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For the single-server queue with renewal input, we oblain heavy traffic
approximations for the time-dependent distributions of queue length and
virtual delay by constructing approximating diffusion processes. These
approximalions are shown to agree with known limiting cases, and a com-
parison ts made with resulls from a computer simulation.

I. INTRODUCTION

We consider a single-server queuing system where the interarrival
times are independent and identically distributed (i.id.) random
variables, customers are served in order of arrival, the service times
of the various customers are i.i.d. random variables, and the inter-
arrival and service times form independent sequences. Lindley' ob-
tained a recursive equation for the delay-time of the nth arriving cus-
tomer, an integral equation for the delay time of a customer in the
steady-state, and conditions for the latter to have a nondegenerate
limit.

Lindley’s equations have not yielded to conveniently used analytical
solutions, except in some special cases, stimulating a search for ap-
proximations to the distributions of general interest. In this paper, we
approximate the queue length and delay processes by appropriately
chosen diffusion processes. This method of approximation appears to
have been introduced by Gaver? and Newell.? Gaver and Newell con-
sidered the M/G/1 queue; we extend their approximate models to the
61/G6/1 queue. Other methods for obtaining diffusion approximations
for queuing processes involve applying the theory of weak convergence
to sequences of approximating processes. Whitt! is a survey of these
methods and contains an extensive bibliography. We show that the
diffusion models developed in this paper agree with the limiting
processes obtained by weak convergence methods.

Important features of this paper are the use of the M/M/1 queue to
motivate a diffusion process approximation for the single-server queue
and the use of elementary renewal theory results to obtain the param-
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eters of the process. This approach provides an intuitive explanation
for the limit theorems.

Il. PRELIMINARIES AND NOTATION

Let 7'; be time between the arrival epochs of the (z — 1)st and 7th
customers, z = 1,2, ---, assume these random variables are i.i.d.,
and let A~ = E(T;) and ¢% = Var (T;). Assume the customers are
served in order of arrival, let S; be the service time of the 7th customer,
wl'= E(8y), ¢% = Var (8,), and assume 8y, Ss, - - - are ii.d. random
variables. We define the traffic intensity by p = A/p and will always
assume p < 1. We seek approximations for the queue size and virtual
delay at time £, and obtain these approximations from suitably chosen
diffusion processes. For any function F, let F, = aF/dzx, F., = 3F/
dz?, F, = dF/dy, ete., and unambiguous arguments will be suppressed.

Let {X(f), ¢ = 0} be a homogeneous and additive diffusion process,
F(t, z;z0) = Pr {X () < 2|X(0) = zo}, and @ and b be the infinitesi-
mal mean and variance of the process, respectively. Then F satisfies
the forward Kolmogorov (Fokker-Planck) equation

F:=_0Fz+ngz; (1)
with initial condition
) _J0if @ <l
F(OJ Z, "’UU) - Il if =z g xo} (2)

If the range of X (¢) is [0, =), then (1) is subject to the boundary

condition
F(t,0;x5) = 0, t>0. (3)

The solution to (1) subject to (2) and (3) is given in Newell® as

F(z, t; 20) = q,(x_—_%:ﬂ) _ eh.,;a@(—m%g—a‘), @

where

B(z) = T;_; f_ T iy

is the normal distribution funetion (d.f.). If @ < 0, then
F(x) = lim F(x, t;x0) = 1 — g 2z-a)lb (5)

t—»o0

which is the negative-exponential d.f. and is independent of .
Returning to the e1/a/1 queue, let W; denote the delay of the 7th

customer. Lindley showed that when p < 1, W = lim;., W, is non-

degenerate. Kingman® showed that if p is slightly less than unity, the
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d.f. of W is approximately negative-exponential with mean
3(oh + oB)/ (N — ). (6)

lil. AN APPROXIMATION FOR THE M/M/1 QUEUE

To motivate the diffusion model employed in approximating the
61/G/1 queue, and to indicate its efficacy for the M/m/1 queue in par-
ticular, we first develop an approximation for the m/mM/1 queue. A
scheme suggested by Bailey” for approximating stochastic processes is
used.

