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We study the excitation of a parabolic-index fiber by an incoherent
source. The theory is based on approximating the fiber modes by Laguerre-
gaussian functions. The dependence of the total light power tnjected into
the fiber core on the separation belween source and fiber, and on the trans-
verse displacement of the source, is shown in graphic form. Also shown are
far-field radiation patierns, which indicate the distribution of power versus
mode number, for several launching conditions and plots of power versus
azimuthal mode number for given values of the compound mode number.
The study of launching efficiency versus source radius leads to prescriptions
Jor optimizing the ratio of source to fiber core radius without a maiching
lens. Use of a lens for matching the image of a small source to the size of
the fiber core increases the launching efficiency relative to the power con-
sumption of the light-emitting-source diode.

I. INTRODUCTION

The excitation of step-index fibers (fibers whose cores have a con-
stant index of refraction surrounded by a lower index cladding) has
been investigated by several authors by means of ray opties.!:2 In this
paper, we study the excitation of fibers with a core whose refractive
indices have a square-law dependence on the radial dimension (para-
bolic-index fibers). The fibers are assumed to support many modes and
are excited by an incoherent source—for example, a light-emitting
diode (LED). Our analysis is based on wave opties. We assume that we
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may use the Laguerre-gaussian modes of the infinite square-law
medium to approximate the modes of the parabolic-index fiber. Lower-
order modes do not carry significant amounts of power in the region of
the core boundary so that they are approximated very well by the
Laguerre-gaussian modes of the infinite medium. We introduce the
effect of the core boundary by considering the Laguerre-gaussian
modes as being cut off when their propagation constants become equal
to the plane wave propagation constant of the cladding material.

The Laguerre-gaussian modes have the advantage that they not
only approximate the modes of the parabolic-index fiber, but they are
also approximate solutions of beam waves in free space. The free-space
modes have a beam width parameter that is a function of the z co-
ordinate (distance from the fiber measured in the direction of its axis).
At the fiber end, the free-space Laguerre-gaussian modes match the
fiber modes. Thus, it is only necessary to calculate the excitation of the
free-space Laguerre-gaussian beam modes by the incoherent source,
if we assume that the space surrounding the fiber is matched to the
fiber core (at least approximately) by means of an index-matching
fluid.

We study the excitation of the modes of the parabolic-index fiber as
functions of the source radius, its distance from the fiber, and as a
function of its transverse displacement. This study provides informa-
tion about the tolerance requirements for aligning the source with
respect to the fiber. We also discuss the optimization of the source
diameter with regard to the total power delivered to the fiber and with
regard to the excitation efficiency relative to the electrical power re-
quired to drive the source.

We conclude that the tolerance requirements for placing the source
are modest and that either the total amount of power or the power
excitation efficiency of the fiber can be optimized by a suitable choice
of the source diameter. It is assumed that the fiber, as well as the
source, have circular cross sections.

Equation (29) states a simple law for the total amount of light power
that may be injected into a parabolic-index fiber by an incoherent
source of brightness B [A is defined by eq. (18)]. The normalization
used for the power plotted in Figs. 4 through 10 is based on the expres-
sion for the total number of guided modes (28).

The efficiency of the system could be improved considerably by use
of a lens or taper to match the light output of a small-area incoherent
source to the core of the fiber. Use of lenses or tapers may be unde-
sirable because such matching devices introduce added complexity
into the system. However, if high overall efficiency is an important
requirement, matching of the output of a small-area LED to the fiber
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core with the help of an additional optical system offers a means of
increasing the launching efficiency.

Il. EXCITATION OF MODES BY AN INCOHERENT SOURCE

We consider a complete orthogonal set of modes obeying the ortho-
normality condition?*

% L (E, X H,)-e.dedy = P5,,. (1)

The symbols E, and H, indicate the electric and magnetic field
vectors of the modes labeled v or u, €. is a unit vector in z direction, 4
is the infinite cross-sectional area of the structure, and §,, is the Kro-
necker delta symbol. The factor P is a normalizing constant with the
dimension of power. It is assumed to be the same for all the modes.

The total electric field can be expressed as the superposition of all
the modes,*

The total power carried by the field may be expressed as*

P, = i P(|e]?). (3)

It can be shown that a current with current density j excites each
mode according to the formula,?

