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A novel technique is presented for implementing a variable digital phase
shifter which is capable of realizing noninteger delays. The theory behind
the technique s based on the idea of first interpolating the signal to a high
sampling rate, then using an integer delay, and finally decimating the
signal back to the original sampling rate. Efficient methods for performing
these processes are discussed in this paper. In particular, it is shown that
the digital phase shifter can be implemented by means of a simple con-
volution at the sampling rate of the original signal.

I. INTRODUCTION

In digital systems, linear phase shift or delay of a signal waveform
by an integer multiple of the sampling period is a simple process that
can be implemented as a cascade of unit delays in the network. If,
however, it is desired to delay the signal waveform by an amount not
equal to an integer multiple of the sampling period, then the process
is considerably more difficult. In this case, the signal must be interpo-
lated to obtain new samples of its waveform at noninteger sample
times.

In this paper, we propose a novel implementation for achieving
such noninteger delays. The theory is based on the application of the
concepts of decimation and interpolation proposed by Schafer and
Rabiner! and Crochiere and Rabiner.? It is shown that the actual
implementation of the phase shifter or interpolator can be achieved
by means of a simple convolution.

Applications in which such noninteger delays in the signal waveform
are required often occur when digital systems must interface with
analog systems. For example, in the cancellation of echoes, digital
systems are often used to generate artificial echoes by means of a
simulation of an echo model. These artificial echoes are then sub-
tracted from the original analog signal to cancel its echo. For best
cancellation, the digital simulated echo may have to be delayed by a
noninteger multiple of the sampling period.
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A second potential application occurs when multiple signals must
be processed together such as in a phased-array antenna system
(e.g., for seismic processing). In this case, the signal waveforms from
the various elements must be shifted by noninteger multiples of the
sampling period relative to each other.

A third application of noninteger delays is in pitch, synchronous
synthesis of speech.® In this case, a parametric representation of
speech is generated at a fixed sampling rate (usually 100 Hz) ; however,
the synthesis parameters are required at time instances between the
sampling intervals to avoid producing transients in the synthesized
signal. Using the variable phase shifter proposed in this paper, the
synthesis parameters can be readily interpolated to any point between
sampling intervals.

Il. BASIC CONCEPTS OF THE PHASE SHIFTER

Figure 1 illustrates the basic operation of the phase shifter. To
implement a delay of I/D samples, where [ and D are any integers, the
sampling rate, f,, of the input signal z(n) is first increased by an
integer factor D [by inserting D — 1 zero-valued samples between
each sample of z(n)]. The resulting signal v(n) is then filtered by a
low-pass filter h(n) (generally a linear-phase FIr filter is used here)
to remove its periodic frequency components, which are centered about
integer multiples of the original sampling frequency.'-* The output of
the filter u(n) is an interpolated version of the input signal z(n). The
signal u(n) is then delayed by [ samples at the high sampling rate to
produce the signal w(n) = w(n — 1). It will be assumed that [ satisfies
the condition.

0sl=D-1. (1)

Finally, the output y(n) is obtained by desampling or decimating
w(n), i.e., by choosing every Dth sample of w(n). The net effect is to
delay the original signal z(n) by a noninteger delay of (I/D)T where
T = 1/, is the sampling period at the low rate. In addition, an integer
delay is introduced in the signal due to the delay of the low-pass
filter h{n).

The structure in Fig. 1 can be analyzed in a straightforward manner.
Let X (e%), V (e*), W (e®), Y (¢*), and H (e*) be the Fourier transforms
of z(n), v(n), w(n), y(n), and h(n) respectively. Then, the relationships

x(n) 1:0 v(n) H,nF) u(n) i win) D:1 yin)
f, Df, Df, Df, f,

Fig. 1—Block diagram of the phase shifter.
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between them can be given as in Refs. 1 and 2:

Vie*) = X(e*P), (2)
W(e*) = H(e*)e*tV (e®), (3)
and
. 1 B2 .
Y (e®) = 5 S W (e vmiDginlD) (4)
m=0
In eq. (4), the terms in the summation form = 1,2, ---, D — 1 corre-

spond to high-frequency components of W (e*), which are aliased into
the low-frequency band from 0 to f,/2 due to the desampling process.
We assume that the low-pass filter H(e*) attenuates these high-
frequency components to a point where such aliasing can be considered
negligible. That is, it has a stop-band cutoff frequency of 1/2D (normal-
ized to the high sampling rate Df,) and a stop-band ripple 8, that is
sufficiently small to prevent aliasing. With these assumptions, (4)
becomes

Y (e®) —."‘:’% W (eiwiP) (5)
and with the aid of (2) and (3) it can be written as
Y (ei) = % H (ei1D)g—iwlIDY (giulD)

= 1% H (e#1P)g—iwtIDX (g}, (6)

We now assume that H (e~) is a Fir filter with exactly linear phase
and has a unit sample response duration of N samples. Then, its
delay will be (¥ — 1)/2 samples at the high sampling rate. If it is
desired that this delay be an integer delay at the low sampling rate,
then N must be chosen such that (V — 1)/2is an integer multiple of D.
That is,

where I is a positive integer and
N =2ID + 1. (8)

If the particular application does not require that the delay of the
filter appear as an integer delay at the low sampling rate, then condition
(8) is entirely optional and need not be used.

