
approached with bounded prediction coefficients.

I. INTRODUCTION
The use of Nyquist pulses

sin (wt/T)
0= "G

to send binary (or multilevel) data without intersymbol interference
over a channel of bandwidth W = (1/2T)Hz is classic. If we assume
that one receives the pulse train

Ng
u(t) = a,g(t — nT), a,= =+ 1, independently, (1)
N

n=N1

in additive white gaussian noise of two-sided spectral density N,/2,
then the optimum detector has a bit-error rate P, given by

P, = Q(jz——‘fo) , ()
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where

Q) = % [ ey =y erte ®)

erfc (+) denoting the co-error function, and E being the energy in the
pulse ¢ (2). In our case, E = T. Asymptotically, for large signal-to-noise

ratios, (2) becomes
1 Moy (- ).
Pe~5 W—EBXP( N, )

We now address the following question : Suppose that in transmitting
(1) we obtain a performance from (2) that is more than satisfactory.
Thus, we may have a P, of 10-% or 107 when 10~° would be adequate.
To what extent can we trade this “excess performance” for speed by
replacing T by T’ < T in (1), while keeping transmitted power
constant? In other words, we still use pulses

sin (wt/T)
g(t) =B (ﬂ't/T) ’

but send them at intervals T’ < T. We call this faster-than-Nyquist
transmission and shall characterize T’ by writing T’ = pT,0 <p < 1.
A particular motivation for this problem is to mathematically model,
in a simple way, what would happen if voice-band telephone channels
are “pushed” to their limits with more rapid transmission of pulses
than has been conventional.

While simple detectors that match filter and sample can still be
used for faster-than-Nyquist transmission, their performance is
suboptimum.! We are concerned here with optimum detectors. Since
exact analysis of nonlinear detectors is not presently feasible, we
choose to give our detectors the benefit of the doubt and work rather
with lower bounds to P.. Nevertheless, interesting results can be
obtained regarding the trade-off considered here. To see why degrada-
tion in error rate is inevitable, note that (2) is the well-known matched
filter bound for antipodal pulses, each of energy E, which must bound
performance for bit detection with a sequence of (perhaps interfering)
pulses. On the other hand, as T’ decreases, pulses are sent faster
and the energy E in each pulse must be decreased in direct proportion
so that the power E/T’ is kept constant. This is an immediate un-
avoidable element in performance degradation, and may be regarded
as a ‘“fair” trade-off. Another cause of degradation is the degree to
which the optimum detector can cope with the interference among
pulses, i.e., the fact that the performance will drop below that of (2).
Here, bounds other than (2) are useful, and in fact are the first item
taken up in the next section.

(6)
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Il. DISCUSSION OF LOWER BOUND FOR ERROR RATE

Assuming (1) is received in white noise and an optimum detector is
used for detecting the kth bit, a lower bound on the chance of making
an error on this kth bit will now be derived. Since the data a, are in-
dependent, this bound also serves for any sequence (1) starting at
n = N; £ Ny, and ending at n = N; = N,. We begin with the fact
that, for a binary hypothesis problem with equal a priori probabilities
and having p,(z) or p_(x) as the two probability densities of the
received signal x under the two respective hypotheses, one way? to
write the probability of error is

P= [ min p. (@), p-(@)dz. (6)

If we let uf(f) be a particular one of the equiprobable 2¥ signals in
(1), N = N: — N, which have £1 in the kth position, then formally

1 2
pe(a) = o¥ :';1 P (), (7)

where p! (z) is the density of the observations conditioned on the
entire sequence. Thus,

2N 2y
P, = 5'5F" min (1:21 P4 (2), .Z ‘P"—(J?))dx

221“, 5 [ min [ (@), 920 @) i (8)

In writing (8), we have made use of the fact that the minimum of two
sums with an equal number of terms is at least as large as the sum of
the minimum of the two 7th terms of each series. Of course, each series
can be arranged in any permuted order before the pair-wise minimum
is taken and, thus, the pairings 7 with j(?) are indicated in (8) to allow
for this permutation. Now

1 . )

5 [ min 7% @), (@) Jde ©
is the probability of error with two fixed signals and has the well-known
evaluation

d[7,j(9)] )
LFIOAR 10
o L (10)
where
@(i,5) = [~ (W (@) - ulOPd (11)

is the “distance” between two sequences (1) which differ in the kth
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position. Equation (8) then reads

LFION
P2 g 5, o L) (12)

for any set of pairings [4, 7(z)]. The bound (12) is intimately related
to Forney’s lower bound,? although our derivation is quite different.
Forney’s bound in the present situation reads

P, = me(m) , (13)
where dmis is the minimum distance between signals (1) which differ
in the kth position, and p,. is the probability that a sequence chosen
at random has a sequence with opposite polarity in the kth position
at distance dmin. Equation (12) can be made to yield something like
(13). Thus, in (12) discard all terms except for those pairings [7, j(4)]
such that d[7, j(z)] = do. Then (12) implies

. of pairings ./ d
P, z T TR Q( f——zg\,) (14)

The coefficient in front of the @ function corresponds to the proba-
bility coefficient in (13). Choosing do = dmin yields (13), but when
we will not be able to find dnin, eq. (14) will serve our purpose.

