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N. 8. Jayant has proposed a simple but effective form of adaptive delta
modulation which uses two posilive parameters, P and Q, to adjust the
step size. The values P = @ = 1 describe linear delta modulation (LDM),
and Jayant has recommended using @ = 1/P and 1 < P < 2. In this
paper, we study the step response of this scheme for arbitrary P and Q.
For each P and Q, we are able to define an tnteger n, the stability exponent
for P and Q, such that the step response is unstable when P"Q > 1, it con-
verges to the new level when P"Q < 1, and when P"Q = 1, it eventually
settles into a periodic (2n + 2)-step cycle, for almost all initial conditions.
For P =z 2, and for some combinations of P and Q with P between 1.6
and 2, it is possible to have both PQ < 1 and P"Q = 1, so that PQ < 1
18 not sufficient for convergence. When a system is convergent, but a mini-
mum step size § 18 imposed, the eveniual periodic hunting will not neces-
sarily resemble that of LDM, but will be bounded by 6P™.

I. INTRODUCTION

The basic concepts of delta modulation (pm) have been thoroughly
discussed in several recent publications.!? In its simpler forms, delta
modulation is a method of digitally encoding an input signal X = {x;}
into binary pulses C = {c;} (where each ¢; = =1) so that an approxi-
mation Y = {y:} of X may be reconstructed from the pulses C by a
simple decoding scheme. The signal X, although presented to the
encoder as a discrete-time sequence, will normally be a sampled (and
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perhaps digitized) version of a continuous-time analog signal. The
encoder works by comparing each z; with y._; through a feedback
circuit to determine the sign of the subsequent pulse c;, according to
the equations

¢i = sign (z: — yi_1)
mi = eiMs, where M;= |mi| >0
Yi = Yi—1 + mi.

Various forms of delta modulators differ primarily in the manner of
determining the step-size M,; of course, since only the pulses C are
to be transmitted to the decoder, what is required is a rule for deter-
mining M; from C. In conventional lnear delta modulation (LpMm),
the step-size M, is taken to be a constant 3, independent of the pulses
C (and the signal X), so that each step m; = =34, resulting in the
familiar “staircase’” appearance of Y under Lom. Since in this simplest
form of pm, Y can change by only & per step, no matter how far z; is
from y;_1, Y has a very limited ability to keep up with X when X has
a steep slope, which results in the condition known as slope overload.
In contrast to LoM, adaptive delta modulation (ApM) permits M to be
modified depending on X, especially as the slope of the signal X changes.
Since this relieves the slope-overload problem, such adaptation can
result in better encoding, and several types of adaptive delta modu-
lators have been described in the literature (for a survey, see Ref. 2).

In this paper, we are concerned with the particular apm scheme
devised by N. S. Jayant,® and with certain generalizations of this
scheme which arise naturally in the course of the investigation.
Jayant’s one-bit-memory scheme has been characterized by Steele? as
“instantaneously companded” (that is, having an ‘‘instantaneous’
adjustment, of the step-size M), and Steele refers to Jayant’s aApm as
“first order constant factor delta modulation.” The method is ‘“first
order,” since Jayant computes M using only ¢;_; in addition to M;_,
and ¢;; the “one-bit memory” is used to save ci—1. When ¢; and ¢,
are equal, so that Y has not yet crossed X, there is a possibility of slope
overload, so that M, should be increased, and Jayant uses a ‘‘constant
factor” P = 1 so that M; = PM; , (and m; = Pm,_;) when ¢; = ci_1.
To keep the step size from growing continuously with time, a second
positive constant factor @ = 1 is chosen, so that when ¢; and ¢;_; have
different signs, indicating that Y has crossed X, the step size is reduced :
M; = QM;_;, so m; = —@Qm,_;. (Jayant concluded that values of P
and @ with PQ = 1 gave the best performance on segments of speech,
and he especially recommended P = § = 1.5, Q@ = %.) We note that
when P = @ = 1, we recover oM, with M; = § and m; = £§ for
all 4.
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As even basic LDM has proved to be quite difficult to analyze (see
Refs. 5 and 6 for some recent suceessful efforts), it is hardly surprising
that there are few definite analytical conclusions concerning the
behavior of Jayant’s Apm. This is confirmed by Steele’s comment that
“An interesting feature of instantaneously adaptive [delta modu-
lators] is their resistance to mathematical analysis- - -.”” Thus, in this
paper, we restrict our attention to the comparatively simple problem
of the step response of the approximating signal Y for Jayant’s apm,
where by step response we mean the ultimate behavior of Y when X
assumes a constant value &, x; = % for all 7 = 4.

For Lpm, if X becomes constant, x; = & for j = 7, then Y will even-
tually enter a ‘“hunting” phase having a two-step period in which
adjacent values of Y bracket & (see Fig. 1); for some k and all j = 0,

Yroi = Y = %,
Yit2i+1 = Ye + 0 = T,

Thus, for Lom, Y will eventually get and remain no more than é away
from a constant signal X, which is a very desirable characteristic. This
approximation error, which occurs because Y is discrete and cannot
exactly match a constant or slowly varying signal X, is called ‘““granular
error’ (or “quantization error’’), in contrast to the ‘“slope-overload”
error which results from the inability of Y to keep up with a steeply
climbing X. FFor LDM, a one-time compromise between these two types
of error must be made in the choice of the sampling rate and step-size
§; then the granular error is known to be bounded by 8, but the slope-
overload error can be severe for unexpectedly steep slopes. For Apm
the step size can be varied with the signal, thus reducing the slope-
overload error, but nature and magnitude of the granular error is
less understood than for the LDM case, a situation which it is hoped that
this paper will help resolve.

