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An algorithmic procedure for designing hybrid FIR/IIR digital filters
s proposed and evaluated in this paper. The design is implemented as a
two-stage optimization in which a Hooke and Jeeves optimization pro-
cedure is used to optimize the IIR component of the filter and the McClellan
et al. oplimization procedure is used lo oplimize the FIR component of the
filter. To evaluate this method, a set of eight low-pass filters were designed
in which a single complex conjugate pole pair was used as the IIR com-
ponent. The resulting designs were compared and conirasted with standard
IR low-pass filters and the opiimal FIR, linear-phase, low-pass filter in
terms of mulliplications, storage, and group delay properties.

I. INTRODUCTION

A wide variety of digital filter-design methods have been proposed
and studied in the past several years.'~? Generally, these design methods
can be classified as analytical or algorithmic, depending on the form
of solution of the approximation problem which is used. Additionally,
the resulting designs are classified as finite impulse response (FIR) or
infinite impulse response (11R), depending on the filter properties. FIR
filters have the property that they can be easily designed to have
exactly linear phase. Furthermore, linear-phase Fir filters can be
designed to approximate an arbitrary magnitude response to within
given tolerances by using a sufficiently high order. 1R filters cannot
achieve a linear-phase response exactly, but are capable of approximat-
ing sharp cutoff filters with considerably lower order filters than are
required for the Fir designs which meet identical magnitude specifica-
tions.!? Thus, for many practical filter applications, there is a trade-off
between the exact linear-phase response obtainable using an FIr filter
and the reduced filter order obtainable using an mr filter.

In this paper, a hybrid design is proposed which bridges the gap,
somewhat, between the Fir and 1r filters. The hybrid filter is a par-
ticular class of 1R filter where the degree of the numerator of its system
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Fig. 1—Hybrid rir/nr filter.

function is significantly higher than the degree of the denominator.
Thus, it is reasonable to consider the hybrid design as a cascade of
an Mth-order 1r filter with Nth-order Fir filter, as shown in Fig. 1,
where N >> M. In the designs discussed here, M is set to 2* and N is
in the range of 27 to 51. The idea behind this hybrid design is to in-
corporate the good features of both 1R and FIR filters, yielding a
resulting filter which can meet arbitrary design specifications with a
significantly smaller filter order than is required by the FIr filter alone,
and with a smaller group delay variation (i.e., more phase linearity)
than is normally obtained by the 1R filter alone.

Based on the above discussion, the hybrid filter of Fig. 1 can be put
in the form

H(z) = Hur(2)Hrr(2), (1)
where, by assuming a second-order denominator as mentioned above,
1
Hur(2) = 1 — pePz ) (1 — pez7) (2)
and
N-1
Hrpr(2) = };D hr(n)z, (3)

where p is the radius of the pole in the z plane and 6 is the pole angle.
(Although we have used a second-order 1r filter in eq. (2) and in the
examples of this paper, the design approach is general and can be
applied to other orders of 1R sections as well.) The overall filter is
decomposed into a cascade of sections for two reasons. The first is to
emphasize the fact that the hybrid filter is most readily realized as a
cascade of an 1R filter with an FIr filter. In this way, the direct form
structure can be used to realize the FIR section so as to fully utilize
the symmetry in the impulse response due to the linear phase condition.

* Cases where M = 1 were also studied but have not led to any useful results.
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The second reason that this cascade of sections is used is because it
separates the design problem into two distinet parts; one which is
fairly simple and one which can be solved using a well-known FIR
approximation method."

To obtain the best second-order denominator hybrid filter approxi-
mation to the desired specifications, the parameters p and 6 of the 1r
filter are systematically varied, and an optimal FIr filter is obtained
for each set of parameters using the design program of McClellan et al.
An alternative method of obtaining such a hybrid design would be to
use a different type of algorithmic procedure (e.g., Ref. 8 or 9) and
simultaneously vary both the numerator coefficients and the denomina-
tor coefficients. Unfortunately, since the numerator order is so much
higher than the denominator order, these optimization methods are
not always successful.

In the remainder of this paper we discuss the hybrid filter-design
algorithm and present some typical results on low-pass filter designs
obtained with this method. Then we compare and contrast the resulting
designs with some standard 1ir low-pass filters including Butterworth,
Chebyshev, and elliptic filters, and with the optimal FIr filter. The
bases of comparison are the number of multiplications per sample, the
group delay variation, and the storage requirements. We conclude
with a discussion of the properties of the hybrid filters.