IS S
o=~ ip [ iEdv. (4)

The integral is extended over the volume in which the current density
j exists; P is the normalizing parameter encountered in (1) and (3).

We are now ready to apply this formalism to the excitation of modes
by an incoherent source. As a model of an incoherent source, we con-
sider a dise of circular cross section with radius b and thickness .
The current density inside of the dise is assumed to be a random func-
tion with vanishing correlation length. The ensemble average of the
absolute square magnitude of (4) is

1 r
2y — 7 TI¥ . 133K . -
(el2) = g [, 4V [ dV'E:-(Gi)-E. (5)

The quantity (jj*) appearing in (5) is a tensor of second rank. How-
ever, we consider that the current in the source is composed of many
randomly oriented and randomly phased dipoles. This assumption
allows us to assume that the off-diagonal elements of the tensor
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vanish, and that all diagonal elements are equal. Thus, the tensor re-
duces to a multiple of the unit tensor I, and we may write

(§i*) = SIs(r — 1'). (6)
Using (6) reduces (5) to the simpler form

t,S *
(ol = 1o LE.-E,drdy. (7)

A, is the area of the circular cross section of the source disc.

If we apply the formula (7) to the plane-wave modes of free space,
we can calculate the amount of power AP that is flowing through the
element of solid angle dQ in a given direction in space. This calculation
results in the expression

AP = %ﬁ% Aunkdg, (8)
where
]C = w Véop,(]

n = refractive index of the medium.

The derivation of (8) is sketched in the appendix.

Our model of an incoherent source behaves like a Lambert-law
radiator except for a missing factor cos 6, where 6 is the angle between
the direction of observation and the normal direction to the surface of
the dise. The factor cos @ is missing in our theory because we treated
the source as being transparent to radiation. In a partially opaque
source, radiation leaving the source must originate in a volume with
an effective thickness ¢ as seen in the direction of observation. It is
shown in Fig. 1 that the effective thickness of the source disc depends

tcos

—~ k-

Fig. 1—Schematic of a partially opaque source disc. The effective width for waves
emitted at a normal angle to the surface is ¢; for waves emitted at an angle 8, the
effective width is ¢ cos 6.
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on the direction of observation so that we must replace ¢ with ¢ cos 6.
Modified for the case of a partially opaque source, eq. (8) assumes

the form
AP = BA, cos 6dQ. (9)

The brightness of the source is defined as

w,u.,Smk_

B = 1672

(10)

Equation (10) relates the product St to the measurable quantity B.
If we introduce the z component 8 of the propagation constant nk by

the equation
B = nk cos @ (11)

and modify (7) for the case of a partially opaque source, we may write

B B
wponkP nk

P(le,|?) = | EiE.dady. (12)
The left-hand side of this expression indicates the power carried by the
mode labeled ». This power is provided by the incoherent source with
brightness B. The brightness is the amount of power that the unit area
of the source radiates into the unit solid angle, its dimension is W/em?
sr (sr = steradians).

Equation (12) is the starting point for our discussion of the excitation
of the modes of the parabolic-index fiber by an incoherent source.

lll. EXCITATION OF LAGUERRE-GAUSSIAN MODES

The Laguerre-gaussian beam modes of free space, normalized to
carry the power P, may be expressed as follows:%.7

Qv+3 . o ! i
E.,=|— p_L _P
-’ | e,mwin \[en (p+ !

wo frY 2p2 )
Lo (f) g—(rﬂ'w)’le)v) (F) cos vq‘Se“”, (13)

w w

with

2 =
e,={' for v=20 (14)

1 for v#0

The beamwidth parameter is defined by the formula (k = w(euo)}, n is
the refractive index of “free space’’)

2z \*¢
w = wy|1l+ W ’ (15)
0
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and the phase function is given as

2z ) _ nkr? (16)

\b=—nkz+(v+2p+l)arctan(m ﬁ’

with the phase front radius of curvature

R=2z [1 + (’“‘k“"z’ )2] (17)

2z

E,, is the z or y component of the electric field vector of the Laguerre-
gaussian beam mode. Thus, the electric field is linearly polarized but
is expressed in a cylindrical coordinate system with the coordinates r,
&, and z. We may replace the function cos v¢ by sin v¢ without chang-
ing any other parameter in (13). Thus, the modes are degenerate in the
sense that two orthogonal polarizations, as well as both choices of the ¢
symmetry (sin »¢ or cos vg), are allowed for each set of mode numbers
v, p. The function L{” is a Laguerre polynomial.®

The origin of the z coordinate is at the narrowest point of the field
distribution where we have w = wo. The minimum beam width w, is
arbitrary. However, the Laguerre-gaussian beam modes are equal to
the modes of the square-law medium,® with refractive index dis-

tribution
r\2
n = no[l — (a) A]: (18)

if we set w = 1 and use?