The question of the nature of the step response of Jayant’s Apm
was briefly disecussed by Jayant in Section 2.3 of Ref. 3, but his
conclusions were limited to the finding that in contrast to LDM, the char-
acteristics of the “hunting’’ phase of the Apwm, particularly the mini-
mum step size and maximum error, were very dependent on the mag-
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Fig. 1—Period-two (Lom) hunting.
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nitude of the constant value # (with y, and m, held fixed). Figure 2,
taken from Ref. 3, shows the behavior for P = §, @ = %, ¥0 = 0,
mo = 1, and & = 9, 10, 12. Steele’s analysis? showed that the four-step
cycle exhibited in all three cases of Fig. 2 is exact and sustainable; as
shown in Fig. 3, for some k and all j = 0, the cycle is given by

Yrtti = e < T
Yreir = Y +m < T
Yepsipe = +m(P +1) > %
Yrrssrs = Yr + mP > I,

where m = myy > 0. Steele further indicated that this four-step
periodic behavior is the typical ultimate step response of Jayant’s
ApM when PQ = 1. He also concluded that PQ < 1 was necessary for
Y to converge to X for a step input, but he did not provide a complete
proof, and he did not claim that PQ < 1 was sufficient for the decay
of Y to a constant Z. (We note that when Y is in this four-step cycle,
which is a “pure hunting” phase, the signal X is crossed only on alter-
nate steps, and the signal value is typically not in the middle of the
crossing step, calling into question assumptions used in Section IV
of Ref. 3 and in Ref. 4.)

Even before the appearance of Steele’s work, experimental results
and preliminary analysis had given rise to the general supposition that
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Fig. 2—PQ = 1 step responses (from Jayant?).

376 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1976



for a step input, (Z) Y would be unstable when PQ > 1 (as it was for
Jayant's speech data?), (iz) that when PQ = 1, Y would ultimately fall
into the periodic four-step cycle, but with very large hunting ampli-
tudes possible, and (z:z) that for PQ < 1, Y would converge to the
constant £, with both step size and maximum hunting amplitude ap-
proaching zero. (Although having the step size get too small is con-
sidered undesirable in case X should begin to vary, it was generally
thought that enforcing a well-chosen minimum step-size 8, as Jayant
did in Ref. 3, would avoid this problem.) The question of convergence
of Y for PQ < 1 is the most important of these, since as Steele and
others have observed, using a value of P@Q slightly less than 1, together
with a minimum step size, would eliminate the problem of large-
amplitude hunting cycles in Y during times when X was carrying no
signal, while Jayant’s results® indicate that for PQ < 1 but close to 1,
the resulting penalty in signal-to-noise ratio during speech segments is
negligible.

Il. SUMMARY

Our findings on the step response of a P, @ delta modulator confirm
that for almost all initial conditions, ¥ will be unstable when PQ > 1,
and will eventually fall into the four-step cycle shown in Fig. 3 when
PQ = 1. (We say “almost all” because for each P and @ with PQ = 1,
there is a set W of initial conditions, negligible in the sense of Lebesgue
measure, for which Y converges to X. In Fig. 2, there would be con-
vergence for £ = 11.1625, so that yo = 0, mp = 1, and £ = 11.1625 is
a point of W.) More importantly, we find that PQ < 1 is not sufficient
to insure that Y will converge to a step input X. Rather, in addition to
those values of P and @ with PQ < 1 for which Y converges to X,
there are values of P and @ with PQ < 1 for which Y is unstable, and
also some combinations for which Y is eventually periodic, with a
period even and greater than four. However, our results establish that
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Fig. 3—Period-four Apm hunting.
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when PQ < 1 and either P < 1.6 or PQ = 1 — @, which are the cases
of most practical interest at present, then the PQ < 1 conjecture is
true, and Y converges to a step-input X for all initial conditions.

Our basic result is that for each P and @, we can define an integer =,
which we call the stability exponent for P and Q, such that the stability
of the step response of Y depends not on the product PQ, as had been
supposed, but on the product P*Q. Thus, for almost all initial condi-
tions, Y is unstable if P*Q > 1, and is eventually periodic with period
2n + 2 if P*Q = 1; while for P"Q < 1 (or whenever the initial condi-
tions fall in W), Y converges to X. The generally expected findings for
PQ = 1 result from the fact that » = 1 when PQ = 1.

It is useful to describe the stability exponent n in terms of P and
PQ. If we define Fy(P) = P(P — 1)/(P* — 1), then n is the stability
exponent for P and @ if and only if F..1(P) £ PQ < F.(P). Figure
4 shows the graphs of Fy(P) for k = 1, 2, 3, 4. We see that Fy.(P)
< Fi(P) for P > 1, so that n is well defined, and that Fi..(P) ap-
proaches zero with increasing k. Thus, n becomes unbounded as @
approaches zero.

