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The filter response of nonuniform, almost-periodic structures, such as
corrugated optical waveguides, is investigated theoretically. The filter
process, leading to reflection of a band of frequencies near the Bragyg fre-
quency, s freated as a contradirectional coupled-wave interaction and
shown to obey a Riccati differential equation. The nonuniformity of the
structure 1s represented by a tapering in the coupling strength (e.g., the
depth of the corrugation) and by a chirp in the period of the siructure.
For small reflectivities, the filter response is a Fourier transform of the
taper function. For large reflectivities, the Riccati equation was evaluated
numerically and plots are given for the response of filters with linear and
quadratic tapers and with Winear and quadratic chirps.

I. INTRODUCTION

Recent papers'? have reported the fabrication of wavelength-selec-
tive filters in the form of corrugated, thin-film, optical waveguides and
have described the evaluation of the filter characteristics by means of
tunable dye lasers. These papers include a numerical comparison of
experimental and theoretical results on the nature of the filter response
caused by a gradual tapering in the corrugation or grating strength
(which we call “tapers’), or by a gradual variation of the effective
grating period (called “chirping”). The present paper describes in some
detail the theory by which these numerical results were obtained; it
offers a discussion of the general characteristies of nonuniform grating
filters, such as their scaling properties and the symmetry of the filter
response; and it provides a more complete collection of plots represent-
ing numerical results for linear and quadratic tapers in the coupling
strengths as well as linear and quadratic chirps in the effective grating
period. Periodic waveguides serve as band-rejection filters with a
center frequency determined by the Bragg condition

K = 28(w), (1)
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where K = 2x/A is the grating constant or spatial frequency, A the
grating period, and 8(w) the propagation constant of the waveguide
mode of interest. The filter mechanism results from the backward
scattering of the light by the periodic structure which we describe as a
contradirectional coupled-wave interaction. For its analysis, we use
the coupled-wave formalism?®# which allows adequately for the deple-
tion of the incident light.

Problems similar to ours have been encountered in other coupled-
wave processes. Codirectional coupling in nonuniform structures has
been investigated in connection with microwave directional couplers,®7
holography,® and tapered optical directional couplers.? Our present
problem of contradirectional coupling in nonuniform periodic structures
has been considered by Uchida® who analyzed structures with ex-
ponential tapers and by Hill and coworkers''—!* who use a numerical
method based on the iteration of a pair of coupled-mode integral
equations. Another possible method is to approximate the nonuniform
structure by a set of short uniform elements, each represented by a
known matrix, and use matrix multiplication to calculate the proper-
ties of the compound overall structure. Kermisch® has applied such a
technique to codirectional coupling in hologram gratings. As described
below, we have used yet another method where we reduce the pair of
coupled-wave equations to a single Riccati differential equation, which
can then be solved by tested numerical techniques such as the Runge-
Kutta method.

Il. RICCATI EQUATION FOR THE REFLECTION COEFFICIENT

Following coupled-wave theory, we assume a periodic, single-mode
waveguide with an electromagnetic field which can be represented by
two contradirectional coupled waves in the form

E(2) = R(z)e = + S(z)e®, @)

where R and S are the complex amplitudes of the forward- and back-
ward-running mode. These amplitudes are linked by the standard
coupled-wave equations?®+

R’ + jéR = —jkSe—# (3)

and
8" — 7868 = jxRe, (4)
where we have allowed for a phase-shift ¢ of the periodicity relative to

the origin (z = 0). The prime indicates differentiation with respect to
z. The coupling coefficient « is related to the amplitude of the wave-
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guide perturbation (e.g., the height of the film corrugation), and
formulas for specific guides with specific perturbations are given in the
literature.3** The measure §(w) indicates the frequency deviation
from the Bragg condition and is defined ast

§=p8—K/2=p— B3 Aw/v,, (5)

where 8o = K/2 is the propagation constant at the center (Bragg)
frequency, Aw is the radian frequency deviation from that frequency,
and v, is the group velocity of the guide.