This choice of the beamwidth parameter w, ensures that, at z = 0, the
transverse field distribution of the Laguerre-gaussian mode of free
space coincides with the mode of the square-law medium (18). Both
types of modes, the beam modes of free space and the modes of the
square-law medium, are only approximate solutions that apply in the
paraxial approximation that holds for small values of the refractive
index parameter A and, for free space modes, for modes with sufficiently
large values of w,. For values of z other than z = 0, the phase function
of the modes of the square-law medium must be expressed as

Y= —B2 (20)
with the propagation constant
3
8= [ngkz — 2% \Bacep + v + 1)] : (21)

If we assume that free space consists of a medium whose refractive
index n is matched to an average value of the fiber core, reflection from
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the fiber end is negligibly small. We assume that the fiber core has
radius a and that its refractive index is given by (18) in the region
0 = r £ a. In the cladding at » > a, the refractive index assumes the
constant value

na = ng(l — A). (22)

The mode fields (13) [with w = w, of (19)] approximate the modes
of the parabolic-index fiber at radius » < a for small values of
v and p. For large values of the mode numbers » and p, the fields extend
strongly beyond r = a so that (13) (with w = w,) is no longer a good
approximation to the fiber modes. However, modes reaching strongly
into the cladding are no longer guided by the fiber core. For this
reason, we regard (13) (with w = w,) as an approximation for all
guided fiber modes and consider the relation

B = nk = no(l — Ak (23)

as a cutoff condition for the guided modes.

Because the modes of the parabolic-index fiber join smoothly with
the Laguerre-gaussian beam modes of free space, we obtain the excita-
tion of the fiber modes by determining the excitation coefficients for
the Laguerre-gaussian beam modes with the help of (12). Substitution
of (13) into (12) results in

~ 8=B pl2r
e (nk)? (p + »)!

r 2 . 21.2 2
X j (;) g2 erio) [L},"’(u?)] rdrdg.  (24)

The ratio 8/k was approximated by unity. We have added the coeffi-
cients for the modes with cos »¢ to those of the sin v¢ symmetry and
used the fact that the sum of the squares of cosine and sine is unity.
The integration in (24) extends over the surface of the source A.,.

If the surface of the source is larger than the area over which the
mode field exists with an appreciable amplitude, the integral can be
performed with the result

P(le,p[?) =

P(|Cv.n‘2> =

4rB

e, (nk)? (25)

For » = 0, there is only one type of mode because sin »¢ = 0. For all
other values of », we have lumped two modes together. If we express
again only the power of a single mode of a given polarization and
azimuthal symmetry, we have, instead of (25),

Pla,m=2(5)B=5(2) 5 (26)

This is an interesting formula. First of all, it shows that each mode (of
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the fiber or of the free-space beam modes) receives an equal amount of
power if the incoherent source is large enough. Second, comparison of
eq. (26) with (9) shows that each mode acts as though it receives radia-
tion from a square of the source surface whose sides are equal to the
wavelength and as if it collects all power radiated into the solid angle
1 gr. It is now easy to determine the power that is collected by all the
guided modes of the fiber. We need only multiply (26) by the number
of modes. The total number of guided modes is obtained from (21) and
the cutoff condition (23). Combining these two equations, we obtain the
following equation for the boundary in mode number space :

2
2p 4+ v+ Duax = nka\/_—é = (%ﬁ) . (27)

Figure 2 shows the mode number space defined by the two variables
v and p. The diagonal line (the hypotenuse of the triangle) is defined
by (27). The guided modes lie inside the triangle shown in the figure.
The total number of modes is approximately equal to four times the
area of this triangle. The factor 4 stems from the fact that for each set
of values of » and p, we have modes with two different polarizations
and two different azimuthal symmetries (except for v = 0). Thus, the
total number of modes is