The cases of most interest are those for which PQ < 1 and Y is not
convergent, that is, when F,.(P) £ PQ < F.(P) and P"Q 2 1.
Since Foy1(P) £ P, PrQ = 1 implies PQ = F..1(P), so the bind-
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Fig. 4—Domains of the stability exponent n.
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Fig. 5—Domains of unstable step response.

ing constraints are that PQ < F,(P) and PQ = P~*. In Fig. 5,
those areas for which P~"+t < PQ < F,(P) are shaded; they repre-
sent those values of P and PQ for which Y is unstable for almost all ini-
tial conditions. Looking particularly at the cases with PQ < 1, we see
that when P < 1.6, Y is never unstable, but even such seemingly safe
cases as P = 2, Q = 0.3 fall in the shaded region. As P is made larger,
which might be useful in some applications, the combinations for
which Y is unstable become dominant, so that for P = 4, not only
those values of @ above 1 cause instability, but also all those between
7 and %, as well as most values below 7. The basic point of these
examples is, of course, that it is not PQ which determines the stability
of Y, but PQ.

The combinations for which P*Q = 1 are interesting in that their
step response is a straightforward generalization of that of Jayant’s
PQ = 1 apwm. Specifically, if we first decide on the stability exponent
n, choose a P = 1 which satisfies

Pntl — 2Pn + 1> O,

and then set Q = P-" so that P*Q = 1, we find that for almost all
initial conditions, Y will eventually settle into a cycle of period 2n + 2
steps. The PQ = 1 apm thus appears as the n = 1 member of this
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family, while LoM may be viewed as the n = 0 case: P°Q = @ = 1,
with a 2-0 4+ 2 = 2 step period. For each n, the set of P which satisfies
the inequality consists of an open interval (p., + ), where p, in-
creases with n and approaches 2 from below; (pa, + ) is also exactly
the interval of P for which Y can be unstable when the stability ex-
ponent is n. Thus, when n > 1, the P*Q = 1 apm is feasible primarily
for P = 2, in contrast to the PQ = 1 apm, for which Jayant has con-
jectured that 2 is an upper bound on the optimal P. These ‘‘high-
response”’ ApM may be useful for some applications, but we have not
tested them against any data. They seem to offer yet another method
of trading off granular error against slope overload. Of course, as
for the PQ = 1 case, one would actually set PQ slightly less than 1,
but large enough to preserve n as the stability exponent and thus insure
convergence.

As we have observed, the primary current interest is in combinations
of P and Q for which Y converges to a step input X, so any practical
system will provide for a minimum step-size 6. Thus, for a step input,
the theoretically convergent Y will eventually encounter the minimum
step size and become periodic, hunting about the constant Z. We have
considered the step response of a P, @ delta modulator with minimum
step size and stability exponent n, and we find that the eventual
periodic behavior is exactly that of a P, Q' = P~* delta modulator
with stability exponent &, where 0 < k = n and P > p;, and where
the value of &k depends on the initial conditions. Thus, the hunting
amplitude is bounded by 8P* < 5P". Moreover, all those k for which
0 <k =<nand P> p; occur for initial conditions having positive
Lebesgue measure. In particular, when 1 > PQ = 1 — @, so that the
stability exponent is n = 1, the four-step hunting cycle with range
(1 + P) cannot be rejected. Thus, Steele’s conclusion that the k=0,
LDM-type hunting is the only type that can occur when a minimum
step size is imposed does not appear to be justified.

Our investigations also shed some light on the question of recognizing
when the slope-overload condition is occurring. Since in the limit for
P»Q = 1, the sequence is n “forwards,” one “reverse,” ete., with only
the nth forward crossing the signal, a sequence of n or fewer forwards
should not be considered indicative of slope overload. But for n + k
forwards in a row, even if we decide to label k of them as slope over-
load, it is not clear which k of them: first? last? middle? Perhaps the
magnitude of the error must be considered as well as crossings. On the
other hand, for P*Q = 1, distance alone cannot be used as the defini-
tion since the amplitude of the hunting can be quite large, depending
on the initial conditions. For P*Q < 1 with a minimum step size, much
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the same considerations apply, except that in this case, the error
magnitude would be very useful in recognizing hunting.

1ll. ANALYSIS

We assume that 7 = 0 for all 7, and that “initial conditions” =, ¥,
and m, are given. Since there are no bounds on X or Y, we may assume
that £ = 0, and that the ‘“step” in X occurs at 7 = 1, that is, that
z; = = 0 for 7 = 1. The effects of the previous history of Y and X
can be summarized in the selection of y, and m,. The step response of
Y for a P, @ delta modulator is then characterized by how well Y can
approximate £ = 0 as a function of the parameters P and @ and the
initial conditions y, and m,.

Jayant’s apm calculates Y from X by the following equations:

¢; = sign (T; — Yi-1)

_ Pmi_l if Ci = Ci—1
= {_'Qmi—l if Ci = —Ci—1
Yi = Yi + m..

Since (2; — ¥i-1), €i, and m; will always have the same sign, we may
summarize the first two equations as

Pm;_ 1 if (xi — y:-1) and m,_; have the same sign

"= 1 —@Qmi, if they have different signs.

There is ambiguity in this definition, as the sign of zero is not defined;
that is, what value of ¢; is chosen when z; = y;_1? Our later analysis
indicates that the proper choice is ¢; = —c¢i—y when z; = yi_1, so that
equality is considered to be a “‘crossing.” After making this conven-
tion, and after observing that 2; = £ = 0 implies sign (z; — ¥i-1)
= —sign (yi—1) for ¢ = 1, we obtain the equations

o Pm; if y; and m; have different signs
Miv1 —@m; if they have the same sign (or if y; = 0)
Yivr = Yi + Mitr.