In the M/M/1 queue, customers arrive according to a Poisson process
with rate A, and the service-time distribution is negative-exponential
with mean p~!. Let N (¢) denote the number of customers in the queue
at time ¢, and # (¢, n; no) = Pr {N(t) = n|N(0) = n}. For ¢t > 0 and
n=1,2, ---, x(l, n; no) satisfies
d
aw(t, n;ng) = Ar(t,n — 1;n¢) + pr(t, n + 1;no)

— (A + @, n;no), (7a)
and

%r(t, 0;n0) = ur(t, 1;n0) — Mr(t, 0; no). (7b)

The initial condition is

) 1 if n=mn
(0, n; na) {0 i n 'ﬂul ’ ®)
and the boundary condition is
w(l,n;ng) =0 n <0, t=0. (9

The idea of the approximation is to replace (7) by a partial differ-
ential equation that is easier to solve. We do this by replacing the dis-
crete variable n by the continuous variable z, and =({, n;no) by
p(t, z; To) in (7). Expanding in a Taylor’s series about the point
(t, z; zo) and keeping only first- and second-order terms, we obtain

A
pe=—0\—pp:+ ——l_z—”pn, z,t > 0. (10)

If we define
P(t, x;x0) = f p(t, y; z0)dy,
it can be easily shown that P also satisfies (10). We take

0 if $<I0}

1 lf xr g o (11)

P(0, z; zo) = l
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and
P, 0;x) = 0, t >0, (12)

as natural replacements for (8) and (9). This system of equations is
identical in form to (1), (2), and (3), so P(¢, z; z¢) is given by the right-
side of (4) withe = X — pand b = \ + 4.
Consider now the asymptotic behavior of = and P: From the theory
of the M/M/1 queue, we have
mao= lima(t,n;n) = (1 — p)p*?! for n>0

t-»00
and from (5) we obtain

P() = lim P(¢, z;z0) = 1 — exp [—2(1 — p)/(1 + p)].
t-»e0
If for n > 0 we approximate =, by

Fu = f "_1 dP (1),

we obtain
Fn = [1 — e 20=p)(+p) Jg—2(n—1) (1=p) | (1+p)

= (1 — a)a™, n >0,

where @ = exp [—2(1 — p)/(1 + p)], so 7, has the same form as ,.
If p is close to unity, @ = p and hence

Tn = Ta, pil,

S0 7, is a good approximation of 7, when p is slightly less than one.

IV. THE GI/G/1 QUEUE—APPROXIMATE QUEUE LENGTH

Let us first consider a heuristic manner of obtaining (10) for the
M/M/1 queue. During the time interval (f,¢ 4+ At], the number of
customers in the system changes by the number of arrivals minus the
number of service completions, and when N (f) = n > 0, this change
has expectation (A — p)At + o(At) and variance (A + p)At + o(At).
To approximate {N(f),t = 0} by a diffusion process with the same
infinitesimal mean and variance, setea = A — gand b = A + g in (1),
which yields (10). This suggests that an appropriate choice of @ and b
will yield a good approximation for the queue length of the Gi/e/1
queue.

For the c1/a/1 queue, let N () be the queue size at time ¢, A (¢) and
D (t) the number of arrivals and departures in (0, ¢], respectively ; then

N(t) = N() + A@#) — D(1), t>0. (13)
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For any renewal process {M(t), ¢t = 0} where the interevent times
have mean m and variance V, for large values of ¢

E[M(t)]=t/m, (14)
and
Var [M(t)] = tV/m?, (15)

(Ref. 8). By hypothesis {A(t), ¢ = 0} is a renewal process, so from
(14) and (15) we obtain

E[A() ]~ N, Var [A ()] & Noit. (16)

The process {D({), ¢ = 0} is not a renewal process, but, in heavy
traffic (p close to 1), the server will be occupied most of the time, so
we approximate D (t) by D(t), where

E[D(t)]~ ut, Var [D(t)] = pdo’t. 17)

Cox and Smith? use (13), (16), and (17) to study the 61/G/1 queue
for small values of ¢ without using a diffusion model. Substituting
D(t) for D(t) in (13) and using (16) and (17), we obtain the approxi-

mate results
AN— (18)

lim E[N (£)]/t

and
Mo + plod, (19)

{l_rbn Var [N (t)]/¢

which suggest that we approximate N (t) by a diffusion process N,
say, with infinitesimal mean and variance given by

a=\—u (20)
and
b = No% + uieh, (21)

respectively. If we let F (i, z;z0) = Pr {N(t) =< z|N(0) = z.}, then
F satisfies (1), (2), (3), and hence is given by (4), with a and b as above.

As a partial check on the efficacy of this approximation, let us define
N = lim,.. N(t). For p < 1, N is a proper random variable, and from
(6), (20), and (21),

I

2 92 2 -1
B =yt o, (22)

which together with the queuing formula L = AW (see Ref. 10) and
p = 1 yields the heavy traffic approximation given by (6).