N = (nka)? 92 (28)
The total amount of power P; injected by a large, incoherent source
into a square-law fiber is given as the product of (26) and (28),

P; = w(ma®)BA. (29)

Equation (24) can be used to calculate the power in each mode for
arbitrary position of the source in relation to the fiber. In general, we
assume that the fiber is separated from the source by a distance z and
that it is offset by an amount d as shown in Fig. 3. The @ integration in

1 4

> p

Fig. 2—Mode number plane p, ». The diagonal line is the boundary of the guided
modes that are contained inside the triangular region.
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Fig. 3—Geometry of the source exciting a fiber core.

(24) can still be performed with the result

_ 4B p!
P(levp|? (?i’u)2w2 (p + »)!

Ib—d| £ 9p2\»
X {27 = eg—2(r/w)? L(J') d
0 w? w2
[b+d| 2r\» 2r?
+ f (r — 2&,) (_2_) g-2r/w? | [0 (_2 rdrl, (30)
|b—d | w

rt+ d? — 62)_
2rd

with

$, = arcsin( (31)
Equation (30) applies again for one mode of given polarization and
azimuthal symmetry. The integral in (30) must be evaluated numeri-
cally. The z dependence of the expression is hidden in the beamwidth
parameter w according to (15).

IV. NUMERICAL EVALUATION AND RESULTS

In this section we show the results of numerical evaluations of eq.
(30). We begin by discussing the dependence of the total power in-
jected into the fiber on the distance between the source and the fiber
end. All length variables are normalized with respect to the fiber radius
a. Figure 4 shows the dependence of the normalized total power on
z/a for a source whose radius is equal to the fiber radius, b/a = 1, for
three values of A. The normalization of the power is apparent by com-
parison with (26). Since P, indicates the total power carried by all the
modes, we have divided it by the total number of modes N that is
obtained from (28). This normalization results in unit normalized
power at z = 0.

Figure 4 shows that, for A = 0.01, the amount of power that is in-
jected into the fiber by the incoherent source drops to approximately
one-half of its maximum value for z/a=11. Thus, the injection process
is surprisingly insensitive to the separations between the source and
the fiber end. We have checked that the curves of Fig. 4 do not change
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Fig. 4—Normalized total power P; injected into the parabolic-index fiber as a
function of the distance z between source and fiber. N is the total number of modes
[see (28)]; B is the source brightness. This figure holds for a source-to-fiber core
radius ratio b/a = 1.

if the value of ka is varied. Thus, the curves are universal, at least for
large values of ka, that is, for fibers supporting a large number of modes.
This dependence on k suggests that the curves may be derived by the
methods of ray optics. The lowest part of the curves has almost reached
an inverse square-law dependence on fiber-source separation. We have
checked that a precise inverse square-law dependence is obtained for
source-to-fiber ratios of b/a = 0.1. Thus, the inverse square law is
reached rather slowly and will be realized by the curves of Fig. 4 for
even larger values of z/a than those appearing in the figure. The curve
with A = 0.01 shows that a separation of the source from the fiber end
equal to the fiber diameter, z = 2a, causes a drop in power coupling
efficiency by only approximately 5 percent. The tolerance to source-
fiber separation eases for smaller values of A. The curves do not reach
exactly the value unity at z = 0 because the source is not infinitely
wide. However, the slight departure from unity (0.3 percent for
N = 400, A = 0.01) is not apparent on the scale of the figure.

Figure 5 shows the dependence of the excitation efficiency on the
amount of relative offset d/a for a source whose radius equals the fiber
radius, b/a = 1, and which is located at three different distances from
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the fiber end. The curves were computed for A = 0.01. However, the
shapes of the curves are universal and only their vertical positions
depend on the value of A. It is immediately apparent from this figure
that the relative tolerance to source displacements (offsets) becomes
more liberal as the distance between the source and the fiber end is
inereased. A source displacement of d/a = 1 causes a drop in power to
40 percent of its maximum value if the source is placed directly at the
fiber end, z/a = 0. For z/a = 10, the excitation efficiency has dropped
from 0.55 to 0.34, that is, only 62 percent of its maximum value, for a
transverse source displacement of d/a = 1. Like Fig. 4, Fig. 5 is in-
dependent of ka if this value is large.