This is a two-state system whose state equations have a discontinuity
at y; = 0, but we can transform it into a single-state continuous system
if we note that the conditions on the comparative signs of y; and m;
may be expressed as a condition on the sign of their rafzo, which is
always defined since m; is never zero.

We define the error-step-size ratio r; by r; = y:/m;. Then we have

Piv1 = Yirr/Miy1 = 1 + yi/mip
=14 (yi/ms)(mi/mizr) = 1+ ri(mi/mips),
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where

Mip1 _ { P if y; and m; have different signs
ms —@Q if they have the same sign (or y; = 0)
={ P ify,-/m,-=‘r.—<0
—Q ifyi/mi=r:20;

so the state equation for the ratio may be written simply as

_ _{1+r;/P if ;<0
T U —r/Q if 20

Thus, the sequence of ratios r; arises from repeated applications, be-
ginning with ro = yo/m,, of the function f(-) given by

14 r/P if r<O0
ﬂ”‘{l—ﬂQifr;a

This function is graphed in Fig. 6 for P = 4, @ = §. Note that f(-)
is continuous at r = 1, and the continuity is not dependent on our
choice of ¢; when x; = yi_1, since f(0) = 1 simply says that y; = z;
+ m; when 2; = yi_1, which is true no matter how one computes m;
from m;_;. But an important observation is that a particular sequence
of r/s computed from r;1 = f(r:), together with an initial step m,,
gives the complete sequence of m/s, since a negative r; indicates
m; = Pmi_y, while an r; which is positive or zero indicates m; = —Qm._1.
Thus, the convention on the sign of zero affects not the sequence of
r's but the sequence of m's derived from it.

We shall henceforth restrict ourselves to combinations of P and @
for which P > 1 and § < 1, since this is the only case (other than
P = @ = 1) that is suitable for practical applications.

In our subsequent analysis we are primarily concerned with the
function f(-), which describes how the ratio r; = y.;/m, changes from
one step to another. Since f(r) = 1 for all r, except for ro no »; can

f{r)

Fig. 6—The graph of f(r) and 4 for P = §,Q = §.
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exceed 1. Thus, after the first step we are not concerned with the be-
havior of f(r) for r > 1.

We are not only interested in the change in the error-step-size
ratio r; during one step, which is given by r;y1 = f(r:), but also in the
change over two steps, three steps, etc. The change in the ratio over
j steps may be determined by applying the function j times, e.g.,
rige = f(rip) = f(f(rd), raps = f(f(f(r:))), ete. The function ob-
tained by applying f(-) j times we call the jth zterate of f(-), which
we write fi(:). Thus, we have 7.y ; = f/(r;), and by convention f(r)
= f(r) and f°(r) = 7.

Since f(r) =14+ r/P=14+r when P > 1 and r < 0, when r is
negative, the successive values of f/(r) will increase by at least 1 per
step until finally one of the values f7(r) is nonnegative, that is, 0 <
fi(r) = 1. This is just another way of saying that the signal Y will
eventually cross zero on step yiy; beginning at r = r; < 0. But once
fi(r) is in the interval [0, 1], the next value of the ratio, namely
f#1(r), can be no smaller than f(1) = 1 — 1/@, which we denote by g.
If f#(r) <0, then the subsequent ratios will increase again
until they reach [0, 1], ete. Thus, the ratios can never escape the
interval [¢q,1] =[1 — 1/Q,1] = A once they enter, and we have
proven:

Theorem 1: If g = f(1) =1 —1/Q < 0 and A = [g, 1], then for each
r there 1s a j such that f7(r) € A, and r; € A implies r, € A for all
k=i

So the ultimate behavior of the ratios is determined by the function
f(-) and its iterates on the interval 4 = [g, 1], and thus by the graph
of f(-) on the square 4 XA, denoted by the dotted lines in Fig. 6.

We shall need more precise information on how many steps are
necessary to go from a given ratio r to a zero crossing, or a nonnegative
value of fi(r). We define a1 = 0, @z = —P and, in general, a;;1 = a;
— Pi= — 3'_, Pi. We further define A,=[0,1], and A;=
[aiy1, a;) for © = 1. Since P > 1, this set of intervals forms a disjoint
cover of the range (— «, 1] of f(-).

Theorem 2: If r € A;, then j is the least integer such that fi(r) s non-
negative, so that r © A; if and only if r < 1 and exactly j steps produce a
zero crossing of Y. Also, the sequence fi(r) is increasing for 0 = ¢ = j.

Proof: Since f(aiy1) = a; for ¢ = 1, it follows that f(A:.) = A; for
i 2 1. Thus, if r € 4;, after j — 1 steps, f7!(r) € A1 Then, f(4,1)
= [0,1) C[0,1] = Ay, so fi(r) € [0,1].

Corollary : For every ro = Yyo/my, the ratios eventually enter and remain
in 4.
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Proof: For » =1, we have fi(r) €[0,1] C A, while for r > 1,
f(r) £ 1 so that f(r) € A; for some j, so that f#(r) € [0, 1].

We can now define n, the stability exponent for P and @Q, as the largest
value of j such that 4; intersects 4 ; that is, it is the maximum number
of steps from a ratio r in A to a zero crossing. Clearly, » is determined
by the fact that ¢ < 0, so that ¢ € A, for some n > 0, and this 7 is
the stability exponent. More explicitly, P and @ must satisfy

an+1 é q < Qn

or

Y PS1-1/Q<—% Pi

7=1 j=1
or

n n—1
2 PI21/Q> Y P
j=0 =0

To obtain the conditions cited in the summary, we invert and multiply
by P to obtain

Fri1(P) £ PQ < Fu(P),
where

_ k=l P(P—1)
Fo(P)y=P jg'o Pi = T

Another way of expressing this condition is

Pr—1 1 _PpPwi—1
P10 P=-1"

so multiplying by (P — 1)@ and adding € gives
PQ<P+Q—1=PriQ.