We consider, now, structures in which both the coupling coefficient
k(z) and the grating phase ¢(z) are slowly varying functions of z,
indicating the nonuniformity in the grating parameters. We assume
that the structure has a length L and extends from z = —L/2 to
z = L/2. The boundary conditions for our scattering problem are then

R(—L/2) =1, S(L/2) = 0. (6)

The key to the reduction of the coupled-wave equations to a single
differential equation is the definition of a local reflection coefficient p(z),

b= S )
The z-derivative of this is
, i SR’ a8 .
P = (‘R_ 2 _J"’R)e-”- (8)

Combining the above expressions with (3) and (4), we obtain a Riccati
differential equation for p which is of the form

p' =37(28 — ¢')p + jk(1 + p?). 9)
The boundary condition for this equation follows from (6) as
p(L/2) = 0. (10)

Our quantity of interest is the reflection coefficient p(—L/2) of the
entire structure, or the corresponding reflectivity pp*. What we call
filter response is the dependence of this reflectivity on the frequency
(or wavelength) of the light. Results for the response curves of specific
taper functions are provided in later sections, but first we study some
of their general properties.

lll. FOURIER-TRANSFORM RESPONSE AT LOW REFLECTIVITIES

When the reflectivities are low, we expect a simple relationship
between the taper function x(z)e?*® and the response function p(8).

FILTER RESPONSE OF NONUNIFORM STRUCTURES 111



This relationship follows from the assumption of an undepleted incident
wave or the use of a first Born approximation.!s*® It is easily derived
from the Riceati equation (9) by substituting a new variable ¢ de-
fined by

p= aei(ﬂs—ﬁ)’ (11)

which obeys the differential equation
o' = j[e i) | glei@—9)], (12)

When reflectivities are low, the term proportional to ¢2 can be neglected,
and we can integrate this equation with the result

Li2 ] -
o(=L/2) = —j [ dex(e) e, (13)

This shows that, apart from phase factors, the response function p(5)
is the Fourier transform of the taper function «(z)-ef @,

IV. SYMMETRY OF FILTER RESPONSE

Let us now consider the conditions for which the filter response is
symmetrie, i.e., for which

pp*(8) = pp*(—19). (14)

To simplify our discussion, we assume that the filter structure can be
described by a real and positive function x(z) and an arbitrary phase
function ¢(z). Then the Fourier transform relation (13) predicts that
the filter response is symmetric (a) if ¢(2) = 0, or (b) if both x and ¢
are symmetric, i.e., if k(2) = x(—2) and ¢(z) = ¢(—2). Relation (13)
is valid for small reflectivities only, but we get the same answer from
the Riceati equation (9), which is valid for all reflectivities. To dem-
onstrate this, we take the complex conjugate of (9) and write the
result in the form

(=p*)" =j(=25 + ¢') (—p*) +jx[1 + (—0*)*]. (15)

If we replace § with —é and ¢’ with —¢’, this differential equation for
(—p*) is the same as the differential equation (9) for p, and (as the
boundary conditions are also the same) it predicts the same reflectivity
pp*. While replacing & with —é simply means that we are looking
at the other side of the center frequency, replacing ¢’ with —¢’ means
that we have replaced the original filter structure with another one.
For a structure with symmetrical «(z) and ¢(z), we have ¢’ = —¢'(—2),
and the above replacement means that we have physically reversed the
filter. Since the structure is lossless and reciprocal, the reflectivity is
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Fig. 1—Linear taper functions «(z) for the taper constants T' = 0, 0.5, 1, 1.5, and 2.

the same at the input and output port of the filter, and condition (b) is
proven. Condition (a) for ¢’ = 0 is easily proven by inspection of (15).