So far we have concentrated on the total power injected into the
fiber. It is interesting to consider the distribution of power over the
various guided modes as the distance between the source and the fiber
is increased. The far-field pattern emerging from the far end of the
fiber (which is not facing the source) gives an indication of the mode
distribution. Figure 6 shows the power density of the far-field radiation
pattern as a function of angle @. The curves of this figure represent far-
field radiation patterns for several values of the relative fiber-source
distance z/a¢ for A = 0.01. The curves were obtained by taking the

1 22200 A=001 4]
0.8

06 10 ™

/
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20

z
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|

0.02

0.01
0.01 0.02 0.04 006 0.1 0.2 04 06 081 2 4 6 810
dfa

Fig. 5—Normalized total power injected into parabolic-index fiber as a function
of the transverse source displacement d for several values of the distance z of the
source from the fiber and for A = 0.01.
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Fig. 6—Far-field radiation pattern. a is the angle (in degrees) of the direction of
the observation point with respect to the fiber axis. The curves are arbitrarily nor-
malized to unity ata = 0. The source-to-fiber core radius ratio is b/a = 1, A = 0.01.

ensemble average of the absolute square value of (2),
N
(B = Z (la)E [ (32)

with the mode fields of (13) and the expansion coefficients of (30). All
curves in Fig. 6 were computed for a source whose radius is equal to the
fiber radius, b/a = 1, with no transverse source displacement, d/a = 0.
The far-field pattern of a parabolic-index fiber with all modes equally
excited corresponds to the curve labeled z/a = 0. As the source is
moved away from the fiber end, the far-field radiation pattern narrows.
This narrowing is caused by the fact that higher-order modes receive
less power as the distance z is increased. The curves of Iig. 6 are nor-
malized so that the power density at zero angles becomes unity.

Figures 7 through 9 give more detailed insight into the distribution
of power versus mode number. Equation (21) shows that modes with
equal values of the compound mode number,

M=2p+v+1, (33)

have equal propagation constants. These modes lie on straight lines
parallel to the diagonal line in mode-number space shown in Fig. 2.
Figure 7 indicates the power distribution among the modes with
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M =19 that lie near the guided-mode boundary in mode-number
space. If the source is placed directly in contact with the fiber, z/a = 0,
all modes with M = 19 are almost equally excited, receiving almost the
maximum of power. However, for z/a = 4, at a point where the total
amount of power has dropped by only 8 percent from its maximum
value, the highest-order mode group with M = 19 suffers a very sub-
stantial decrease in power. It is interesting that modes with higher
values of » receive more power (for constant values of M). This trend
is reversed only for z/a = 8.

Figure 8 shows the relative power in other mode groups at a fixed
value of z/a = 8. Modes with low compound mode number, M < 6,
are still fully excited, but with increasing values of M the amount of
power in the higher-order modes drops off. Figure 9 shows the same
trend even more strongly for a source-fiber separation of z/a = 20.

So far we have studied the dependence of the excitation efficiency
of the parabolic-index fiber on the source-fiber separation z/a and on
the amount of offset d/a for b/a = 1. Figure 10 shows the normalized
total amount of power for z/a = 0 as a function of the relative source
radius b/a. This curve does not depend on the values of A or ka. As
expected, the total amount of injected power drops off as b/a decreases.
However, the decrease in total power is not proportional to the area of
the source, as one might have expected, but is nearly proportional to

1.2

10 e e I e T /‘=
) /\
0.8 A b
| % o
n = 1457
= /\/\/\/\ ak=1885
|8 0.6 A=001
% 8 2p+w+1 =19
a
0.4 S
\
P~ — 15
0.2 \/‘"‘W\
N ™
0
0 2 4 6 8 10 12 14 16 18

Fig. 7—Normalized power in a given mode belonging to the mode group with com-
pound mode number 2p + » 4+ 1 = 19 as a function of the azimuthal mode number
v for several values of the distance z between source and fiber. These curves apply to
the case b/a = 1, ka = 188.5, A = 0.01, n = 1.457.
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Fig. 8—Normalized power of individual modes belonging to the compound mode

number 2p + » + 1 (whose values are given in the

figure) as a function of the

azimuthal mode number ». The source-to-fiber distance is z/a = 8, all other parame-

ters are the same as in Fig. 7.

the source radius. This behavior has interesting consequences for the
optimum choice of the source radius as is discussed in the next section.