Thus, the stability exponent = is the largest » such that PQ is strictly
less than the quantity P 4+ @ — 1. Note that @ < 1 implies P"Q
<P+ Q—1< P, so that P1Q < 1 whenever n is the stability
exponent for P and Q.

Theorem 3: If n is the stability exponent for P and Q, and P"Q < 1,
then Y converges for all initial conditions, that is, both m; and y; tend
to zero with increasing .

Proof: Once the ratios enter A, no more than n negative ratios can
occur without an intervening nonnegative ratio. Thus, as m; evolves
by multiplication of P’s and (—@Q)’s, each —@Q can be grouped with
at most n P’s with no P’sleft over. Since P*@ < 1, the absolute value of
m; will be decreasing by a factor bounded away from 1 at least every
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(n + 1) steps, and hence going to zero. Each time a ratio is nonnegative,
which occurs at least onee every (n + 1) steps, Y has just crossed zero,
so y; must go to zero along with m..

The next theorem is the basic result of the theory of Jayant’s
adaptive delta modulation. It states that not only is the stability ex-
ponent n the maximum number of successive negative ratios that can
occur once the ratios enter A, but that for almost all initial conditions
(initial ratios r¢), a sequence of n negative ratios all in 4 will eventually
occur. (Here by “almost all” we mean that the set of initial conditions
for which this is false has Lebesgue measure zero—it can be covered
by a family of open intervals of arbitrarily small total length.) This
result is the key to the analysis for P*Q = 1.

Theorem 4: Let B, = A (N An = [q, a.) and let B be the set of r © A
such that fi(r) € B, for some j (so that n successive negalive ratios
eventually occur). Then B is open (as a subset of A) and has Lebesgue
measure u(B) = 1/Q = 1 — q, the length (and Lebesgue measure) of A.
Thus, A\B (the points of A not in B) is a measurable set of Lebesgue
measure zero.

Proof: B, is open in 4, and B can be written as

B = J [r|f(r) € Bu}.

Since each fi(-) is a continuous function from A into A, each set in
the union is open, so B itself is open. Thus, B and its complement
A\B are measurable. Clearly, if S is a subset of B, and §’ is a subset
of A such that f(8’) = S, then S’ is a subset of B also. In addition,
if f(-) is linear with slope 1/s on §’, f(S8’) = 8, and S and S’ are mea-
surable, then u(S’) = |s|-u(S). For each 1, 0 £ 1 = n, let B; = 4;
N B, so that each B; is measurable with measure u(B;). Now f(-)
maps A, linearly onto A4, with slope —1/Q, so f(-) must map By
linearly onto B, and u(Bo) = Q-u(B). Similarly, for each ¢ such that
n—1>7>0, f(-) maps A, linearly onto A; with slope 1/P, so
f(+) must map By, linearly onto B;, and p(Biy1) = P-u(B;). When
i =0, f(-) maps A, linearly onto Ao\{1}, so u(B1) = P-u(Bo\{1});
but since {1} has measure zero, u(By) = P-u(Bo) also. Thus, for
0 <4 <mn, we have u(B;) = P*-u(B,). But since B is the disjoint
union of the B;, we have

W(B) = ¥ w(B) = u(Ba) + :E_:P*-u(Bo)
= (@ — @ + By T P

ADM STEP RESPONSE 385



Sinee u(Bo) = Q-u(B), and Y7} Pi = 1 — a,,
u(Bo)/Q = (an — @) + (1 — aa)u(Bo)

or
p(Bo)(1/Q@ — 1 4 an) = p(Bo)(ar — @) = an — ¢

Since ¢ < a. (this relies on the convention that m:;; = —Q-m; when
yi = 0), we have u(Bo) =1, 50 u(B) = 1/Q = 1 — q = u(4). Thus
w(A\B) = 0.

Corollary: Let W be the set of real numbers r such that f(r) & B, for
all 4, 1.e., once fi(r) is in A, no sequence of n successive negative ratios
ever occurs. Then W has Lebesgue measure zero.

Proof: Let Wy = A\B and for all 7, let W; be the set of r for which
fi(r) € W,. Since each fi(-) is piecewise linear, each W; has measure
zero, so W = Uiz Wi = {r| fi(r) € W, for some 7} has measure zero.
But since W is the set of r © A such that fi(r) € B, for all 7, W is the
set of (unrestricted) r such that f*(r) € B, for all 4.

We note that W is nonempty for all P > 1 and @ < 1, since f(-)
has a fixed-point w = @/(Q + 1) € (0, 1), and w and all its preimages
(r such that fi(r) = w for some 7) will be in W. In addition, for all
i = 2, fi(-) will have fixed points in addition to w, and many of these
fixed points and their preimages will be in W also.

Theorem &: With n the stability exponent for P and @, on A.=[any1, @n)
the function fr+i(-) 18 linear with slope — (P"Q)™! and has a fixed point
zE EQr an) = Bn.