. ESTIMATING THE MINIMUM DISTANCE

Clearly, in (14) we should like to find the smallest do to maximize
the lower bound provided the coefficient is not too small. In our
problem, d2, is given by

T Y S f
4E N; lai=+1,0) 2mp J _x

where we have normalized by dividing by the pulse energy E. The
expression (15) comes from taking the Fourier transform of (11) and
manipulating the resulting expression slightly. We note particularly
that in (15) only positive values of I need be considered, since

pr

2
do, (15)

N .
1— 3 aeit
=1

2 M+K
:Kﬂ(l — Z a;e'"’) = |1 — Z bet!ﬂ
0
if a_x # 0. We have set by = —a_ga,_x if I # K and by = —a_g if

l=K.

We cannot claim to have found the minimum value of (15). How-
ever, a simple numerical effort has yielded the results for dj/4E shown
in Fig. 1, where d, refers to the smallest distance we have found. We
note in particular that do is the pulse energy for p decreasing from 1
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0.3 (1-2)(142%)
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Fig. 1—The smallest distances between signal sequences that we have found are
shown here for different values of signaling rate. Labeling a point by K indicates
that the polynomial is

K
pG) =1+ 3 (~1yz.

to 0.8, or, in other words, for rates exceeding the Nyquist rate by
25 percent [percentage of excess = 100(1/p — 1)]. Thus, dh,/4
cannot be the pulse energy for p < 0.8 for this problem. By the time
p has decreased to 0.5, di/4E has dropped to 0.465. (G. J. Foschini
has informed the author that the use of the polynomial p(z) = 1 — 2
+ 28—zt 4+ 2% — 2", z = exp (1), results in the value 0.410 for
d3/4E at p = 0.5.) Except for some points in the neighborhood of
p = 0.4, the values for d§ have been obtained by considering numeri-
cally the best value of K which minimizes, for not too large K,

1 [er
2mp L,:

These points are labeled with the appropriate value of K in Fig. 1.

1+ zi (—1)eite| d. (16)

FASTER-THAN-NYQUIST SIGNALING 1455



Somewhat surprisingly, the larger values of K are responsible for
decreasing do initially (K = 7 at p = 0.8), and then K gradually
becomes smaller (K = 2 at p = 0.5). The value obtained with K = 1
always was suboptimum, as was the limiting value of (16) when
K — o, which is easily shown to be

L tan 27 a7)
TP 2
Why were the sequences given in (16) deemed to be of interest in
the first place? The most interesting reason stems from the following
argument. If one considers the Fourier transform of a doubly infinite
pulse sequence like (1) when pulses are being sent faster than Nyquist
and when the special case of the alternating sequence ¢, = (—1)" is
being sent, one finds that the Fourier transform consists of delta
functions spaced at all odd multiples of x/7", that is, the Fourier
transform is out-of-band, which suggests zero received energy. Ac-
tually, the doubly infinite model and its é-function Fourier transforms
are idealizations representing limiting behavior for signals consisting
of pulses extending from (—N, N) and N becoming large. We are
really concerned with limiting behavior of the energy contained in
the frequency interval (—«/T, =/T), with T > T”, and evidently for
the present case, if Sy(w) is the Fourier transform of the truncated
pulse sequence,

.1 [T 1 T
lim — [ | S (w) |2deo % = f lim Sx () |?dw = 0. (18)
/T 27 Joair

In spite of the above subtlety, however, sequences which are alter-
nating at least over part of their range are interesting and one might
expect difficulty distinguishing between one such sequence and its
negative.

In addition to the normalized distances given in Fig. 1, Fig. 2 plots
the numerical values of lower bounds computed from expression (14),
as well as the mateched filter bound. These curves all assume constant
power. Curves with initial (p = 1) error rates with 10~* and 10~7 are
chosen as examples in Fig. 2. In both cases, an order of magnitude of
degradation in error rate is seen for a 25-percent increase in bit rate
(p = 0.8) using only the matched filter bound. Decreasing p further
on the 107 curve illustrates further degradations using (14) with an
appropriate value of K. These bounds do not show a departure from
the matched filter bound for as small a value of p as Fig. 1 would
suggest, because the coefficient 1/2X to be used in (14) swamps the
effect of the decreasing “minimum” distance. For the 10~% curve,
this effect extends to even smaller p and no lower bound other than
the matched filter one is shown for that case.
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Fig. 2—Lower bounds on error rate vs signaling speed for two initial (p = 1)
cases. The solid curves are both matched filter bounds. The dashed curve is based
on minimum-distance considerations and applies to the 10-7 case. All curves are
drawn for constant power.