V. THE GI/G/1 QUEUE—APPROXIMATE VIRTUAL DELAY

The virtual delay at time ¢ is the delay in queue a customer would
experience if it arrived at time ¢; an exact formulation is given by
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Benes§.! Toward developing an approximation of the virtual-delay
process, define

L) =81+ 84 -+ 4+ San, t >0, (23)

80 L(t) represents the amount of work time brought to the server in
(0, t]. Since Sy, Ss, - -+, Sacy are i.i.d., using (17) we obtain

E[L(®)] = E(S)E[A()] = pt (24)

for large values of . Using the conditional variance relationship
Var [L(t)] = E{Var [L(t)|A@#)]} + Var {E[L()|A ()]} and (17),
we obtain for large values of ¢,

Var [L()] &2 Ma} + p2e?)L. (25)

The sample paths of the virtual delay process are sawtooth functions
with a jump of size S; at the arrival epoch of the 7th customer followed
by a decline of slope —1; the process has an impenetrable boundary
at the axis of abscissas. Assume that (24) and (25) hold for all ¢, so that

o= Ll\lsr_!}o {BLL(t + At)] — E[L(®)]}/At = p (26)
and
g8 = ilcrr}} {Var [L(t 4+ At)] — Var [L()]}/At

= Mok + pPoh). (27)

Following Gaver,®? we approximate the virtual-delay process by a
diffusion process {V(f),¢ = 0}, say, with infinitesimal mean and
variance given by

a=p—1, b= )\(UZB + P!U?i).- (28)

respectively. Hence, the time-dependent d.f. of V(¢) is given by (4)
with a¢ and b given by (28).

Turning now to asymptotic results, when p < 1, ¥ = lim,., V (f)
exits and is proper, and from (5) has a negative-exponential distribution
with mean

E(V) = }(c} + %)/ (X1 — ). (29)

Hooke® showed that, if the interarrival times are nonlattice, then
as pT1, Pr{W = z} —» Pr{V = z}, where V is the virtual delay in
the steady state. This result and (29) together show that, as p T 1,
E(V)/E(W) 11, and the d.f. of ¥ agrees with (6). From (22) and (29)
we observe that E(V) < E(N)/u when p < 1, but E(V) 2 E(N)/u
is known to hold.
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We note that once a diffusion model for the virtual-delay process
is at hand, the method given in Heyman' for approximating the busy-
period distribution can be applied.

VI. A NUMERICAL EXAMPLE

In this section, we compare E[N ()] to the results of a single com-
puter simulation. We consider a single-server queue that is empty at
time zero, where the interarrival times are uniformly distributed from
0 to 20 minutes, and the service times are uniformly distributed from
0 to 19 minutes. Thus,

A =10, o4 = 100/3, p~t = 9.5, % = (9.5)%/3; (30)

hence, p = 0.95 and from (22) we obtain £(N) = 6.50. Since the d.f.
of N is negative-exponential, the standard deviation of ¥ is also 6.50.

Let N;(t) denote the sample of N(¢) produced by the jth simula-
tion run, N; be the estimate of N produced by the jth run, and
N =n"1%", N, Assuming the simulator produces independent
sample paths and approximating the mean and variance of N by those
of N, standard sampling theory indicates that, for reasonably large
values of n, N has a normal distribution with mean 6.5 and standard
deviation 6.5/Vn. Hence, given ¢ > 0, the number of runs required to
have

Pr{|N — E(N)| £ cE(N)} = 0.99

is the smallest integer = (2.575)2/c; choosing ¢ = 0.05 yields n = 134.
These considerations lead us to simulate 150 sample paths, and indi-
cate one of the potential uses of even a crude diffusion approximation.
Gaver? and Newell® observe that if one makes the change of vari-
ables £ = —(a/b)xz and 7 = (a?/b)t, (1) becomes

F.= —F¢+ Fy/2, (31)

which can be solved once and for all; the solutions for any a and b can
be recovered by scaling. For our example, — (b/a) = 13.00 and b/a?
= 2472.2 minutes. Table 2-2 in Gaver? gives the values of

L " tdF (7, £;0)

for r = 0.1,0.2, - - -, 1.0. These were used to construct Table I below.