Figure 11 shows far-field radiation patterns for several values of
b/a. Comparison with Fig. 6 shows that the dependence of the far-field

1.2
b,
1.0k (2p+V+1) = a —
\p2 Z/a=20
ny = 1.457
08 ka=1885 _|
A=001
B 4
%™ 08
£t
6
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w
02 \\ 18
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v
Fig. 9—This figure is similar to Fig. 8 with z/a = 20.
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Fig. 11—Far-field radiation pattern from the end of the fiber for several values of
the source-to-fiber core radius ratio b/a.
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radiation patterns on the source radius bears a close resemblance to
its dependence on the source-fiber separation. Higher-order modes are
excited less strongly as the source radius decreases.

V. SOURCE OPTIMIZATION WITHOUT LENSES

If the source brightness B is held constant, more power is injected
into the fiber as b/a increases to a value near unity. Beyond that value,
no further advantage is to be gained. In fact, even though the total
amount of injected power remains constant for b/a > 1, the overall
efficiency decreases since regions of the source at b > a do not con-
tribute to the excitation of the fiber, but do waste their power. If
brightness were independent of the dimensions of the source, the
optimum source radius would be b = a. However, light-emitting diodes
(LEDs) tend to be brighter if their radius decreases. C. A. Burrus has
made measurements on a special type of LED operated at two-thirds of
its saturation current that indicate that source brightness increases
with decreasing radius. This dependence is shown in Fig. 12, which
was drawn from data given in Burrus’ paper. The solid line is drawn
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_ Fig. 12—Source brightness of high-intensity Leps according to Ref. 10. The dotted
line is an inverse 2b law used to approximate the solid eurve.
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through the average values, and the vertical error bars indicate the
experimental uncertainty of the brightness measurements. The dotted
line shown in Fig. 12 is the hyperbola

_ 950 _ W

B 206 (b/a)

(34)
that seems to approximate the experimental data reasonably well. To
a rough approximation, the brightness of LEDs (at least of the Burrus
type) seems to be inversely proportional to their radius.

To study the excitation efficiency as a function of source radius, we
approximate the curve of Fig. 10 by the polynomial

(nk)? P, b b)2 b\?
2«2;\’_8 A'a+A"’ a + 4s a (35)
with
A = —0.06875
As = 285 : (36)
A:; = —1.78125

This third-order polynomial approximates the curve in Fig. 10 to
within 1 percent. Substitution of (34) into (35) results in

(nk)* P, b b\? .
Wﬂ—Al-FAzE-FAa(E)' (37)

This function is plotted in Fig. 13. Under the conditions prevailing in
Burrus-type diodes, where the maximum attainable brightness de-
pends on the source radius, the total power that can be injected by an
LED in direct contact with a parabolic-index fiber has a maximum at a
source radius of b = 0.8a. However, even for source radii as small as
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Fig. 13—Total tpower injected into the fiber with the high-brightness LEDs of Fig.
12 as a function of the (normalized) source radius b.
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b = 0.6a, the total power in the fiber equals the amount that is ob-
tained with an LED whose radius equals the fiber radius. This means
that an LED with a radius only approximately half as large as that of
the fiber core is still almost as effective as an LED whose radius equals
the fiber core radius.

Disregarding the electrical input power into the LED, we would
optimize the overall performance of the fiber system, operated without
a matching lens, by choosing a source-to-fiber radius ratio of b/a = 0.8.
However, a different optimum is obtained if we try to optimize the
ratio of total power injected into the fiber to the power required to
drive the diode. The power input to the LED can be estimated from the
information contained in Burrus’ paper® by multiplying the diode
current with the energy gap voltage, V = 1.38 V at room temperature.
This power estimate comes close to the actual power since the voltage
developed across the LED’s terminals varies between 1.35 and 1.6 V.
Four points obtained for the LED’s power consumption operated at
two-thirds the saturation current are shown in Fig. 14 as a function of
the diameter 2b of the diode. In the region between 2b = 0 and 2b = 50
um, the power curve is approximately linear. According to the limited
information that is available, the curve seems to turn over for larger
values of 2b. However, since only one point (at 2b = 100 ym) does not
lie on the straight line, the shape of the curve beyond 2b = 50 ym is
not known. For sufficiently small source radii, we approximate the
curve in Fig. 14 by the equation