II. DESIGN ALGORITHM

Since the algorithm is being applied to the design of low-pass filters
(although it is equally useful for any arbitrary magnitude function),
the desired frequency response of the system Hy(e®) is of the form

1 0
0 2rF,

w

27F,

™,

|Hi(e®)| = (4)

IIA 1A
IIATIA

w

where F, and F, are the passband and stopband edges, respectively.
The tolerances are 8, in the passband and 8, in the stopband. Thus,
|Hr(e*)|, the magnitude response of the composite system of Fig. 1,
satisfies the inequalities

1— 6, = |Hr(e)]

< 143, 0
0 = [Hi(e®)]

=
=< & 27 F,

w = 27xF, (5)
w =T

IIA 1IA
IIA TIA

The method in which the individual magnitude responses of the mr
filters and the FIR filters are chosen is shown in Fig. 2. Initial values
are chosen for the 1R coefficients p and 4, based on the location of the
highest @-pole pair of an elliptic filter which meets the tolerance scheme
of eq. (5). The reason for this choice will be discussed later.
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Fig. 2—Block diagram of the design algorithm.

Based on the initial values of p and 6, a

set of design specifications

for the FIR filter is obtained from egs. (1) and (5) of the form

:51’_ < w)| < __,l_ﬂ_

[Hur(e®)| = | Hem(e%)| = [ Hur(e*) |
i 05

0 = |Hpr(e®)| = m—'

0<wZ=x27F,

(6)
2xF, =

w = .

Equation (6) specifies the appropriate parameters (the band edges,
desired values, and weighting) for the McClellan et al. arbitrary magni-
tude Fir design program.!! The final parameter required is N, the
filter length. An initial guess of the value of N is made, and the design
program yields the optimal rir filter for the given specifications. A
control loop is used to find the smallest value of N which can be used

to meet the given input specifications.
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Once the minimum N (for the given values of p and 8) is obtained, an
outer loop optimization program is used to vary p and @ to obtain the
minimum value of N as a function of p and 6. The algorithm used to
find the optimum values of p and 6 is the well-known Hooke and Jeeves
optimization.”? Generally, the Hooke and Jeeves algorithm is capable
of optimizing a continuous funection of (several) continuous variables.
However, for this problem the function [ NV (p, ) ] is not continuous, but
instead is discrete (integer) valued. To handle the problems created by
this discrete-valued function, fairly careful control over the variation
of p and 6 had to be maintained. To illustrate this point, Fig. 3 shows
a typical contour of the variation of N as a function of p.

The minimum of this function oceurs at the point labeled A. How-
ever, because N(p, 6) is discrete, it is possible for the optimization
algorithm to prematurely terminate on flat regions such as those
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Fig. 3 —Typical contour of N as a function of p.
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labeled B and C. To minimize these difficulties, a careful choice is
required of the initial step sizes, Ap and A8, used by the Hooke and
Jeeves algorithm to vary p and . For example, if Ap is too large, the
algorithm may not find the “valley” of the function. Similarly, if Ap
is too small, the algorithm may “hang up” on a flat region as it reduces
its step size. Successful choices of Ap and A@ appear to be approxi-
mately one-half the distance across the “valley” of the function (e.g.,
one-half the distance between the two points labeled D in Fig. 3). For
the examples in the next section, the choices Ap = 0.005, A0 = 0.02
(radians) yielded good results. Figure 4 shows another example of the
variation of N as a function of p and 8. Here we can observe that there
are two reciprocal minima of N as a function of p. If the optimum po
outside the unit circle is found, the corresponding optimum value of p
inside the unit circle can be found by taking the reciprocal of po.

A factor that strongly affects the efficiency of the algorithm is the
initial choice of p and 8. If accurate initial estimates of p and 6 are used,
they can result in a significant speed-up of the design method. As
stated earlier, good estimates were found to be the location of the
highest @-pole pair of an elliptic filter which meets the same tolerance
scheme. Other good estimates appear to be the highest Q-pole pair
locations of the Chebyshev 2 and Chebyshev 1 designs which meet the
same tolerance scheme. For greater assurance that an optimum has
been found, several of these starting points may be tried to see if the
algorithm converges to the same value of p and 6.