The approximations shown in the table are not as accurate as the
diffusion approximations for m/G/1 shown in Table I of Gaver?; these
comparisons share with Gaver’s table the property that the diffusion
process consistently overestimates the mean queue-size.
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Table | — Comparison of diffusion approximation
and simulation results

Time T
E[RN@] | 01 ‘ 02 | 03| 04| 05|06 07| 08]09]10
Diffusion 268 | 3.50 | 402 | 440 | 468 | 491 | 511 | 527 | 541 | 5.52
Simulation | 2.25 | 2.91 | 3.40 | 3.71 | 4.16 | 4.39 | 4.61 | 5.05 | 5.18 | 5.13

VIl. COMPARISON WITH THE RESULTS OF IGLEHART AND WHITT

Iglehart and Whitt%'® use the theory of weak convergence of
stochastic processes to obtain heavy-traffic-limit theorems for large
classes of queuing processes. In particular, these theorems hold for the
c1/a/1 queue. Their results are obtained by considering a sequence of
61/a/1 queuing systems, indexed by n (n = 1,2, ---). For the nth
system, let A, and p, denote the arrival and service rates, respectively,
and N.(t) and V.(f) denote the queue size and virtual delay at time
t, respectively. For the above quantities, let the absence of a subscript
denote the limit with respect to n, e.g., A = liM, .. Ax. For each n, let
¢% and ¢% be as before, and assume N,(0) = V,(0) = 0.

Section three of Iglehart and Whitt!* shows that if

liMy e (A\n — pa)¥n = ¢, where ¢ is some finite constant, then

. Na.(nth
lim
n—® ﬁyﬁ

where v = A% + uiok, B(t', —c¢/v) is the Wiener process with nega-
tive drift ¢/ together with an impenetrable barrier at the origin and
= denotes weak convergence. From (32) it follows that for large
values of n, i.e., when p, = A, 1, is close to |,

Pr {N.(nt")/yVn = d}

= @(%’) - ehdf@(_d%ﬁ’/”). (33)

Since N,.({) = N(t), ¢ = (A — p)Vn for large n, upon making the
change of variables z = dyVn and ¢ = nt', we obtain

Pr {N() = z}

-9 (:E — ::[{_ M)i) — EO—wzivg (:fi%;“)t) (34)

from (33). Observe that the right-hand side of (34) agrees exactly with

=B (t’s _C/'Y)r (32)

1644 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1975



the time-dependent distribution (when z, = 0) of N(f) obtained in
Section IV.

Let an = ;' — A' and o2 = ¢% 4 ¢%. From theorem 6.1 of
Iglehart and Whitt,® it is possible to derive the following result, which
appears in theorem 4 of Whitt.’ If ano=Vn — —k, — o <k < ©,
then

Va(nt")

=B, —k). (35)
aNNA,

For large values of n, an = (p — DAY, —k = (p — DA"le~Wn,
V.() = V(1), and

Pr {V(nt') £ doVin}

. d+m'ﬁ) (—d+kt’«/i)
e TEEVNY _ avig ( ZE T EINAY g
(“5 ) 7 30
Letting ¢ = nt’ and z = doVAn in (35), we obtain
Pri{V() < =}

-3 (5Ic —6(%; l)t) — @G-z (W)- (37)

The right-hand side of (36) represents the time-dependent distribu-
tion (4) with 2o = 0 and

a=p—1,  b=xo%+ o), (38)

which is the same value of a and almost the same value of b given in
(28), where the difference between the values of b given in (28) and
(38) vanishes as p — 1.

From the results of this section, we can conclude that the heuristically
constructed diffusion models for N (¢) and ¥ (#) given in this paper can
be regarded as the limit (in the sense of weak econvergence) of N (f)
and V(2), respectively, with suitable normalization.

Viil. SUMMARY

We have obtained an approximation for the time-dependent dis-
tributions of queue length and virtual delay in a 61/G/1 queue using
a diffusion model. The diffusion model for the queue length process
was obtained by using the mean and variance of the asymptotic rate
of change of an approximation of the queue-length process as the
infinitesimal mean and variance for a diffusion process. The diffusion
approximation was compared to a simulation of a particular queueing
process, and reasonably close agreement for mean queue lengths was
obtained. The approximation for the virtual-delay process was gen-
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erated in a manner suggested in Gaver? and the limiting results it
provided were shown to agree with a theorem of Kingman® for the
delay process. The time-dependent distributions for the approximate
queue length and virtual-delay processes agree, as the traffic intensity
approaches one, with the limiting results of Iglehart and Whitt.!4:1®
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