IV. TWO MATHEMATICAL QUESTIONS

As we have already emphasized, the infimum of the right member
of (15) over all the indicated trigonometric polynomials with +1, 0
coefficients is not displayed in Fig. 1. Figure 1 simply shows the
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smallest values we have found. Next, we want rigorously to establish
here that d2, = 0 if p # 0. Note that this would not be the case if
the coefficients a; in (15) were allowed to be any real numbers. In
fact, for any nonnegative function f(§) with In f(8) € Li(—m, ),
we have the Szego theorem* which states

N 2 L g
1— 3 ae| do = exp % f Inf(6)ds. (19)

1

inf L [7 50

N ; apreal 2 —r

Expressions such as (19) ocecur, in particular, in linear prediction
theory.

In our case, f(§) = 0 if |#| > p7m and In f(8) is not L;, but the
appropriate limit of (19) indicates zero to be the infimum, which is
the correct answer.* Thus, there is some cause to wonder if d%,, as
defined in (15) is zero as well. We shall in fact show it is slightly more.

Theorem 1: Let 8 be any positive (finite) real number and require |a;| = 8,
l=1,2, ---. Then

inf 1 j‘ o

inf —

N; (e} 21 J_pr
Proof: We first note that if there exists a sequence {p,(#)}s=1 of
trigonometric polynomials of the form

N 2
1— XY ae® dd>0 p=0. (20)
1

Pa(6) = éa,(n)em, @] S8 < (21)
such that
% fg 11— pu(@)[2d6 — 0, (22)
then, for any G(8) € L.(—pm, px),}
” G(0)p. (8)d6 — ,, G(8)de. (23)

This is simply a statement of the fact that if p,(f) converges strongly
to unity, it also converges weakly to unity. Now it is easy to see from
(23) and the form of p.(6) that

g)i f_ dee-'naG(e)] > ‘ ” G(a)de‘- (24)

.
Or, in other words, if

‘ " G(e)da\

—pr

f g e-'nﬂG(e)de‘

pr

(25)

sup -
G(6)ELa(—pr, pm) E
1

T In addition to G(8) € L.(—pm, pr) it will sometimes be convenient to regard
G () € Ly(—m, =) but having support confined to (—pm, pr).
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then (22) cannot be true. In particular, if (25) holds with 8 = 1, then
d%, is strictly positive. Regarding G(8) € L.(—m, ) but supported
on [—pm, prr], and ecalling

§0) = o [" emc@as, (26)

g = g(n),
the right member of (25) contains the quantity

JQDW . (27)
; [g |

Clearly, we have a question concerning the sample values g, at the
nonnegative integers of a function whose bandwidth is strictly less
than =. Normalizing (27) with go = 1, (25) prompts the question:
How small can 3 [g.| be? If it can be zero, then (25) would be true
for any finite 8. In fact, by Carlson’s lemma,® which states that a
band-limited function having a bandwidth less than = is uniquely
determined by its sample values taken at integers along a half line, it
follows that if go = 1, then 35 |g.| # 0. But Carlson’s lemma does
not say that 31 |g.| cannot be made arbitrarily small under these
conditions. Lemma 1 (see below) shows that > " |g.| can be arbi-
trarily small. Thus, the right member of (25) is infinity, implying the
truth of Theorem 1.

An immediate corollary of Theorem 1 is that for the singular case
of Szego’s theorem [f(8) vanishing on an interval] the infimum value
of zero cannot be approached without using unbounded coeflicients.

Lemma 1: Let g(f) [not identically zero and € Ly(— o, )] have
Fourier transform ((8) supported on (—pmw, pr) for some fized p, 0 < p
< 1. Denote the samples of g(t) at the integers by g. [as in eq. (26)], and
fiz the normalization of g({) by selting |go| = 1. Then

inf 3° [ga| = 0, (28)

where the infimum is taken over all g(t) having the indicated properties.