We now impose the constraint that the passband response of
H (e#/P) have a gain of D and be essentially flat (i.e., have very small
passband ripples). Then the filter response of H (e*/?) over the pass-
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band is approximately [assuming (8) applies]

H (e#/P) =< De—(iID) -1 /2]

o~ De— I, (9)
Substituting (9) into (6) gives the final desired result:
Y(e*) o —ur,—ilip
X(Gj“)ze Julg—w (10)
or in terms of z-transforms
Y@ o, rum

Thus, the structure in Fig. 1 is essentially an all-pass network [over
the passband of H (e*/2)] with a fixed integer delay of I samples due
to the processing delay of the low-pass filter h(n) and a variable
noninteger delay of I/D samples. If N does not satisfy condition (8),
then I in egs. (10) and (11) will not be an integer. In either case, the
output, y¥(n), in Fig. 1 is an approximation to z(n — /D — I).

lll. IMPLEMENTATION OF THE PHASE SHIFTER

The design of the phase shifter in Fig. 1 suggests a structure which
involves two different sampling rates. In this section, we show that
the actual implementation of the phase shifter can be achieved con-
siderably easier as a straightforward convolution at the low sampling
rate.

Since the duration of A(n) is N samples and D — 1 out of every D
samples of v(n) are zero valued, the filter A(n) spans approximately
N/D nonzero samples of »(n). More precisely, because of the constraint
imposed on N in (8), h(n) spans @ nonzero samples of »(n) for the
computation of some output points and @ — 1 nonzero samples of
v(n) for the computation of other output points [@ is defined in
eq. (13)]. To avoid this implementation difficulty, it is convenient to
consider instead a new filter ’(n) whose length N’ is

N'=QD =z N, (12)

where k’(n) is obtained by extending h(n) with N’ — N zero-valued
coefficients. Obviously, the filter ' (n) has the same exact frequency
response and delay as hA(n), but it spans ezactly Q nonzero samples of
v(n) [although one nonzero sample of »(n) may be multiplied by a
zero valued coefficient of A'(n)]. Since we wish to keep N’ as small
as possible, consistent with (12) we can choose @ to be

o [3]
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where the brackets indicate that the number is rounded to the next
largest integer.

With these assumptions, we can now relate the output y(n) in Fig. 1
to z(n) and 2/ (n) by the expression?

y(n) = ig kD + (=1) & D]a(n — k), (14)

where @ corresponds to modulo addition. By letting
qi(k) = W[kD + (=) ® D] k=0,1,---,Q -1, (15)
(14) then becomes

y) = T Bt — k), (16)

which is the form of a simple convolution. Therefore, the phase shifter
can be implemented by a € point convolution of z(n) with g,(n), where
gi(n) is an appropriate subset of the coefficients of 4'(n). To obtain a
zero ineremental phase shift, we use the coefficients {go(0) = A'(0),
go(1) = W' (D), --+, go(@ — 1) = K'[(Q — 1)D]}. To obtain a delay
of (I/D)T (or a phase shift of wl/D), we use the coefficients
{g:(0) = K'[(=0) & D], g:(1) = W'[D + (=) & D], ---, ¢u(@ — 1)
= W[(Q — 1)D + (=1) ® D]}. If we want a variable phase shifter,
we can store all D sets of coefficients and use the appropriate set as
suggested in Fig. 2.

x(n) a-1 yin)
- Q SAMPLE BUFFER z
k=0

ggin)

— SELECTOR FOR
,~~  CHOOSING DESIRED
PHASE SHIFT

¥

0

9p-1(n

Fig. 2—A practical implementation of a variable phase shifter.
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V. CONCLUSIONS

We have presented a method for designing an incremental digital
phase shifter that can shift the phase of a waveform by a noninteger
number of samples. Conceptually, the process can be thought of as a
sample rate increase, a delay, and a sample rate decrease as indicated
in Fig. 1. Practically, it can be implemented as a straightforward
convolution as shown in Fig. 2. From the discussion of the theory,
it is also clear that the design trade-offs of the phase shifter are directly
related to the characteristics of the low-pass rir filter. That is, the
passband ripples of H (e”) determine how close the phase shifter is to
an ideal all-pass network (over the passband), and the stop-band
ripples determine the amount of distortion due to aliasing. Finally,
the cutoff frequency of the filter determines the usable frequency
range of the phase shifter.
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