P, = (8.5)(107%)(2b) = W.b/a, (38)

keeping in mind that this linear law becomes questionable for 2b > 50
pm. Substitution of (38) into (37) yields

2
(nk)* W, Py _ %+A2 +Aag. (39)

This function is shown in Fig. 15. The maximum of the fiber excitation
efficiency relative to the electrical drive power of the diode appears at
b/a = 0.2, that is, at rather small source radii. It is important to re-
member that, even though Fig. 15 is drawn as a function of b/a, only b
is allowed to vary while @ must be kept constant because W, appearing
in the normalization coefficient, is a function of a.

A good compromise between the maximum achievable total power
and the desire to obtain good excitation efficiency relative to the power
input to the LED may be to operate with a diode whose radius is ap-
proximately one-half of the fiber radius. In this case, b/a = 0.5, we lose
17 percent of the optimum operating power efficiency and work 19
percent below the maximum achievable injected power. But neither
loss of efficiency is very serious and both requirements, low diode power
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consumption and a large amount of total power launched into the fiber,
are still approximately satisfied.

VI. OPERATION WITH A MATCHING LENS

Figure 10 shows that the amount of power launched into the para-
bolic-index fiber decreases with decreasing fiber core radius if the
source brightness is held constant. The reason for this decrease in in-
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Fig, 15—Normalized ratio of total power injected into the fiber, Py, relative to the
electrical drive power P of the diode as a function of the (normalized) source radius.
The solid eurve applies for an Lep in direct contact with the fiber; the dotted curve
describes operation with.a matching lens.
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jected power is the loss of total source area. However, by bringing the
source in direct contact with the fiber, a large amount of power is lost,
because the fiber can trap only rays emitted at certain small maximum
angles whose values depend on the point at which the ray is entering
the fiber core. If we remove the source from the end of the fiber and
focus its light onto the fiber end with a matching lens, we may increase
the source image to make it coincide with the fiber core radius, but at
the same time we inject all rays at a smaller angle. The loss in source
brightness, caused by the magnification of its image, is thus compen-
sated for by the fact that many of the rays, those that left the diode at
angles too large to be trapped when the source was in direct contact
with the fiber, are now transformed to smaller angles so that a wider
cone of light leaving the source is able to be accepted by the fiber.

To investigate the beneficial effect of a matching lens, we use the
transformation laws of Laguerre-gaussian beams that have been
formulated by Kogelnik.!! We assume that the source is imaged by a
lens onto the end of the fiber as shown in Fig. 16. The transformation
laws of gaussian beams®" yield the result (in agreement with geo-
metrical optics) that the beamwidth parameter w, of the fiber mode is
transformed to the width w given by

b
w = g5 Wo. (40)
The source radius b has been transformed by the lens to the radius of
its image b’; wo is given by (19). We can evaluate the effect of the
matehing lens by writing (30) (with d = 0) in the form

2B p!

P(lerp|?) = k) (p + 9!

fo W e [ LY (W Pdu. (A1)

Equation (41) expresses the amount of power in one mode. The total
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Fig. 16—Launching geometry with a matching lens.
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power injected into the fiber is obtained by summing over all the
guided modes. The beamwidth parameter w of the transformed
Laguerre-gaussian beam enters this expression only in the upper limit
of the integral. The critical term to consider is thus
b2 . b.’!

ul—zuquﬁ- (42)
Equation (41) is of exactly the same form as the expression (30) for
d = 01in the absence of the lens. Only the beamwidth w at the position
of the source is important. Choosing the lens in such a way that the
image size b’ of the source becomes equal to the fiber core radius
(b’ = @) results in u; = 2a?/w,. This means that the launching effi-
ciency through the matching lens is identical to the launching efficiency
for a source with & = a in direct contact with the fiber, even though the
size of the source in Fig. 16 is smaller than the fiber radius. In fact, we
know from Fig. 10 that the excitation efficiency is not changed even if
the source is made larger than the fiber core. The same is true for the
image of the source projected onto the fiber end through the matching
lens. Even if we project a source image that is larger than the fiber end,
the launching efficiency is maintained if the source brightness (of the
original, not the imaged source) is held constant. This seemingly con-
tradictory result is caused by the fact that more and more rays arrive
at the fiber end at smaller angles with respect to the fiber axis, making
up the loss in image brightness that is eaused by the larger lens mag-
nification. This constancy of the launching efficiency, which is achieva-
ble with a matching lens, breaks down only when the lens must be so
far removed from the fiber that some of the light power, which would
radiate from the fiber (if we reverse the direction of all the light beams),
begins to miss the lens boundary.