Another factor that strongly affects the efficiency of the algorithm
is the strategy of the control loop for varying N (see Fig. 2). Generally,
it was found that a good initial guess of N after changing p and 6 is
the previous value of N. An efficient strategy for increasing or de-
creasing N to find its new minimum then appeared to be a ‘“tree”
search (or log search). That is, N is incremented or decremented by an
amount AN, depending on whether the previous choice of N yields a
design which meets the specifications in eq. (6). On the next trial, AN
is reduced by one-half, and the process is repeated until AN = 1. The
search can be terminated sooner if at any stage the Fir design is
sufficiently close to the tolerance requirements (e.g., within 1 percent)
given in (6). Other variations on this strategy are also possible.

Ill. EXPERIMENTAL RESULTS

Using the hybrid filter-design algorithm of Fig. 2, several low-pass
filters were designed, ranging from narrow-band to wide-band designs.
Table I gives the filter specifications (band edges and ripple tolerances)
for eight low-pass filters, along with the resulting 1r pole position, the
length of the FIR section, and the length of an optimal linear-phase
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Table | — Low-pass filter design

. : Equivalent | Highest Q-Pole
Filter Specifications Ogltml@:lxm[gf Bﬂ"rlld Optimum | of Eq‘uh?alant
Filter B/ DA Fir Design | Elliptic Design
Example
Fy F, 8p & P #(rad) N NrFIr Pe B (rad)
1 0.05| 0.075 0.01 0.001 0.9636 | 0.3363 39 109 0.9776 | 0.3238
2 0.1 0.125 0.01 0.001 0.9761 | 0.6817 50 107 0.9807 | 0.6367
3 0.15| 0.1756 | 0.01 0.001 0.9787 | 0.9979 | 51 106 0.9768 | 0.9530
4 0.2 0.225 0.01 0.001 0.9859 1.3133 51 105 0.9746 | 1.2684
5 0.05| 0.125 | 0.005 | 0.0005 | 0.9634 | 0.3601 31 44 0.9534 | 0.3401
6 0.1 0.175 | 0.005 | 0.0005 | 0.9380 | 0.6805 | 27 43 0.9453 | 0.6605
7 0.15| 0.225 | 0.005 | 0.0005 | 0.9582 | 0.9835 | 31 43 0.9482 | 0.9736
8 0.2 0.275 0.005 | 0.0005 | 0.9516 | 1.3127 29 42 0.9416 | 1.2027

FIR filter which also meets the design specifications. The first four
examples are filters with a fairly narrow transition band (0.025),
whereas the last four examples are filters with a wider transition band
(0.075). As seen in Table I, the reduction in length of the FIR filter in
the hybrid, from the optimal FIr linear-phase filter, is on the order of
1.5:1 to 2:1—i.e., there is a fairly significant reduction in Fr filter
length.

Figures 5 to 7 show examples of the magnitude responses of filters
nos. 1, 5, and 2, respectively. Figure 5a shows the log magnitude
response of the 1r filter, Fig. 5b shows the log magnitude response of
the FIR section, and Figs. 5¢c and 5d show the linear and log magnitude
responses respectively, of the composite filter. It can be seen from
these figures that the response of the 1R filter makes the requirements
for the FIR section significantly easier to obtain. For example, the
required tolerance near w = = is on the order of —15 dB in order that
the composite response be more than 60 dB down at this frequency.

Figures 6 and 7 show examples of some undesirable characteristics
of the frequency response which can oceur in the composite filter. In
these cases, there is a ripple of the magnitude response in the transition
band of the filter.* Since there is no real constraint on the composite
filter response in the transition band, this behavior is not unreasonable.
The question becomes one of whether or not a filter with a ripple in the
transition band is acceptable. In general, the answer to this question
is that it depends on the intended application. In some cases, this
behavior is acceptable, in others it is not.

Table II gives the approximate height of the transition band ripple
for each example of Table I. In example 5 (see Fig. 6d), the transition
band ripple is down by 17 dB and may be perfectly acceptable. In
example 2 (see Fig. 7d), the ripple peak amplitude is about 1.06—i.e.,

* Note that the pure Fir filter does not have such a peak in the don't care region.
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Table |l — Transition band ripple for Table | examples

Height of Transition Band Ripple
Example

Magnitude dB
1 —_
2 1.06 0.5
3 1.16 1.29
4 1.52 3.64
5 0.14 —17
6 0.022 —33
7 0.11 —19
8 0.063 —24

it exceeds the passband maximum response by about 6 percent. Gen-
erally, such large ripples render the filter useless in many applications.
One way to combat this nonmonotonicity of the magnitude response
in the transition band would be to constrain the pole of the 1R section
to lie within the passband of the filter. Another possibility would be to
constrain the response of the Fir section beyond the passband edge
to guarantee monotonic behavior of the magnitude response. Either
of these alternatives would lead to higher values of the rir filter dura-
tion, thereby somewhat negating the gains of using the ur filter.