Proof: Since f(Aiy1) C A;and f(-) is linear on each A;, f/(-) is linear
on each A; for j < 7 + 1. Clearly, f*(@n41) = 0 and f*(a,) = 1, so
fr(an;1) =1 and frH(a,) = f(1) = ¢=1— 1/Q. The slope of
fr¥(-)onA.isthus (¢ — 1)/(an — @nyr) = (—1/Q)/P" = — (P"Q)™
Since ¢ € A, by definition, ¢ = f**(a,) < a., but since f**(-) has
negative slope, f"*'(g) > f**'(a.) = ¢. Thus, f**(q) > ¢, f**(a.)
< an, and so f*+1(:) has a fixed point 2z between ¢ and a,.

Theorem 6: If P*Q>1, then f**'(B,) C Bn, that is, if r;EB.=[g, @),
then 7y (ny1ye € B, for all £ = 0. Thus, except for ro & W, the ratios
eventually enter B, and return to B, every n + 1 steps thereafter. More-
over, the ratios falling in B, converge to the fized point z of f*+'(-).

Proof: f**(a,) = ¢, and the absolute value of the slope of f**(-) on
A, is (PQ)'<1 so |f*f(q) — fr(a.)| < |¢ — a.| and so
S (B,) = (g, " (¢)] C (g, ax) C B,. Each ftU¥(B,) is an in-
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terval containing z, and each increase in k£ (each n 4 1 steps) reduces
the length of the interval by a factor (P"@)~* < 1, so for each r € B,
we have f(»+1)k(r) approaching z with increasing k. Thus, except for
initial conditions in W, the ratios not only eventually enter B, (by the
corollary to Theorem 4) but return there every n 4 1 steps, each time
coming closer to z.

Corollary: If n is the stability exponent for P and Q and P"Q > 1,
then for all initial conditions which are not in W, the signal Y is un-
stable. Also, if r:€B,, then M. ;>M; for all j>0, where M;= |m;|.

Proof: Once 7; is in B, every n + 1 steps M increases by a factor of
PrQ > 1; hence the step size increases without bound.

The next theorem and its corollary establish the nature of the stable,
periodic step response which is characteristic of the Jayant family of
delta modulators.

Theorem 7: If n is the stability exponent for P and Q and P"Q = 1,
then fi+2(.) 1s the identity on B., and if y: and m; are such that r;
= y;/m; € B,, then whenever j 21, k = 0, and | = (2n 4+ 2)k, we
have y;1 = y; and mj, = mj, so that ¥ becomes periodic with period
2n + 2 steps. Thus for all initial conditions which are not in W, ¥
eventually settles into a pertodic (2n 4+ 2)-step cycle.

Proof: If PnQ = 1, then the slope of f**+1(-) is —1, so that f*+(g) = a.
in addition to f**(a,) = ¢. Thus, f2"*2(a,) = a., f****(q) = ¢, 80
f22+2(.) is the identity on [g, a.] and hence on B, = [gq, a.) itself.
Thus, when r; € B,, Tjjensz = 7; But by Theorem 2 we know that
among the 2n + 2 successive values of r;y; there are 2n negative ones
and 2 nonnegative ones, so that m a2 = P?*(—Q)*m; = (—P"Q)*m;
= m;. Thus, ¥;42a42 = ¥; as well. The connection with W is made as
in previous theorems.

Theorem 8: If P"Q = 1 and ro & W, then y; and m; both converge to
0, t.e., for initial conditions in W, ¥ is neither unstable nor periodic but
converges to X.

Progf: For all initial conditions, the ratios eventually enter and remain
in A, but if 7, € W, then all ratios in A fall in the A; with 7 < n. Thus,
at most, n — 1 sucecessive negative ratios can occur; hence, each —@Q
can be grouped with no more than n — 1 P’s with no P’s left over.
But PiQ < 1 for 7 < n even if P*@Q > 1, so at intervals of no more
than n steps m; will be reduced in absolute value by a factor bounded
away from 1; hence m; will converge to zero, and with it Y, since a
zero crossing will oceur at least every n steps.
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We can now relate our findings to the general supposition on the
stability of Jayant’s delta modulator: that is, that the system is un-
stable, periodic, or convergent according to whether PQ exceeds,
equals, or is less than 1. We see that the general supposition is in fact
correct when PQ = 1 — Qand ro & W.

Theorem 9: If PQ = 1 — Q, then the stability exponent for P and Q
28 1. Thus, Y converges to X when 1 — @ < PQ < 1 (or when PQ = 1
and ro € W), settles into a four-step cycle when PQ = 1 and ro & W,
and ts unstable when PQ > 1 and ro & W.

Proof: All we must show is that ¢ =1 — 1/Q = a; = — P, so that
g € A,. But dividing 1 — @ < PQ by —@ yields ¢ = — P as required.
The rest follows from our earlier theorems, taking n = 1.

The most unexpected results of our analysis are the existence of both
unstable combinations of P and @ with PQ < 1 and Jayant-type delta
modulators that satisfy P*Q = 1 and are eventually periodic with a
2n + 2 step period when n > 1 (and ro ¢ W). The next three the-
orems establish that since n depends on P and @, in order to attain
PrQ = 1 we must have P > pn, where py = 1, ps & 1.62, p; < piyy,
and lim;,, p; = 2. Thus, for P = 2, all values of n are realizable,
while for P < p, =~ 1.62, only the n = 1 value will allow P"Q = 1.
(The sequence {p;} that we define here comes up again in our subse-
quent analysis of a P,  delta modulator with a minimum step size.)