Proof: We begin with the simple, but crucial, remark that it is suffi-
cient that there be, for any p, a function h(t; p) € L?*(— =, =) whose
Fourier transform is supported on (—pm, pr), such that 2(0,p) =1
and such that Y7 |h.(p)|? can be arbitrarily small." This is sufficient,

T We are grateful to H. J. Landau for pointing this out. Landau has also supplied
an independent proof of the above refinement to Carlson’s lemma, which we give in
the appendix.
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because to make (27) large (for some fixed value of p) we would just
need to take

g(t) = hﬂ(z, g) (29)

for an appropriate h(t, p/2). Clearly, ¢(f) is band-limited to p and is
L?(— o, o) because h(t, p/2) is bounded:

h(t, g) _ % f " H@)ds < 2%(”- f_”m |H(0) |2dz). (30)

—pr/[2 pm/2

But can we really find an appropriate k() such that
ho=1, 3 [ha]? < ¢ (31)
1

or, equivalently, can we find a real 2(f), band-limited to (—pm, p7),
such that

(ho — 1) + 3 B2 < €? (32)

Indeed we can, and in fact the answer may be extracted from an
article by Salz® which discusses mean-square decision feedback equali-
zation. Salz, in Seetion V of his paper, considered the equalization
problem for faster-than-Nyquist signaling. His minimization problem
was of the form in (32) plus an added term for the noise variance;
L(t) corresponds to the output of the equalizer when one pulse of the
form sin pwt/pwl is the input. He remarks, in the last sentence on
page 1354 of his paper, that the quantity that corresponds to (32)
plus added output noise variance goes to zero as the input noise
variance decreases. Hence, if we choose h(t) to be the output pulse
of a decision-feedback equalizer whose taps have been optimized for
the case of sufficiently small input noise, then (32) will be sufficiently
small. Thus, Lemma 1 is proven.

The second question we discuss in this section is the rapidity with
which the minimum distance decreases as p approaches zero. We
develop this in Theorem 2.

Theorem 2:

2
lim i"':# =0 foranyk > 0. (33)
p—0

Proof: The proof is a simple construction. Consider the polynomials
L

Pu(z) = I 1 — 2%). (34)

=0

Clearly, Pr(z) has a zero of order (L 4+ 1) at 2z = -+ 1, and has =1
coefficients, with P.(0) = 4+ 1. Now, for small p, the (I, + 1)st order
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zero at z = 1 implies

o [ 1Pue) 'd0 = 0) (35)

for all integer L. Equation (33) follows immediately.

Short of finding d2,, exactly, there are a few mathematical questions
that suggest themselves and that may be less difficult than the full
problem. Thus, Fig. 1 prompts one to ask if there is a neighborhood
of p = 1, where d%,,/4 is the pulse energy? Another question has to do
with pulse design. Given that G(#) is symmetrie, positive, L, and
supported on (—pm, pr),is G(§) = constant the best choice to maximize
the minimum distance (subject to fixed pulse energy)?
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APPENDIX
Landau’s Proof

In Section IV we present another proof that

g _

sup — = o0, (36)

> lgal?

n=1
where the sup is taken over all g(f) € L*(— 0, «), which are band-
limited to (—pm, pr). Our proof in the text relied on the published
results of work by Salz.® Here we give a self-contained, but more
mathematical, proof of (36) which was developed by H. J. Landau.

Suppose (36) is not true, i.e., suppose that

@ 2
S lgnl2 2 25> 0 forall g(t) of BW = pr. (37)
1 ]

Then,

\mvgkimA% (38)

From Carlson’s lemma, go is a linear functional on the I, sequence
{g1, g2 ***, Gk, - - -} and, from (38), this linear functional is bounded.
Therefore, by the standard Riesz representationt for bounded linear

t Not all 1, sequences {g;} give rise to an appropriate g(¢), and hence, the linear
functional gq is not defined on all of 1;. Therefore, before using the Riesz theorem,
the Hahn-Banach theorem should be invoked to extend go to a bounded linear fune-
tional on all of l..
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functionals, we may write
go= Y bg, Sb< (39)
where the b, do not depend on g(f). We now consider the function
P =1 — 3 b (40)

which is analytic for |z| < 1. For any G(8) & Ly(—pm, pr), we may
write, using (39),

TGO = S b [T emG(0)do
1

—pm —pT

- [" ( 3 bne""”)G(G)dﬁ. (41)
—pm 1
Therefore,
lim [ (1 S b,zr)G’(ﬂ)dB -0 (42)
1

lz]| =1 J —p7

for all G(8) € L.(—pm, pw).t By the completeness of L, we must have
1 — ¥ 7b.ei™ =0 a.e on (—pn, pr). Since the radial limit of the H.
function p(z) vanishes on a set of positive measure, p(z) itself must
vanish for |z| < 1. (See Ref. 7, p. 373, Theorem 17.18.) However,
p(0) = 1, and, hence, we have a contradiction, denying the validity
of (37).
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T This is a simple application of Ref. 7, page 366, Theorem 17.10 supported by the
fact that strong convergence in L, implies weak convergence.
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