IV. COMPARISON OF HYBRID FILTER DESIGNS TO OTHER
CONVENTIONAL DESIGNS

The hybrid rir/mr design represents a trade-off between an FIR
design and an 11r design. The usefulness of such an approach depends
strongly on how it compares with other conventional designs. To il-
lustrate where in this scope of design alternatives a hybrid approach
might be competitive, we have compared the hybrid examples designed
in Section IIT to examples of five other conventional low-pass filter
designs. These designs included the optimum finite impulse response
(rir) design, the Butterworth (But) design, the Chebyshev type 1
and 2 (cHEB1, cHEB2) designs, and the Cauer elliptic (ELLIPT) design.

In Fig. 8, the various designs are compared on the basis of the num-
ber of multiplications required for their implementation. In the Fir
designs and the Fir parts of the hybrid designs, the symmetry of the
impulse response was exploited. In the 11r designs, it was assumed that
a conventional implementation of cascaded second-order sections was
used and that coefficients of value 1 and 2 are not implemented with
multiplies. Figure 8a shows the results for examples 1 to 4 in Table I
and Fig. 8b shows the results for examples 5 to 8.
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Fig. 8—Comparison of filter designs on the basis of the number of required
multiplications.

The results of the comparison in Fig. 8 indicate that the hybrid
design is often more efficient than the Butterworth design and is
slightly less efficient than a Chebyshev 2 design for the same magnitude
specifications.

A second criterion used for comparison was the group delay. Figure 9
shows plots of the group delay for each filter design for example 8. The
FIR filter had the largest fixed delay at zero frequency, but its group
delay was exactly flat (i.e., zero dispersion) across all frequencies. The
hybrid design had a relatively flat component across most of the pass-
band with most of its dispersion near the edge of the passband and
within the transition band. The next least dispersive design appeared
to be the Chebyshev 2 design, followed by the Butterworth, elliptic,
and Chebyshev 1 designs.
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Another measure of dispersion used to compare the designs was
the maximum minus the minimum group delay across the passband.
These results are plotted in Fig. 10. Obviously, the FIr design had
exactly zero dispersion in these examples. The next best contenders
appeared to be the hybrid and the Chebyshev 2 designs, followed by
the elliptic, Butterworth, and Chebyshev 1 designs. In three examples,
the order of the Butterworth filter was larger than what could be ac-
commodated by the available design program, so these results were not
included. It was essentially the large required order of the Butterworth
filters that prevented them from having favorable group delay
characteristics.

A final comparison was made on the number of data storage loca-
tions (i.e., state variables) necessary for the implementation of the

35 r
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EDGE | EDGE
30
25|
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Fig. 9—Comparison of group delays of various filter designs for example 8.
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Fig. 10—Comparison of filter designs on the basis of group delay deviation (max.—
min.) in the passband.

filters. These results are given in Fig. 11. In this respect, the FIR
designs and the hybrid designs did not compare as favorably to the
recursive designs.

By cross-comparing the above characteristics, it is possible toobtain
a good insight into the various trade-offs involved in each filter design.
Obviously, no single approach stands out as being superior over all
other designs in all respects. The choice of a given design must be
weighted according to the needs of a specific application.
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Fig. 11—Comparison of filter designs on the basis of required number of storage
locations for state variables.

V. CONCLUSIONS

An algorithmic procedure has been proposed for designing hybrid
Fir/uR digital filters. The procedure is based on the use of a well-
known Fir design algorithm for designing the FIr part of the filter,
and it is coupled with a well-known optimization algorithm which is
used to design the 11r part of the filter. A set of low-pass filters designed
in this way were found to have characteristics in between those of
optimal FIRr designs and conventional 11r designs.
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Several properties of the design algorithm have been discussed in de-
tail as well as methods of choosing initial starting points and techniques
for speeding up the algorithm. Because of the nature of the FIR/IIR
design, it was found that ripples could occur in the transition band. In
some examples, these ripples were found to be objectionable, i.e., their
amplitude exceeded that of the passband gain although the constraints
imposed by the algorithm for the passband and stopband regions were
completely met. Thus, an issue which needs further investigation is
that of incorporating additional constraints in the algorithm to control
the amplitude of the transition band ripples which can occur in such a
hybrid filter design.
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