Thus, we have reached the conclusion that a matching lens can im-
prove the launching efficiency of a small source to such a degree that
we can obtain as much power as would be available from a large source
in contact with the fiber. The total coupling efficiency with respect to
the electrical power used by the diode may be considerably improved
with the help of a matching lens. Instead of (39), a matching lens
allows us to achieve the power ratio

P, 2eNW 1

P~ k)W, (5/ay 43
Equation (43) is plotted as the dotted curve in Fig. 15. This expression
does not contain the effect of the finite lens aperture that must be con-
sidered for very large magnification. Equation (43) indicates that a
matching lens would allow us to achieve higher launching efficiencies

PARABOLIC-INDEX FIBERS 1527



than may be achieved by placing the LED directly in contact with the
fiber.

Instead of a lens, a tapered dielectric waveguide of high refractive
index difference between core and cladding material may be used to
match a small LED to a larger fiber core. However, any optical matching
device complicates the basically simple configuration of an LED in direct
contact with the fiber. For many applications, it may be more ad-
vantageous to suffer the additional coupling loss that results by for-
going the procedure of matching the source to the fiber size. In-
cidentally, a matching lens does not increase the amount of power that
may be injected from a large source.

VIl. CONCLUSIONS

We have studied the excitation of parabolic-index fibers with in-
coherent light sources and found that a source, whose area covers the
cross section of the fiber core, injects equal power into all the modes.
As the source is moved away from the fiber end, it injects relatively
less power (without a lens) into higher-order (as compared to low-
order) modes. However, the injection mechanism is quite tolerant of
source-fiber separation. At a distance of five fiber-core diameters (as-
suming b/a = 1 and A = 0.01), the total amount of power injected
into the fiber core decreases only to one-half the amount that can be
achieved if the source is placed directly in contact with the diode. If
the source is transversely displaced, the amount of power launched into
the fiber drops to about one-half of its maximum value for a source
displacement equal to the fiber radius, if the source is in contact with
the fiber.

Without a matching lens, the amount of power launched into the
fiber decreases with decreasing source radius (if b/a < 1). However,
since the brightness achievable from an LED increases with decreasing
radius, an optimum radius for maximum light-power injection into the
fiber is obtained at a source-to-core radius ratio of b/a = 0.8. Relative
to the electrical power requirements of the diode, the launching effi-
ciency is optimized at b/a = 0.2. A compromise hetween these two
optima may be to choose the ratio b/a = 0.5. These numbers are
based on a special high-brightness LED developed by Burrus."

Use of a matching lens allows us to inject the same amount of power
from a small LED that would be available from a large source of equal
brightness in direct contact with the fiber. However, because the
achievable brightness increases with the decreasing radius of an LED
more power can be obtained from a small LED whose light is focused
into the fiber with a lens. Use of a matching lens also increases the
overall efficiency of operation as shown by the dotted line in Fig. 15.
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However, matching lenses or tapers complicate the basically simple
launching geometry of an LED in direct contact with the fiber.
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APPENDIX

We sketch the derivation of eq. (8). The plane-wave modes of free
space can be expressed as'?

(Qw,uuP )l .
B = oy e e (44)
with
Bt = nk? — k* — gk (45)

From (7) we obtain, by substitution of (44},

P{lc|?) = 33‘:;6 StA,. (46)

The total power radiated by the source is obtained from the formula :'3
P, =2 [ fm P(|¢|?dxde. (47)

The factor 2 accounts for the two possible polarizations. We may ex-
press the differentials of the integral in terms of the element of solid
angle dQ into which the radiation is directed,"

dxde = nkBdS. (48)

Thus, the fractional amount of power radiated into the element of
solid angle is
AP, = 2P(|c|*)nkpdq. (49)

Substitution of (46) into (49) results in (8).
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