V. SCALING OF FILTER RESPONSE

In the general case, the Riceati equation (9) has to be evaluated
numerically. To make the numerical results more broadly applicable,
it is convenient to introduce the normalized quantities z/L, 8L, kL, and
¢’'L. It follows from (9) that two filters of different length (labeled 1
and 2) have the same reflectivity at the frequencies §,L; = 2L, if their
taper functions obey the scaling rule

2 2
xl(_)Ll=x2(—)L2

Lz‘ L: (16)
'ﬁ: (E)Ll = 051; (E)LZ'
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VI. TAPERED FILTERS

Tapered filters are structures where the coupling coefficient «(2)
varies along the length of the device. For simplicity, we consider here
tapered filters with no chirp (¢ = 0). At the center frequency (5§ = 0),
we can write the Riccati equation (9) of such a filter in the form

dp

i jx(2)dz, a7
which is easily integrated to yield for the reflection coefficient
Liz
p(=L/2) = —j tanh [ dz.x(2). (18)
—LJ2

This is similar to a result found by Kermisch?® for codirectional inter-
actions in holograms.
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Fig. 2—Frequency response of filters with a linear taper for the taper constants
T =0, 0.5, 1, 1.5, and 2 and values of (a) kel = x/4, (b) koL = 7/2, (¢) kol = 3w/4,
and (d) kel = m.
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Fig. 2 (continued).
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6.1 Linear tapers

In a linearly-tapered filter structure, the coupling coefficient «(z)
varies as
k = ko(l + T2/L), (19)

where the constant T indicates the degree of the taper. Figure 1 shows
a sketch of this taper function for five values of T' including the cases
of no tapering (7 = 0) and full tapering (T = 2). From (18) and (19),
we calculate the reflectivity of linearly-tapered filters at the center
frequency (8§ = 0) as

pp* = tanh?(x.L). (20)

According to rule (a) of the previous section, the filter response of
tapered filters is symmetric. Figures 2a through 2b show the filter
response of linearly tapered filters for positive frequency deviations
and five values of the taper constant T'. The curves are the result of a
numerical evaluation of (9) using the fourth-order Runge-Kutta
method. Response curves are shown for values of L = w/4, 7/2,
37/4, and =, and we notice a washing-out of the zeros in the response
curve with inecreasing amounts of tapering.

6.2 Quadratic tapers

A filter with a quadratic taper is characterized by a coupling coeffi-
cient x(z) that varies as

K = Ko (1 - lT—Q +- Tzﬂ/Lz)- (21)

The particular form of this expression has been chosen to make the
reflectivity at center frequency (8 = 0) independent of the constant
T, and equal to

pp* = tanh?(koL) (22)

as calculated from (18). Figure 3 shows quadratic taper functions for
five values of 7. For positive T the curves are concave upward, and for
negative valued 7 they are convex upward. Figures 4a through 4d
show the numerically evaluated response curves for the same values
of T and four typical values of xoL. We note that the concave upward
tapers produce very high side-lobe levels in their response characteris-
tics, while the side-lobe levels can be very low for the convex upward
tapers. The side-lobe levels of the tapers with 7 = —6 (emphasized
by the thicker lines) are the lowest with about 2 percent in reflectivity.

Vil. CHIRPED FILTERS

A variation of the grating period along the length of the filter is
called a “chirp.” Chirped filter characteristics may also be due to a
variation of a waveguide parameter such as the refractive index or
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Fig. 3—Quadratic taper functions x(z) for the taper constants T = —6, —3, 0, 6,
and 12. The curves intersect at the points 2 = +L/2-v3 and x = xo.
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the guide height or width. We have chosen the phase function ¢(z) to
represent all variations of this kind. We are, therefore, dealing with a
perturbation proportional to cos (Kz + ¢) with constant spatial fre-
quency K and a variable phase shift ¢(z), which can also be viewed
as a perturbation with a variable, or chirped, spatial frequency
K + AK(z), where

AK (z) = ¢'(2), (23)
or as a perturbation of variable period A + AA(z), where
AA(z) _  AK(2)
A K (24)

REFLECTIVITY pp* (IN %)

KolL=m/2

REFLECTIVITY pp* {IN %)

NORMALIZED FREQUENCY &L

Flg 4—Frequency response of filters with a quadratic taper for the taper constants
-3, 0, 6, and 12, and values of (a) xeL = 7/4, (b) kL = /2, () xoL
= 3,|—/4 ‘and (d) an =
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Fig. 4 (continued).
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A chirped grating period implies that the (local) Bragg frequency
changes along 2z, which results in a general broadening of the filter

response.