Theorem 10: If P*Q = 1, then q = ayy1, so the stability exponent for
P and Q = P~* cannot exceed k.

Proof: Since ¢ = 1 — 1/Q = 1 — P*, all we need show is that 1 — P*
2 a1 = — 2f Pi, or Pr £ Yk P, which always holds. Thus,
if g € An = [@ny1, @n), then a, > ¢ = ag1 80 n = k.

Theorem 11: We can choose a Q such that P"@Q = 1, where n is the
stability exponent for P and Q, if and only if P satisfies P*t' — 2P
+ 1 > 0. Equivalently, n 1is the stability exponent for P and Q =
P (P*Q = 1) if and only if P** — 2P~ 4 1 > 0.

Proof: If P*Q = 1, then ¢ = 1 — 1/Q = 1 — P*. By the definition
ofn,1 —P*=g<a,=— X 1PisoPr>Y'{Pi= (P"—1)/
(P — 1). But then P*(P — 1) = P11 — P» > P — 1, and P""
— 2P" 4+ 1 > 0. Since each of these steps can be reversed, if P**
— 2P% + 1 > 0, then setting @ = P~*, we have ¢ < ax, so n = k.
Since ¢ is strictly less than a; and dg/9Q > 0, there is an open interval
of values of Q@ = P—* for which n = k. But by Theorem 10, n < k
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when P*Q = 1, so for these values of @ we have n = k and P"Q =1
or P*Q > 1, respectively.

Theorem 12: For each k = 1, let ®; be the set of P > 1 which satisfy
Pkl — 2Pk 4 | > 0. Then, each ®; is an open half-line (py, + =),
where Py < Prp1 < 2 and limp.opyr = 2.

Proof: For k = 1, the requirement is simply that (P — 1) > 0, so
p1 = 1. For k = 2, differentiating g(P) = P*1 — 2P 4 1 gives
g'(P) = (k+ 1)P* — 2kP*!, whose only zero besides P =0 is
P = 2k/(k 4+ 1), which lies between 1 and 2 and approaches 2 with
increasing k. Since g(1) = 0, ¢’(1) =1 — k < 0, and ¢(2) = 1, g(P)
has a zero p; between 2k/(k 4+ 1) and 2, and g(P) > 0 for P = 2.
Thus, P > p; implies g(P) > 0, and 1 < P < p; implies g(P) < 0.
Sinece 2k/(k + 1) < px < 2, pi approaches 2 with increasing k. Since
g(Prs1) = px — 1 > 0, pry1 > pi, 80 the sequence {p:} converges
monotonically to 2.

In faect, since g(2) = 1 and ¢'(2) = 2%, a good approximation for
pi is 2 — 2k, For k = 2, 3, 4, the approximations are 1.75, 1.875,
1.9375 and the actual values 1.6180, 1.8393, 1.9275.

We have previously observed that the periodicity that occurs when
P*@Q = 1 is undesirable in practical systems, since it may result in Y
having significant power when X is zero or close to it. This problem is
aggravated by the fact that the amplitude of the periodic hunting is
unpredictable and can be quite large. To overcome this problem,
Steele and others have suggested setting P"Q slightly less than 1, so
as to make the Y converge to X, and using a minimum step size, which
we call 6, to prevent the step size from getting so close to zero during
long stretches of zero (or constant) signal X that Y cannot quickly
respond when X begins to vary. Indeed even when studying the case
PQ = 1, Jayant used a minimum step size, although it was seldom
binding (see Fig. 3 of Ref. 3).

In our final three theorems we treat the case of a P, @ delta modula-
tor with a minimum step-size 8, so that when M; < §/Q and a zero
crossing occurs, instead of the next step having magnitude M.
= QM; < 8, we set M;.; = 6. Thus, M; = 5 for all . We note that if
Y would be unstable or periodic in the absence of a minimum step
size, then the step sizes may never be reduced to the point that the
minimum becomes binding. If a step of size § does occur, however,
with M; = 6§ and r,_; € [0,1] = A,, we show that Y eventually
becomes periodic with a 2J + 2 step cycle, where 0 £ J £ n (the
stability exponent for P and Q) and P > p;; with the exception of the
case P"Q > 1, r; € B, C A,, for which Y is unstable and a step of
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size & never reoccurs. Thus, in contradiction to Steele’s conclusion,
the step response of a P, @ delta modulator with minimum step size
does not reduce to the LoM case, but is fully as complex as the P"Q = 1
case with no minimum. However, it is true that if P*Q < 1, or P"Q
> 1 and ry & W, the minimum step size will eventually occur and the
hunting amplitudes be thereafter bounded by Pra.

Theorem 13: If r; < 0, then riey = f(rs); if 1+ = 0 and M; = §/Q,
then riy1 = f(ry); and if r; =2 0 and § = M; < §/Q, then f(r:) < rip
< 1. Thus, for all initial conditions, r; E A for some 7, and if r: € A
then r; € A for allj = 1.

relevant, and when r; = 0 and M; = §/Q, we have m;yn = —@Qm;, so
the minimum is not binding. Thus, for these cases, 711 = f(r:). But
when r; =0 and M; < §/Q, we have f(r:) =1 —r;/Q but ri
= yipr/mip1 = 1+ (mi/mig1) (yi/mi) = 1+ (mi/mip)ri. Since mi/miza
<0, we can write this ryy =1 — (Mi/Mi 1)ri. But M. =3,
M; < 3/Qso Mi/Mipx < (8/Q)/6 = 1/Q,0 =1 — ripa = ri(Mi/Mi 1)
<ri/Q andsol = riyy > 1 — r;/Q = f(r:). Thus, the evolution of r;
for r; < 0 is given by f(-), so r; € A and r; < 0 implies riyy € A4;
while if r; € [0, 1], ¢ £ f(r:) = rig1 < 180741 € A in this case also.