7.1 Linear chirp

A periodic structure with a linear chirp is described by a linearly
varying spatial frequency which we write in the form

AK(z) = ¢'(2) = 2Fz/12, (25)

where the constant F is a measure for the degree of the chirp. The

50

(a)

REFLECTIVITY pp* (IN %)
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kL=m/2
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Fig. 5—Frequency response of filters with a linear chirp for the chirp constants
1(7"1/)211- =0, 0.5, 1, 1.5, 2, and 3, and for «L-values of (a) /4, (b) =/2, (c) 3x/4, and
™.

120 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1976



REFLECTIVITY pp* (IN %)

REFLECTIVITY pp* (IN %)

[=2]
[=]

g

F-3
[=]

W
o

<]
(=]

=

(c)

kL=3r/4

NORMALIZED FREQUENCY &L

Fig. 5 (continued).
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corresponding phase function is
¢(2) = Fz2/12 (26)
For the grating period we have

AA(z) _  AK(z) _ F A 2z
I (27)

For the difference AA of the grating periods at the center (z = 0) and
end (z = L/2) of the device, we obtain

(28)

REFLECTIVITY pp* (IN %)

REFLECTIVITY pp* (IN %)

NORMALIZED FREQUENCY &L

Fig. 6—Frequency response of filters with a quadratic chirp for the chirp constants
fc{)zw =0, 0.25, 0.5, 0.75, and 1, and for «L-values of (a) =/4, (b) /2, (c) 3v/4, and
.
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Fig. 6 (continued).
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which allows us to express the chirp parameter F in terms of the total
number of periods N = L/A in the form

F = 2r-N-AA/A. (29)

According to symmetry rule (b), the response of a filter with a linear
chirp is symmetric. The discussion in Section IV implies that a reversal
of the sign of F will not change the filter response since this operation
simply means that we have turned the two-port structure around to
measure the reflectivity at the other port. The filter response as ob-
tained from a numerical evaluation of (9) using the fourth-order
Runge-Kutta method is shown in Figs. 5a through 5d. Again, we have
chosen for «I the values =/4, =/2, 3w/4, and =. We have included the
curves for the unchirped filters (¥ = 0) and shown the responses of
five chirped filters up to a chirp constant F/2r = 3. We note that the
chirp washes out the zeros and broadens the response.

7.2 Quadratic chirp

For a periodic structure with a quadratic chirp, we write the spatial
frequency variation in the form

AK(z) = ¢' = 12F2*/L3 (30)
using F as a chirp parameter. With this we get for the phase function
¢ = 4F (z/L). (31)
The variation of the grating period is then given by
BAG) _ _,F A (2
T 321rL(L)’ (32)

and the difference between the periods in the middle of the device
(z = 0) and the device ends (z = +L/2) becomes

AA _ AA0) — AA(L/2) _ . F A
A A T Y 2r L (33)

Again, we can express the chirp parameter F in terms of the total
number of periods by
3F = 2¢-N-AA/A. (34)

The filter response of a periodic structure with a quadratic chirp is
asymmetric. If we reverse the sign of F in this case, we are dealing
with a different structure which has a different filter response. Accord-
ing to the discussion of Section IV, this new response curve is the
mirror image of the response of the original filter relative to the center
frequency. The response, as obtained by a numerical evaluation of (9),

124 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1976



is shown in Figs. 6a through 6d for four values of kL. Curves are given
for chirp parameters up to F/2x = 1. We note that with increasing
chirps the asymmetry of the response curve increases with the side-lobe
levels increasing on one side and decreasing on the other side of the
center frequency. Most of the zeros in the response are preserved and
shifted somewhat, and there is a small shift in the frequency of peak
reflectivity. There appears to be no significant broadening of the main
lobe of the response for the parameters selected.

VIll. CONCLUSIONS

We have described the filter characteristies of nonuniform periodic
waveguides on the basis of coupled-wave theory. We have also shown
that the filter response is described by a Riceati differential equation
and have presented solutions for linear and quadratic tapers of the
coupling coefficient and for linear and quadratic chirps in the grating
period. The results can be used as an aid in filter design and to predict
the effect of imperfections introduced during device fabrication.
Quadratic tapers appear to be a promising choice when filter charac-
teristics with low side-lobe levels are desired.
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