Proof: When r; < 0, we have m;y1 = Pm;, so the minimum is not

For the next two theorems, we assume that a minimum step size
has oceurred, with M; = §, and that r._; &€ A, so that r; € A. Since
r € A, we must have r; € A for some J, 0 = J £ n, where n is the
stability exponent for P and Q. For almost all cases of interest, steps
of size & will continue to oceur at least every J steps, and Y will be
periodic; the sole exception, which we dispose of first, is when P*@ > 1
and J = n, in whiech case Y is unstable and a step of size & never
reoccurs.

Theorem 14: If M; =28, r, & AN A. = B., and P"Q > 1, then
rip; = fi(rs) and Mip; > 8 for all j > 0, so that Theorem 6 and 1its
corollary apply and Y is unstable.

Proof: If M; = % and r; € B,, then by Theorem 13, ripn = f*(rs)
€ Ay, and My, = PrM,. But P'Q > 1, so My, > M:/Q = §/Q,
and M,‘+n+1 = QM,‘_H, = P"QM.' g §P“Q > 4. Thus, Titngy1l = f"+l(7‘i)
€ Ba, Mijnt1 = 6P"Q, and 50 Tip(aenyk € Bn and Mipnine 2 8(PQ)*
for all & = 0.

The next theorem characterizes the ultimate behavior of the P, @
delta modulator with minimum step size for the more interesting cases
—those not covered by Theorem 14. Thus, we assume that M; = &
and 7; € A, with r; € A, where P/Q = 1. Without loss of generality,
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we choose signs so that m; = M; = é and y; — § = yi-1 = 0 (we con-
tinue to assume Z = 0, i.e., X is identically zero). Since r; € A, we
have riyy € Ap 80 rips41 € Ak for some K, 0 £ K £ n. To simplify
the notation, we set | = 2J + 2.

Theorem 156: If mi =8, r: €E AN As, P'Q = 1, and riys4 € Ak,
then K £ J. If K = J, then P > p;, and yip1 = Yi, Miy1 = My, and
Y s periodic with period 2J + 2 and maximum amplitude §P7 < 6P™.
Moreover, for each j such that 0 £ j = n and P > pj, the set of inilial
eonditions which produce a (2 + 2)-step period has positive Lebesgue
measure.

Proof: When J = 2, we have yi1 = i + 6P < 0, miyy = 6P; Yisa
= y; + 6(P + P?), mi, = 8P?; and, in general (even for J = 0, 1),
we have yius =9+ 8 271 P1 =0, mis = 6P7. Since P’Q = 1,
6P7 = 8/Q so that mi s = —é. If K = J, then

J
y.-_x+;=ye+J—6§0P’=y‘-—6=y.--1§0,
ri

so that K £ J; thus, K = J implies K = J, so we have proven that
K £ J.If K = J, then we have seen that yi—11;1 = y:i—1; also, miy; = 8
since mi_1y; = —o6P7 and P7 < 1/Q. Thus, yit1 = Yicip1 + 6 = Yia
+ 6 = y;, and miy; = 6 = my, 50 Y is periodic with period I = 2J + 2.
To show that P > p,; when K = J and Y has period | = 2J + 2, we
observe that by the definition of J and K (=J) we have (see Fig. 7,

s

x|

|5 L

| ] I | | L ] N | | 1
i—1 i i+1 i+2 i+3 i+4 i+5 i+6 i+7 i+B i+9

Fig. 7—Period-eight ApM hunting with minimum step-size 3.
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with J = 3)
Yiro—1 <0, Yirs = 0,
Yiagr > 0, Yiipr = 0,

so that
J-1
Yirgr =Yima+8 2 PI<O0
=0
Yicart = Yicrar + 0P7 = yia + 3P7 > 0,
so that
J-1
Yior + 8 p? < yi1 + 8PY,
=0
S0
Pi—1 7
o1 <P
from which

Pi+t1 —2P7 4+ 1> 0.

But this is the defining condition for P > ps. To show that each j
satisfying 0 < j < n and P > p; comes up with positive measure, it
is only necessary to observe that choosing yo, mo such that § = —mo
<6/Q and

J=1
—8PY <yo< =8 X Pi

=1
will realize the 2J + 2 step period analyzed above with ¢ = 1.

We note that once a minimum step oceurs, the series of “reversal
numbers” (of which the J and K are two adjacent elements) is mono-
tone decreasing (K < J) until it repeats itself (K = J), after which
it is constant, and Y is periodic. This monotonicity holds only after &
oceurs; when there is no minimum step size, there is no monotonicity,
except that when P*Q = 1 an occurrence of J = n will result in
nothing but n’s thereafter. What we have shown is:

Corollary : If & is the minimum step size and M; = é wherer; € A (N 4,
then unless P*Q > 1 and j = n, within (j + 1)* steps Y will become
periodic with pertod 2J + 2, where 0 = J = j.

Proof: Until the reversal numbers become constant, at least every
7+ 1 steps a new, lower reversal number occurs, and there are only
7 + 1 possible such numbers ; thus, within (j + 1)* steps the minimum
number J is obtained and Y is periodie.
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